الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur Et de La Recherche Scientifique

Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre

Département des Sciences Agronomiques

كلية علوم الطبيعة والحياة وعلوم الأرض قسم العلوم الفلاحية

Université de Ghardaïa

Mémoire en vue de l'obtention du diplôme de Master académique en Sciences Agronomiques Spécialité : Protection des végétaux

THEME

Utilisation des produits phytopharmaceutiques dans la région du Souf (Gestion et ampleur)

Présenté par

MEHDA Badreddine

GHARGHOUT Abd Elkerim

Membres du jury	Grade				
Mm. MEHANI Mouna	Maitre de conférences. A	Présidente			
M. SEKOUR Makhlouf	Professeur	Encadreur			
M. MEBARKI Med. Tahar	Maitre assistant. A	Co-encadreur			
M. MOUSSA Ouali Bakir	Maitre assistant. B	Examinateur			

Année Universitaire 2016/2017

Remerciements

Avant tout, nous remercions dieu le tout puissant de nous avoir accordé la santé, le courage et les moyens pour suivre nos études et la volonté pour la réalisation de ce travail.

Nous tenons à remercier:

Mr. SEKOUR Makhlouf, Professeur au Département d'Agronomie de Faculté SNV de l'université d'Ouargla d'avoir proposé et dirigé ce travail, d'avoir usé de toute sa bonne volonté dont il a fait preuve durant l'élaboration de cette étude.

Je remercie aussi:

Mr. Mebarki Mohamed Tahar Letoufa Saad pour leurs aides, ses orientations et sa disponibilité durant toute la période de mes études et tous les agriculteurs.

Mm. MEHANI Mouna ., pour nous avoir fait l'honneur de présider le jury.

Mr. MOUSSA OUALI Bakir., d'avoir accepté d'examiner ce travail et pour son aide.

A toutes et à tous qui ont participé à la réalisation de ce modeste travail

A la fin nous tenons à exprimer nos remerciements à tous nos collègues du 2ème année master

: Protection des Végétaux 2017.

MEHDA Badreddine Et GHERGHOUT Abd Elkarim

Liste des tableaux

N°	Titres	Pages
01	Températures enregistrées dans la région d'étude durant l'année 2016	9
02	Précipitations mensuelles enregistrées dans la région d'étude durant l'année 2016	9
03	Liste des plantes spontanées et plantes cultivées de la région du Souf	50
04	Principales espèces d'invertébrés recensées dans la région d'Oued Souf	51
05	Avifaune de la région d'Oued Souf	54
06	Principales espèces mammifères et des reptiles de la région de Souf	55
07	 A – Différentes pesticides achetés et vendues par les fournisseurs dans la région du Souf B – Différentes engrais granulés et foliaires achetés et vendues par les fournisseurs dans la région du Souf 	57
08	C – Différentes acide aminé achetés et vendues par les fournisseurs du Souf Fiche de questionnaire ou enquête applique sur les agriculteurs dans la région du Souf	60
09	Quantités en poids achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude	23
10	Quantités en poids et en volumes achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude	26
11	Volumes (litre) d'acides aminés achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude	30
12	Volumes (litre) des pesticides achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région du Souf	33
13	Quantités en kilogramme achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région du Souf	35
14	Propriétés et caractérisation de la lutte chimique par les agriculteurs de la région d'étude	38

Liste des figures

N°	Titres	Pages
01	Situation géographique de la wilaya d'El Oued	6
02	Coupe hydrogéologique transversale du "CT" et "CI"	8
03	Diagramme ombrothermique de Gaussen de la région du Souf (2007-2016)	10
04	Place de la région du Souf sur le climagramme d'Emberger (1980 - 2016)	12
05	Localisation globale des zones d'étude	16
6	Quantités d'engrais granulés (%) achetées et vendues par les fournisseurs du Souf	24
7	Importance des engrais en fonction des utilisations des agriculteurs	25
8	Quantités en poids (kg) des engrais soluble achetés et vendues par les fournisseurs	27
9	Volume (litre) des engrais solubles achetés et vendues par les fournisseurs	28
10	Importance des engrais foliaires en fonction des utilisations des agriculteurs	29
11	Volumes des acides aminés achetés et vendues par les fournisseurs	31
12	Importance des acides aminés en fonction des utilisations des agriculteurs	32
13	Volume (litre) des pesticides achetées et vendues par les fournisseurs du Souf	34
14	Quantités en poids (kg) des pesticides achetées et vendues par les fournisseurs du Souf	36
15	Proportions des pesticides selon leur importance d'utilisation	37

Liste des photos

N°	Titres	Pages
01	Station de Debila	17
02	Station de Hassani Abd Elkerim	17
03	Station de Hassi Khalifa	17
04	Sstation d'Enakhla	17
05	Station de Robbah	17
06	Station d'Elmagran	17
07	Pucerons sur feuilles de poivron et piment	19
08	Mildiou de pomme de terre	19
09	Tutta absoluta sur les feuilles de tomate	19
10	Tutta absoluta sur les fruits de tomate	19
11	Insecticide (EL ECTRA)	20
12	Fongicide (BELTANOL-L)	20
13	Herbicide (FOCUS ULTRA)	20
14	Acaricide (ROMECTIN)	20
15	Acide aminés (ACA 27)	20

Liste des abréviations

T: Températures en ⁰C

M : Moyenne mensuelle des températures maximales en °C

m : moyenne mensuelle des températures minimales en °C

(M+m) / 2 : moyenne mensuelle des températures en °C

P : Précipitations mensuelles exprimées en millimètres

Q3 : Quotient pluviométrique d'EMBERGER ;

P : Somme des précipitations annuelles en mm ;

M : Moyennes des températures maximales du mois le plus chaud

m : moyennes des températures minimales du mois le plus froid

Min: Quantité minimale

Max; Quantité maximale

Moy: Moyenne

SD: Déviation standard

Pul: Pulvérisation

j: Jour

CI: Continental Intercalaire

CT: Complexe Terminal

MA: Ministère d'Agriculture

Table des matieres

Table des matières

Introduction	1
Chapitre 1 – Synthèses bibliographiques	5
1.1 Situation Géographique	5
1.2 Caractéristiques écologiques de la région d'étude	7
1.2.1 Géomorphologie	7
1.2.2 Topographie	7
1.2.3 Pédologie	7
1.2.4 Hydrogéologie	7
1.2.4.1 Nappe phréatique	7
1.2.4.2 Nappe du Complexe Terminal (C.T)	8
1.2.4.3 Nappe du Continental Intercalaire (C.I).	8
1.3 Etude des paramètres climatiques	8
1.3.1 Température	8
1.3.2 Pluviométrie	9
1.4 Synthèse climatique	10
1.4.1 Diagramme Ombrothermique de Bagnouls et Gaussen	10
1.4.2 Climagramme d'Emberger	11
1.5 Facteurs biotiques de la région du Souf.	13
1.5.1 Flore	13
1.5.2 Faune	13
Chapitre 2 - Matériel et méthodes.	15
2.1 Choix des stations.	15
2.2 Présentation des stations d'étude	15
2.3 Données sur produits phytopharmaceutiques	18
2.3.1 Définition	18
2.3.2 Classification des produits phytosanitaires	18
2.3.3 Avantages et risques d'utilisation des produits phytosanitaires	18

