dc.contributor.author |
KECHAR, Youcef |
|
dc.contributor.author |
Merabet, Brahim Encadreur |
|
dc.date.accessioned |
2025-09-14T08:29:42Z |
|
dc.date.available |
2025-09-14T08:29:42Z |
|
dc.date.issued |
2025 |
|
dc.identifier.uri |
https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9790 |
|
dc.description |
Spécialité : Analyse Fonctionnelle et Applications |
EN_en |
dc.description.abstract |
In this memoir, we deal with the problem of analyzing the global exponential stability of a
class of recurrent neural networks (RNNs) with discrete and distributed mixed delays, let us
consider the existence and uniqueness of équilibriste points. use a new Lyapunov-krasvsckii
functional and develop a linear matrix inequality (LMI) approach to make RNNs exponentially
global stable. |
EN_en |
dc.publisher |
université Ghardaia |
EN_en |
dc.subject |
:Generalized recurrent neural networks; Discrete and distributed delays; Lyapunov- Krasovskii functional; Global exponential stability; Global asymptotic stability. |
EN_en |
dc.subject |
:Réseaux de neurones récurrents généralisés ; Retards discrets et distribués ;fonc- tionnelle Lyapunov-Krasovskii ; Stabilité exponentielle globale ; Stabilité asymptotique globale. |
EN_en |
dc.title |
Stabilité Exponentielle Globale des Réseaux de Neurones Récurrents Généralisés à Retards Discrets et Distribués |
EN_en |
dc.type |
Thesis |
EN_en |