DSpace Repository

Modeling of Geothermal EAHE Outputs Using Convolutional Neural Network and Artificial Neural Network in Ghardaia

Show simple item record

dc.contributor.author BOUAMER, Chaima
dc.contributor.author KIFOUCHE, Abdessalam Encadrant
dc.date.accessioned 2025-09-21T09:09:12Z
dc.date.available 2025-09-21T09:09:12Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835
dc.description Spécialité : Automatique EN_en
dc.description.abstract Artificial Intelligence (AI) and thermal energy systems are two distinct fields and the role of both in advancing scientific research and supporting sustainable development, making this study saturated with knowledge diversity, where deep learning was exploited to optimise the performance of geothermal heat exchangers. A feed-forward back-propagation network and a convolutional neural network were used to use the data obtained in a specific period to build an accurate predictive model that helps optimise the system performance. EN_en
dc.language.iso en EN_en
dc.publisher université Ghardaia EN_en
dc.subject Earth-Air Heat Exchanger (EAHE), Geothermal Energy, Convolutional Neural Network (CNN),and Artificial Neural Network (ANN) , Deep Learning, Heat Transfer. EN_en
dc.subject Échangeur de chaleur terre-air (EAHE), énergie géothermique, réseau neuronal convolutif (CNN), réseau neuronal artificiel (ANN), apprentissage profond, transfert de chaleur. EN_en
dc.title Modeling of Geothermal EAHE Outputs Using Convolutional Neural Network and Artificial Neural Network in Ghardaia EN_en
dc.type Thesis EN_en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account