2.4 Evaluation de l'importance d'utilisation des produits phytosanitaires dans la	
région d'étude	19
2.5 Elaboration d'un questionnaire phytosanitaires	21
2.5.1 Collecte et analyse des données	21
2.5.2 Modes d'emploi des pesticides utilisées dans la du Souf	21
2.5.2.1 Irrigation	21
2.5.2.2 Main	21
2.5.2.3 Pulvérisation	21
Chapitre 3 – Résultats et discussions.	23
3.1. – Importance des engrais dans la région du Souf	23
3.1.1. – Importance des engrais granulés dans la région du Souf en fonction des fournisseurs	23
3.1.1.1. – Importance des engrais granulés dans la région du Souf en fonction des	25
agriculteurs;	26
3.1.2. – Importance des engrais foliaires en fonction des fournisseurs au Souf	26
3.1.2.1. – Quantités en poids (kg) des engrais solubles achetés et vendues par les Fournisseurs	26
3.1.2.2. – Volume (litre) des engrais soluble marchandés par les fournisseurs	27
3.1.2.3. – Importance des engrais foliaires en fonction des utilisations des Agriculteurs	28
3.2. – Importance des acides aminés en fonction des fournisseurs	30
3.2.1. – Importance des acides aminés en fonction des utilisations des agriculteurs	31
3.3. – Importance des pesticides dans la région du Souf	33
3.3.1. –Volumes (litre) des pesticides achetés et vendus en fonction des fournisseurs	33
3.3.2. – Quantité en poids (kg) des pesticides achetées et vendues en fonction des	
Fournisseurs	34
3.3.3. – Utilisation pesticides par les agriculteurs de la région du Souf	36
3.4. – Caractérisation de la lutte chimique dans la région du Souf	38
Conclusion	42

Références bibliographiques	45
Annexes	49
Annexe 1	49
Annexe 2	50
Annexe 3	56
Annexe 4	61

Introduction

Introduction

Dans le passé, les systèmes de culture étaient conçus pour assurer une meilleure harmonie entre le risque phytosanitaire et le potentiel de production de la culture (Oerke et Dehne, 1997). Mais ces derniers temps, notamment avec les cultures intensives et la monoculture, l'emploi des produits phytopharmaceutiques s'avère indispensable et parfois même obligatoire, afin de maximiser et protéger le rendement.

En termes de protection des cultures, il faut dire que les pesticides ont permis le développement de l'agriculture, suite à la régulation des produits agricole et à l'augmentation des rendements. L'utilisation de ces produits a rendu possible le control d'un certain nombre de maladies et ravageurs. Cependant, aujourd'hui, les pesticides sont soupçonnés de présenter un risque pour la santé de l'homme et pour son environnement (Bourbia, 2013).

L'utilisation et la gestion des produits phytosanitaires et des fertilisants chimiques ont des conséquences sur la durabilité de la production agricole et sur l'environnement (Ramade, 2003). Lorsqu'ils sont utilisés d'une manière rationnelle, ces intrants agricoles peuvent améliorer la productivité des parcelles et le rendement des cultures. Cela va sans doute satisfaire la demande nutritionnelle liée à l'accroissement de la population mondiale. Cependant, cette utilisation a également provoqué des effets indirects et néfastes sur l'environnement. Ainsi des études ont montré la présence de résidus de pesticides dans les aliments (Cunnif, 1995) et les eaux souterraines et superficielles (Di Corcia, 1992).

Dans le monde entier, la lutte chimique reste le moyen le plus utilisé pour protéger les cultures, les semences et les denrées stockées. Elle permet la limitation des pertes cause par les phytoparasites des cultures. Les produits utilisés ont pour objectif de protéger les végétaux cultivés, tout en réduisant les attaques des ravageurs, en limitant la concurrence des plantes adventices et en assurant la conservation des denrées stockées (Tanor, 2008).

En Algérie, l'usage d'insecticides, de fertilisants, des engrais, de détergents et autres produits phytosanitaires se répand de plus en plus avec le développement de l'agriculture, notamment dans les régions sahariennes (Bouziani, 2007). D'ailleurs l'agriculture dans la région d'Oued Souf a connu depuis ces dernières décennies un développement très remarquable en termes de superficies agricoles, qui sont en cours d'extension par la mise en valeur de nouveaux périmètres et en termes de la diversité culturale dans les systèmes de production végétale, qui tend de plus en plus vers l'agriculture intensif.

Introduction

Ceci fait appel à l'usage de nouvelles techniques et utilisation des produits phytopharmaceutiques et d'améliorer afin d'assurer une bonne production de quantité et de qualité (Bouziani, 2007).

L'objectif de ce travail est la mise en évidence de l'utilisation et de la gestion des produits phytosanitaires dans quelques stations de la région du Souf, notamment en matière de pratiques phytosanitaires et des produits utilisés dans la lutte contre les ennemies des cultures. Il faut rappeler que bien utilisés, ces intrants agricoles peuvent améliorer la productivité des parcelles et le rendement des cultures sans mettre en péril le milieu ambiant, alors qu'une mauvaise utilisation peut avoir des effets négatifs sur la qualité de l'eau, du sol et sur la biodiversité.

Le présent travail compte trois chapitres. Après l'introduction, le premier chapitre porte sur la présentation de la région d'étude. Ce dernier est suivi par le deuxième chapitre qui dévoile l'ensemble des résultats obtenus, qui sont accompagnés par les discussions. A la fin, ce travail est clôturé par une conclusion et quelques perspectives.

Chaptro

Chapitre 1 - Synthèse bibliographique

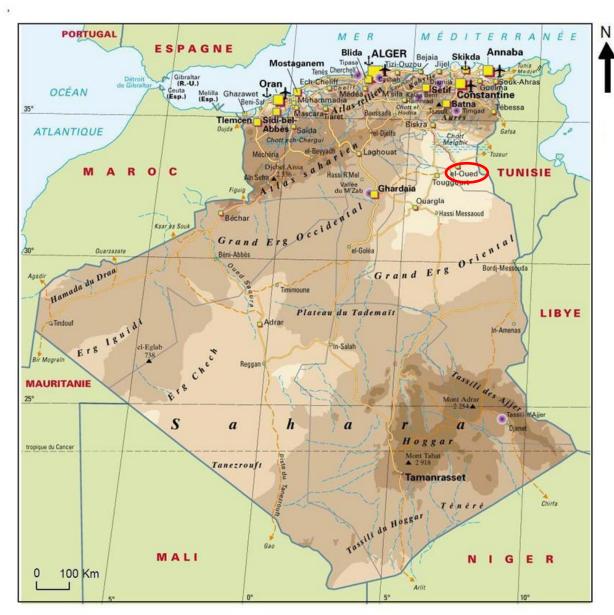
Au sein de ce chapitre, sont abordées, la situation géographique de la région d'étude, les caractéristiques édaphiques et climatiques ainsi que les particularités floristiques et faunistique.

1.1.- Situation Géographique

La région du Souf (33° à 34° N; 6° à 8° E) est une partie de la wilaya d'El-Oued, qui se situe au sud-est Algérien (Fig. 1). Il s'agit d'un vaste ensemble de palmeraies bordées de dunes de sable (Beggas, 1992). Elle est localisée sur une altitude de 70m, occupant une superficie de 44.585 km² avec une population de 990.000 habitants donnant ainsi une densité de 12 habitant/km² (ONS, 2016).

Le "Souf" vient du nom berbère désignant rivière ou Oued. Depuis longtemps, la principale activité des habitants de la région était l'agriculture, justifiée par la phoeniciculture de type Ghott, caractéristique de la région (DSA, 2005). Les limites administratives de la wilaya d'El Oued sont :

Au Nord: Tébessa et Khenchla;


A l'Est : Tunisie ;

Au Sud: Ouargla;

A l'Ouest : Biskra et Ouargla.

Pour ce qui est des limites naturelles, cette région est limitée par :

- Au Nord par la zone des Chotts (Melghir et Merouane);
- Au Sud par l'extension de l'Erg oriental;
- A l'Ouest par la vallée d'oued Righ;
- A l'Est par Chott tunisien El-Djerid (Voisin, 2004).

(Encarta, 2006)

Fig. 1 – Situation géographique de la wilaya d'El Oued

1.2.- Caractéristiques écologiques de la région d'étude

Dans cette partie sont développées la géomorphologie, topographie, pédologie et l'hydrologie du Souf.

1.2.1.- Géomorphologie

Nadjeh (1971), signale que le Souf une région sablonneuse avec des dunes qui peuvent atteindre les 100 mètres de hauteur. Ce relief est assez accentué et se présente sous un double aspect. L'un est un Erg (occupe 3/4 de la surface totale de la région) et l'autre est une région plate et déprimée, souvent assez étendus et parfois caillouteux ou recouverts par des vieilles formations d'encroûtements gypseux du quaternaire.

1.2.2.- Topographie

L'altitude moyenne de la région est de 80 mètres accuse une diminution notable du Sud au Nord pour descendre jusqu'à - 25 mètres dans la zone des Chotts qui occupent le fond de l'immense bassin du bas Sahara (A.N.R.H., 2005).

1.2.3.- Pédologie

D'une manière globale, les sols de la région du Souf sont peu évolués. Ils sont constitués de sable de forte profondeur et ne constituent pas des couches rocheuses (Helisse, 2007). Ils se caractérisent par une faible teneur en matière organique, une structure particulaire à forte perméabilité et par une texture sableuse (Voisin, 2004).

1.2.4.- Hydrogéologie

La région de Souf possède des ressources hydriques souterraines essentielles, elle est caractérisée par les nappes suivantes :

1.2.4.1.- Nappe phréatique

Elle dans le Souf la partie supérieure des formations continentales (Fig. 2). Elle est rencontrée à des profondeurs variant de 10 et 83 mètres. Vu son importance, cette nappe représente la source principale d'irrigation d'importantes palmeraies, elle est surtout exploitée par des puits traditionnels.

1.2.4.2.- Nappe du Complexe Terminal (C.T)

La zone de production de cette nappe se situe entre 200 et 500 m (Fig. 2), avec un débit moyen variant entre 25 et 35 1/s et une qualité chimique de 2 à 3 g/1 de résidu sec (DHW, 2007).

1.2.4.3.- Nappe du Continental Intercalaire (C.I)

Elle située à une profondeur moyenne de 1900 m (Fig. 2). L'eau de cette nappe se distingue par sa température très élevée (60 °C), et un résidu sec de 2 à 3 g/1 (DHW, 2007).

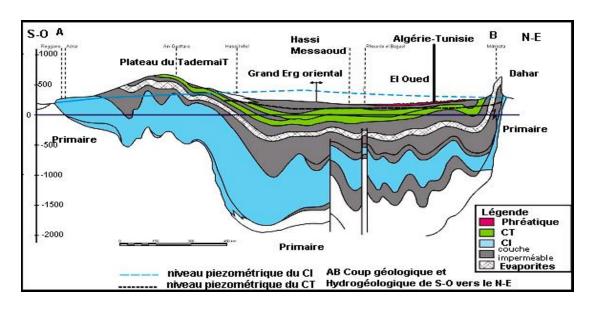


Fig. 2 – Coupe hydrogéologique transversale du "CT" et "CI" (UNESCO, 1972)

1.3.- Etude des paramètres climatiques

Les caractéristiques climatiques de la région d'étude sont détaillées dans ce qui va suivre notamment les températures, les précipitations ainsi que la synthèse climatique.

1.3.1.- Température

Le Souf présente de forts maxima de température en été, contrairement en hiver où elles sont très basses (Voisin, 2004). Les valeurs de températures mensuelles maximales (M) et minimales (m) et leurs moyennes mensuelles enregistrées dans le Souf durant l'année 2016, sont détaillées dans le tableau 1.

Mois $T(^{\circ}C)$ II III IV VII VIII IX XI XII M 20 21,8 24,2 30,5 34,6 39,1 40,7 39,5 35,4 32,2 23,6 18,9 M 5,8 7,7 9,3 15,7 19,7 24 26,1 26,2 23,3 19,4 10,6 8,6 (M+m)/231,6 12,9 14,8 16,8 23,1 27,2 33,4 32,9 29,4 25,8 17,1 13,8

Tableau 1 – Températures enregistrées dans la région d'étude durant l'année 2016

T: Températures en C;

(Tutiempo, 2017)

M : moyenne mensuelle des températures maximales en °C ;

m : moyenne mensuelle des températures minimales en °C;

(M+m) / 2 : moyenne mensuelle des températures en °C.

La période qui s'étale du mois de Novembre au mois d'Avril correspond à la période froide avec un minimum moyen enregistré durant le mois de Décembre de (12,9 °C), alors que la période chaude commence à partir du mois de Mai et dure jusqu'au mois de Septembre avec un maximum moyen marqué pendant le mois de Juillet (33,4 °C) (Tab. 1).

1.3.2.- Pluviométrie

L'origine des précipitations dans les régions sahariennes est différente selon les saisons. Durant l'été elles sont dues aux dépressions de mousson, en hiver elles sont dues aux dépressions accompagnant la migration vers le Sud des fronts polaires. Pendant la période intermédiaire, ces précipitations sont dues aux dépressions soudano sahariennes traversant le Sahara du Sud vers le Nord (Dubief, 1963). Dans la région d'étude, elles sont saisonnières, variables et atteignent leur maximum en automne (Voisin, 2004). Les valeurs de précipitations mensuelles du Souf durant l'année 2016 sont illustrées dans le tableau 2.

Tableau 2 – Précipitations mensuelles enregistrées dans la région d'étude durant l'année 2016

Mois	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Cumul
P (mm)	0	1,53	4,82	2,03	0	1,02	0	0	24,89	1,02	0,76	0,76	36,83

P : Précipitations mensuelles exprimées en millimètres

(Tutiempo, 2017)

La région du Souf a connue durant l'année 2016 un cumul de précipitation égal à 36,8 mm (Tab. 2). Le mois le plus pluvieux durant cette année est Septembre avec une pluviométrie de l'ordre de 24,9mm. Par contre les mois les plus secs sont Mai, Juillet et Août (0 mm).

1.4.- Synthèse climatique

La classification écologique des climats est faite le plus souvent suite à l'utilisation de deux facteurs à savoir, la température et la pluviosité (Dajoz, 1971). Ces deux facteurs sont utilisés pour réaliser les diagrammes ombrothermique de Bagnouls et Gaussen et climagramme pluviothermiques d'Emberger.

1.4.1.- Diagramme Ombrothermique de Bagnouls et Gaussen

Pour caractériser le climat d'une région, les températures et les précipitations représentent les facteurs les plus utilisés. Selon Faurie et *al.*, (1980), le diagramme ombrothermique (Ombro=pluie, thermo=température) est construit en portant en abscisses les mois et en ordonnées les précipitations "P" sur un axe et les températures "T" sur le second en prenant soin de doubler l'échelle par apport à celle des précipitations "P = 2T". Les périodes sèches sont celles ou la courbe des précipitations est au-dessous de la courbe thermique (Ramade, 2003).

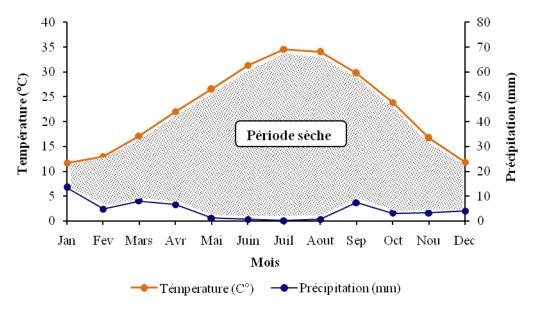


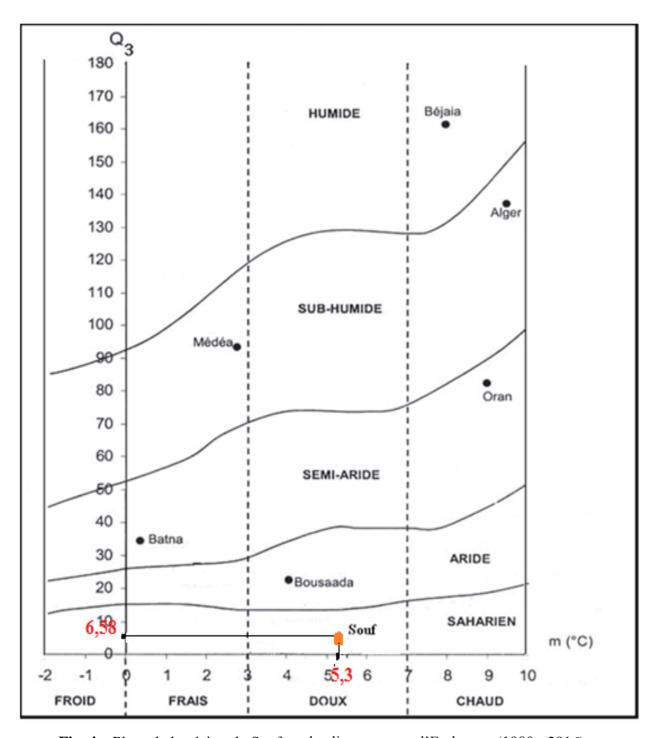
Fig. 3 – Diagramme ombrothermique de Gaussen de la région du Souf (2007-2016)

La région d'etude est caractérisée par une période sèche qui persiste sur toute l'année 2016 (Fig. 3).

1.4.2.- Climagramme d'Emberger

Le climagramme d'Emberger permet de classer les différents types de climats méditerranéens (Dajoz, 1971). Il est utilisé les deux facteurs essentiels qui définissent le climat à s'avoir les températures et les précipitations, avec la formule suivante (Stewart, 1969):

$$Q_3 = \frac{3,43 \times P}{M-m}$$


Q : Quotient pluviométrique d'EMBERGER ;

P: La somme des précipitations annuelles en mm;

M : Moyennes des températures maximales du mois le plus chaud ;

m : Moyennes des températures minimales du mois le plus froid.

Le quotient de la région d'étude est égal à 6,6 pour une période qui s'étale sur trente six ans (1980 à 2016). En rapportant cette valeur sur le climagramme d'Emberger avec la température moyenne du mois le plus froids (m = 5,3 °C), on constate que la région du Souf se trouve dans l'étage bioclimatique saharien à hiver doux (Fig. 4).

 $\textbf{Fig. 4} - Place \ de \ la \ région \ du \ Souf \ sur \ le \ climagramme \ d'Emberger \ (1980 - 2016)$

1.5.- Facteurs biotiques de la région du Souf

Ces facteurs sont représentés par des données bibliographiques sur la flore et la faune caractérisant la région d'étude.

1.5.1.- Flore

Le couvert végétal du Souf est ouvert, où 21 espèces de plantes spontanées peuvent être fréquemment contactées (Hlisse, 2007) (Tab. 3, Annexe 1). La famille plus riche en espèce est l'Asteraceae comme *Atractylis flava L*. Les cultures maraichères et les arbres fruitiers ne sont possibles dans la majorité des cas, que dans l'ambiance d'un micro climat crée par les palmeraies (Voisin, 2004). D'une manière générale, près de 9 espèces appartenant à 5 familles sont comptées. La famille la plus riche en espèces est celle des Solanaceae avec 3 espèces comme *Solanum tuberosum* (Tab. 3, Annexe 1).

1.5.2.- Faune

Selon Le Berre (1990), le désert est un milieu où la sévérité des agressions vient limiter le développement de la plupart des êtres vivants. Néanmoins, les invertébrés ont été traités plusieurs auteurs comme Beggas (1992), Mosbahi et Naam (1995) et Alia et Ferdjani (2008) Ces auteurs ont inventorié 125 espèces d'Arthropodes appartenant à 14 ordres dans la majorité des cas sont des insectes par exemple *Apate monachus* (Fabricius, 1775) (Tab. 4, Annexe 2). Pour l'avifaune, près de 28 espèces sont inventoriées (Mosbahi et Naam, 1995; Isenmann et Moalia, 2000) (Tab. 5, Annexe 2). Les espèces les plus fréquentes sont *Sylvia deserticola* (Tristram, 1859) et *Sylvia nana* (Hemprich et Ehrenberg, 1833). Concernant les mammifères, les Muridae sont les plus représentées en espèces, notamment *Gerbillus gerbillus* (Olivier, 1800). Alors quel pour les reptiles, parmi les espèces les plus fréquentes, il est à citer *Scincus scincus* (Linnaeus, 1758) (Tab. 6, Annexe 2).

chapter of the contract of the

Chapitre 2 - Matériel et méthode

La présente étude vise la mise en évidence des produits phytopharmaceutiques de la région du Souf. Pour atteindre notre objectif, nous avons adopté une démarche, qui consiste à collecter des informations sur le flux et le marché des produits phytosanitaires vis-à-vis les fournisseurs (achats et ventes) ainsi que les agriculteurs (pratiques culturales) pour ensuite essayer de nuancer la gestion de ces produits dans la région d'étude. Pour cela, plusieurs stations sont sélectionnées pour réaliser ce travail.

2.1.- Choix des stations

Le choix des stations est motivé par :

- L'importance et la diversité des systèmes de cultures dans la région d'étude : d'après la DSA (2013), la région du Souf à connu un développement assez remarquable concernant le secteur agricole, où la plupart des ses stations connaissent une intensification agricole très poussée, basée essentiellement sur la culture de la pomme de terre, la tomate et d'autres ;
- L'utilisation intensive des produits phytosanitaires afin de maximiser et protéger la récolte ;
- Rareté et même l'absence (certaines zones) d'étude sur la thématique dans la région.

2.2.- Présentation des stations d'étude

Notre choix s'est porté pour la réalisation de cette étude sur 6 stations, à savoir Debila, Robbah, Hassi Khalifa, Enakhla, Hassani Abd Elkerim et Elmagran (Fig. 5). Ces dernières connaissent une intensification agricole remarquable, soumise à un rythme d'exploitation élevé couplé à un usage intensif et parfois non rationnel des pesticides, de fumier et d'engrais, surtout lorsqu'il s'agit d'une culture très consommatrice en intrants agrochimiques, comme le cas de la pomme de terre. Il est à mentionner qu'au sein de ces stations sont choisis des fournisseurs et agriculteurs pour la réalisation de ce travail. Leur répartition en fonction des stations est donnée dans ce qui suit :

- Station 1 : la station de Debila (33° 30′ 23″ N. ; 6° 56′ 17″ E.) est une daïra qui se situe à 20km à l'est de wilaya d'El-Oued. Dans cette station sont choisis 1 fournisseur et 2 agriculteurs (Photo 1).
- Station 2 : la station de Hassi Khalifa (33° 36′ 04″ N. ; 7° 01′ 44″ E), est une daïra qui se situé à 30km à l'est de wilaya d'El-Oued, Dans cette station sont choisis 2 agriculteurs (Photo 2).

Chapitre 2 Matériel et méthode

- Station 3 : la station de Hassani Abd Elkerim (33° 28′ 41″ Nord, 6° 53′ 58″ Est), est un département régional de daïra Debila, située à 22km à l'est du centre de la wilaya, Dans cette station sont choisis 1 fournisseur et 1 agriculteur (Photo 3).

- Station 4 : la station d'Enakhla (33° 16′ 38″ N. ; 6° 57′ 05″ E), est une commune de la daïra de Robbah, située 15km à la sud-est du center de la wilaya, Dans cette station sont choisis 2 agriculteurs (Photo 4).
- Station 5 : la station de Robbah (33° 28′ 09″ N. ; 6° 91′ 07″ E), est une daïra qui se situe à 12km au sud-est de la wilaya d'El-Oued, Dans cette station sont choisis 1 fournisseur et 2 agriculteurs (Photo 5).
- Station 6 : la station d'Elmagran (33° 58′ 33″ N. ; 6° 95′ 01″ E), est une daïra située à 25km au nord de wilaya, Dans cette station sont choisis 1 fournisseur et 3 agriculteurs (Photo 6).

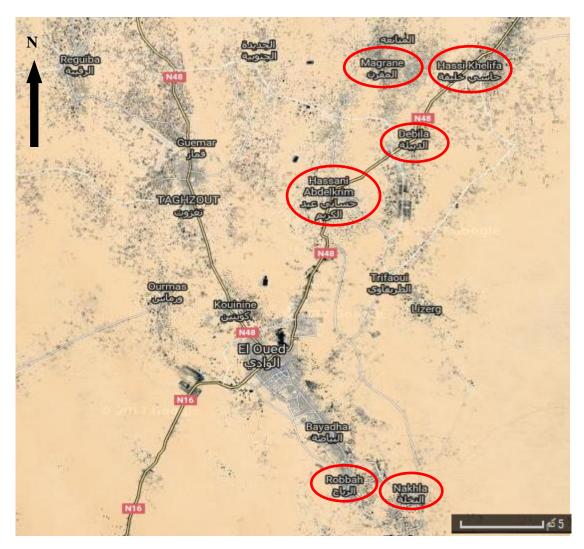


Fig. 5 – Localisation globale des stations d'étude (Google Maps, 2017)

Chapitre 2 Matériel et méthode

Photo 1 – Station de Debila

Photo 2 – Station de Hassi Khalifa

Photo 3 – Station de Hassani Abd Elkerim

Photo 4 –Station d'Enakhla

Photo 5 – Station de Robbah

Photo 6 – Station d'Elmagran

2.3.- Données sur produits phytopharmaceutiques

2.3.1.- Définition

Se sont des substances destinées à la protection ou à l'amélioration de la production végétale et à la préservation des produits récoltés (Amara, 2013).

2.3.2.- Classification des produits phytosanitaires

D'une manière globale, les produits phytopharmaceutiques peuvent être représentés par trois formulations connus dans le marché, qui sont :

- ➤ Correcteurs de carences : se sont des solutions qui portent un ou plusieurs éléments vitaux dont la plante est parfois privée.
- > Substances de croissances : se sont des produits appliqués en vue d'agir sur la différenciation et l'élongation cellulaire.
- ➤ **Pesticides** : se sont des substances ou préparations permettant due lutter contre les déprédateurs des cultures.

2.3.3.- Avantages et risques d'utilisation des produits phytosanitaires

L'utilisation des produits phytosanitaires a permis l'augmentation et l'amélioration des rendements agricoles en réduisant les pertes dues aux ravageurs des cultures. Par ailleurs, dans les années 70, les premiers travaux ont montré que les produits phytosanitaires peuvent être transférés vers les eaux de surface et souterraines (Schiavon and Jacquin, 1973). Ceci enclenche une prise de conscience des pouvoirs publics dans le monde entier. Du coup, en 1972, les organochlorés sont interdits d'utilisation aux Etats-Unis et en Europe et une réglementation concernant spécifiquement les produits phytosanitaires est mise en place dans les années 80 (Clavet et *al.*, 2005).

2.4.- Evaluation de l'importance d'utilisation des produits phytosanitaires dans la région d'étude

Pour mener à bien ce présent travail et fonction des stations d'étude, des sorties de prospections sont établies afin de mettre en évidence l'emploi des produits phytosanitaires dans la région d'étude, partant des fournisseurs jusqu'aux agriculteurs. Des enquêtes par la suite sont réalisées aux près de ces derniers (fournisseurs et des agriculteurs), dans le but de collecter un max d'information sur notre thématique.

A partir des résultats des enquêtes que nous avons menées auprès des stations visitées, nous avons constaté que les différents ennemis des plantes cultivées sont nombreux et variés. De part les ennemis classiques, nous trouvons également des maladies cryptogamiques, des carences et des accidents climatiques. Tous ces ennemis et d'autres provoquent des déformations, affaiblissement et flétrissement qui causent la chute de rendement, comme le cas de *Phytophtora infestens* (mildiou) de pomme de terre et *Tuta absoluta* de tomate (Photo 7, 8, 9 et 10).

Selon les moyens et les conditions de travail dont nous disposons, on s'est parfois limité à émettre quelques hypothèses concernant les symptômes ainsi que les différents types des pesticides utilisés pour traiter les cultures (Photo 11, 12, 13, 14 et 15).

Photo 7 – Pucerons sur feuilles de poivron et piment Photo 8 – Mildiou de pomme de terre

Photo 9 – *Tutta absoluta* sur les feuilles de tomate

Photo 10 – *Tuta absoluta* sur les fruits de tomate

Chapitre 2 Matériel et méthode

Photo 11 – Insecticide (EL ECTRA)

Photo 13 -Herbicide (FOCUS ULTRA)

Photo 12 –Fongicide (BELTANOL-L)

Photo 14 –Acaricide (ROMECTIN)

Photo 15 – Acide aminés (ACA 27)

2.5.- Elaboration d'un questionnaire phytosanitaires

Après un certain temps de prospection, d'observation, de recherche bibliographique et de réflexion, nous avons pu mettre en place un type de questionnaire qui tient compte essentiellement de la protection phytosanitaire et également de différents éléments pouvant agir de façon directe ou indirecte sur les aspects phytosanitaires (Tab. 7; Annexe 3).

2.5.1.- Collecte et analyse des données

Les données ont été collectées par la méthode des enquêtes individuelles à l'aide de questionnaires conçus à cet effet. Pour le traitement des données, elles ont été dépouillées sous Excel®. Les paramètres statistiques (les moyennes, déviation standard, pourcentages et autres) ont été calculés et utilisées pour la construction d'histogrammes de distribution pour chacune des pratiques d'application analysées : la superficie, type d'irrigation, les cultures pratiquées, les produits phytosanitaires utilises, type de traitement phytosanitaire, moment de traitement, mode de pulvérisation (Tab. 8; Annexe 3).

2.5.2.- Modes d'emploi des pesticides utilisés dans la région du Souf

Le mode d''emploi des pesticides est dicté par plusieurs facteurs, notamment la molécule chimique et la cible traitée ravageurs. On peut distinguer :

2.5.2.1.- Irrigation

Certains produits phytosanitaires (pesticides, biostimulants) sont mélangés dans un réservoir afin d'homogénéiser la concentration de produits, qui par la suite est injecté dans système d'irrigation, goutte à goutte ou dans les pivots.

2.5.2.2.- Main

Ce mode d'utilisation est souvent employé lorsqu'il s'agit d'épandage aléatoire des engrais sous la forme granulé uniquement.

2.5.2.3.- Pulvérisation

Pour cette méthode, il est utilisé un moteur pour pulvériser les produits phytosanitaires solubles après le mélange dans réservoir d'eau. Les agriculteurs optent souvent pour cette méthode (Annexe 4).

chapitre III

Chapitre 3 – Résultats et discussions

Dans ce chapitre sont exposés les résultats obtenus sur les enjeux des produits phytosanitaires et leur utilisation en fonction des différentes cultures dans la région du Souf. Ils sont accompagnés par les interprétations et des comparaisons avec les travaux réalisés sur la même thématique.

3.1. – Importance des engrais dans la région du Souf

Dans cette partie est développée l'importance des produits phytosanitaires en fonction de leur groupe et leur nature d'utilisation, notamment engrais (Substances de croissances), biostimulants (Correcteurs de carences) et pesticides. Pour ce qui des engrais, les agriculteurs de la région d'étude utilisent deux types, engrais granulés et les engrais solubles ou foliaire, de même pour les fournisseurs qui se procurent les deux types.

3.1.1. – Importance des engrais granulés dans la région du Souf en fonction des fournisseurs

Dans cette partie nous allons détailler les résultats qui portent sur les quantités d'engrais granulés marchandées par les fournisseurs et utilisées par les agriculteurs de la région d'étude.

Tableau 9 - Quantités en poids achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude

		Qua	Utilisation	
Engrais granules	Paramètres	Achetées	Vendues	(agriculteurs)
	Min	20	17	1
Poids (Ov.)	Max	6050	5850	5
Poids (Qx)	Moy	2968	2881,8	3
	SD	2750,7	2691,7	1,7

Min: quantité minimale: Max; quantité maximale; Moy: moyenne; SD: déviation standard.

Le poids moyen d'engrais granulés acheté par les fournisseurs de la région d'étude est de 2968 ± 2.750,7 Qx (Tab. 9). Alors que les quantités vendues sont estimées à 2.881,8 ± 2.691,7 Qx. Pour ce qui concerne les agriculteurs, la plupart utilisent les engrais (Tab. 9).

Pour ce qui des produits, les résultats obtenus sur les quantités d'engrais granulés achetées et vendues par les fournisseurs de la région d'étude sont affichés dans la figure suivante (Fig. 6).

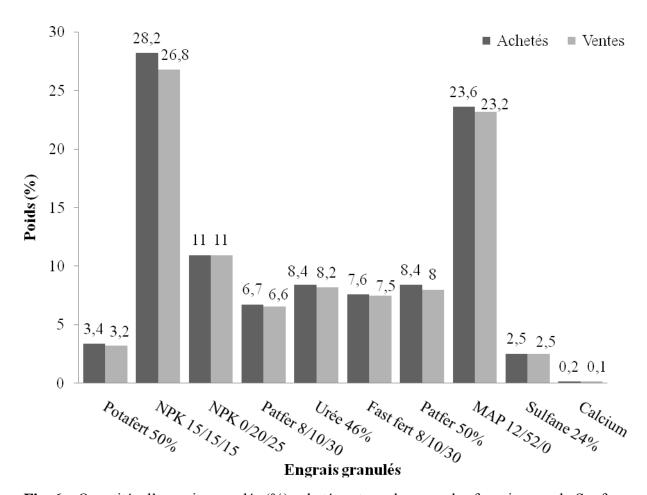


Fig. 6 – Quantités d'engrais granulés (%) achetées et vendues par les fournisseurs du Souf

Le engrais granulés les plus achetés par les vendeurs des produits phytopharmaceutiques sont les NPK 15/15/15 (28,2 %) et MAP 12/52/0 (23,6 %) (Fig. 6), alors que les moins achetées sont représentés par le Calcium (0,2%). De même pour les quantités vendues, c'est les NPK 15/15/15 (26,8 %) et MAP 12/52/0 (23,2 %), alors que le Calcium (0,1%) s'avère toujours le moins vendu (Fig. 6).

Nos résultats sont tout à fait normal pour les engrais granulés, le NPK 15/15/15, le MAP 12/52/0 et l'Urée sont des produits très utilisés au stade végétatif des différentes cultures pratiquées dans la région pour le renfoncement des plantules, notamment la pomme de terre. Alors que le NPK 0/20/25 est souvent utilisé à la fin de stade de culture pour un bon rendement, il est à mentionner que la région du Souf est classée en 4^{ème} position concernant la production de la pomme de terre en Algérie (M.A., 2008). Cette culture est très connue par

ces exigences en engrais, surtout que les sols de la région d'étude sont peu évolués, constitués de sable à forte profondeur (Hlisse, 2007) et à faible teneur en matière organique (Voisin, 2004). De ce fait, la région du Souf constitue une puissance en production de la pomme de terre, cette place n'est gagnée que pas l'effort fourni par les agriculteurs et les fournisseurs ainsi que l'utilisation massif des engrais granulés pour couvrir les besoins nutritionnelles de cette culture (Saad et Hamza, 2004).

3.1.1.1. – Importance des engrais granulés dans la région du Souf en fonction des agriculteurs

Les résultats portant sur l'utilisation des engrais granulés par les agriculteurs de la région du Souf sont mentionnés dans la figure 7.

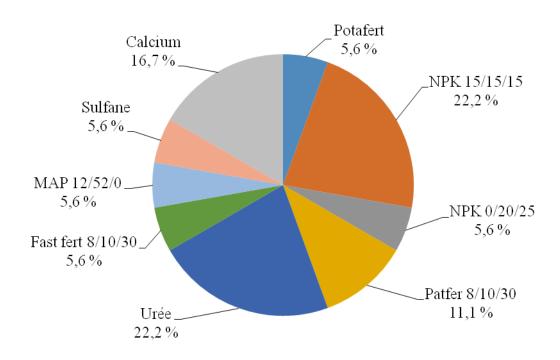


Fig. 7 – Importance des engrais en fonction des utilisations des agriculteurs

La figure 7 présente l'importance d'utilisation des engrais granulés par les agriculteurs dans la région d'étude. Il est à déclaré que le NPK 15/15/15 (22,2 %) et l'Urées (22,2 %) sont les plus utilisés. Ils sont suivis le Calcium (16,7 %).

3.1.2. – Importance des engrais foliaires en fonction des fournisseurs au Souf

La partie suivante détaille les résultats qui portent sur les quantités d'engrais foliaires (solide et liquide) en fonction des fournisseurs de la région du Souf.

Tableau 10 - Quantités en poids et en volumes achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude

		Quar	Utilisation	
Engrais foliaire	Paramètres	Achetées	(agriculteurs)	
	Min	9	8,03	3
Poids (kg)	Max	425	350	8
	Moy	114,4	114,5	5,5
	SD	207,1	161,7	1,7
	Min	0	0	3
Volumes (litre)	Max	950	890	8
	Moy	581,3	550,5	5,5
	SD	422	394,9	1,7

Min: quantité minimale: Max; quantité maximale; Moy: moyenne; SD: déviation standard.

Le poids moyen des engrais acheté par les fournisseurs de la région du Souf est de $114,4 \pm 207,1 \text{ kg}$ (Tab. 10). Alors que les quantités vendues sont estimées à $114,5 \pm 161,7 \text{ kg}$. En termes de volume, les achats ($581,3 \pm 422 \text{ litre}$) dépassent légèrement les ventes ($550,5 \pm 394,9 \text{ litre}$). Pour ce qui concerne les agriculteurs, la plupart d'entre eux utilisent les engrais en poudre à diluer ($5,5 \pm 1,7$) par rapport aux liquides ($5,5 \pm 1,7$) (Tab. 10).

3.1.2.1. – Quantités en poids (kg) des engrais solubles achetés et vendues par les fournisseurs

Les résultats portant sur les quantités en poids (kg) des engrais soluble achetés et vendues par les fournisseurs de la région du Souf sont affichés dans la figure cidessous (Fig. 8).

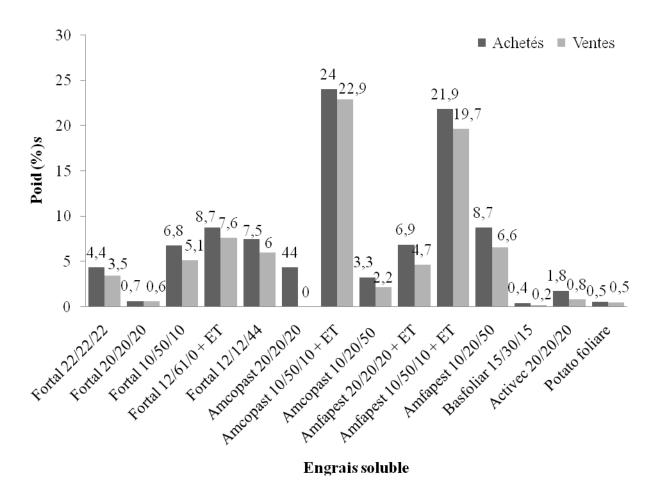


Fig. 8 – Quantités en poids (kg) des engrais soluble achetés et vendues par les fournisseurs

Les engrais solubles les plus achetés par les fournisseurs sont l'Amcopast 10/50/10 + ET (24 %) et l'Amfapest 10/50/10 + ET (21,9 %) (Fig. 8), alors que les moins achetées le Potato foliaire (0,5%). De même pour les quantités vendues, c'est l'Amcopast 10/50/10 + ET (22,9 %) et l'Amfapest 10/50/10 + ET (19,7 %) les plus marchandés, alors que les moins achetées sont représentés par le Potato foliaire (0,5%) (Fig. 8).

3.1.2.2. – Volume (litre) des engrais soluble marchandées par les fournisseurs

Les résultats concernant les quantités (volume) des engrais solubles achetés et vendues par les fournisseurs de la région du Souf sont affichés dans la figure 9.

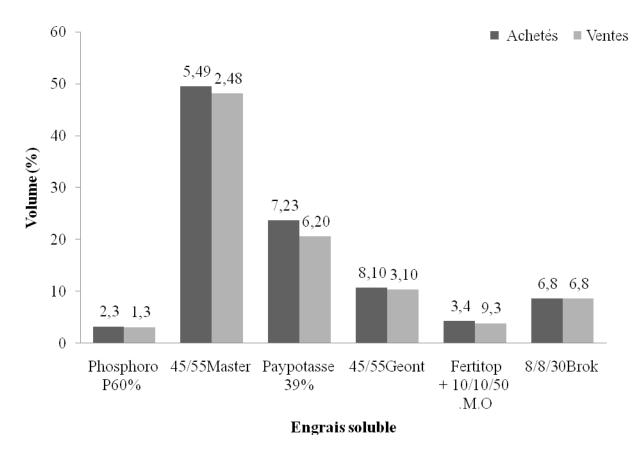


Fig. 9 – Volume (litre) des engrais solubles achetés et vendues par les fournisseurs

Les engrais solubles les plus achetés par les fournisseurs sont Master 45/55 (49,5 %) et Paypotass 39 % (23,7 %) (Fig. 9), alors que les moins achetées sont Fertitop 10/10/50 (4,3 %) et Phosphoro 60 % (3,2 %). De même pour les ventes, Master 45/55 (48,2 %) et Paypotass 39 % (20,6 %) s'avèrent très vendus alors que Phosphoro 60 % (3,1 %) et Fertitpo 10/10/50 (3,9 %) sont les moins vendues (Fig. 9).

3.1.2.3. – Importance des engrais foliaires en fonction des utilisations des agriculteurs

La figure suivante développe l'importance d'utilisation des engrais foliaires dans la région du Souf (Fig. 10).

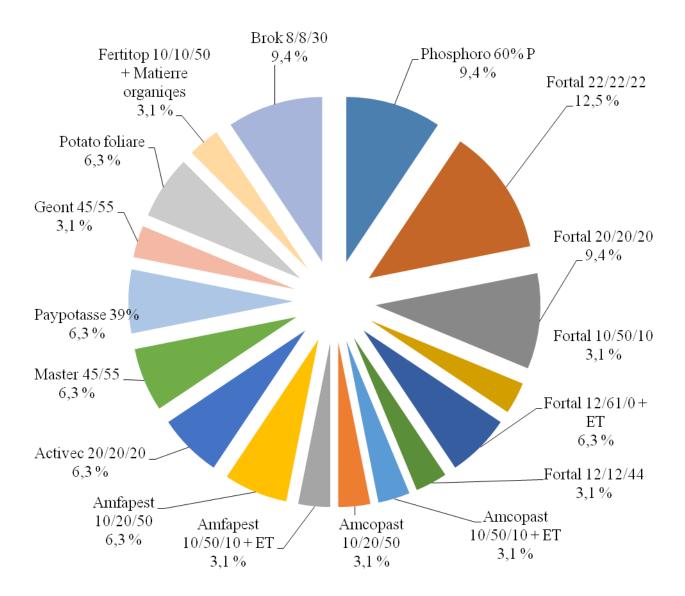


Fig. 10 – Importance des engrais foliaires en fonction des utilisations des agriculteurs

La figure 10 montre que Fortal 22/22/22 (12,5 %), Fortal 20/20/20, Phosphoro 60 % et Brok 8/8/30 (9,4 %) sont les plus utilisés, alors que Geont 45/55, Amfapest (10/50/10), Amcopest et Fortal 12/61 sont les moins utilisés (3,1 %) (Fig. 10).

Les résultats d'utilisation des engrais foliaire par les agriculteurs de la région d'étude sont très importants pour maximiser les profits de la plante en matières nutritives, ce qui va augmenter sans doute les rendements (quantitatifs et qualitatifs). Le sol du Souf se caractérisent par une faible teneur en matière organique, une structure particulaire à forte perméabilité et par une texture sableuse (Voisin, 2004). Les engrais granulé peuvent être lessivé vers les profondeurs

du sol, ce qui pousse les agriculteurs de se rattraper avec les engrais foliaires. Ces stratégies ont augmenté le rondement de certaines cultures la pomme de terre (246 Qx/ha) à un point de classer la région de Souf en 2ème position à l'échelle nationale, juste après la région de Tlemcen (M.A., 2008).

3.2. – Importance des acides aminés en fonction des fournisseurs

Dans cette partie nous allons détailler les résultats qui concernent les volumes des acides aminés marchandées par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude.

Tableau 11 - Volumes (litre) d'acides aminés achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région d'étude

		Volumes (litre)		Utilisation
	Paramètres	Achetées	Vendues	(agriculteurs)
	Min	250	250	1
Acides aminés	Max	570	490	3
	Moy	415	388,8	2
	SD	130,8	100,4	0,6

Min : quantité minimale: Max; quantité maximale; Moy : moyenne; SD : déviation standard.

Les volumes moyens des acides aminés achetés par les fournisseurs de la région d'étude est de $415 \pm 130,8$ litre (Tab. 11). Alors que les quantités vendues sont évaluées à $388,8 \pm 100,4$ litre. Pour ce qui concerne les agriculteurs, l'utilisation moyenne est $2 \pm 0,6$ (Tab. 11).

Pour ce qui des produits, les résultats obtenus sur les volumes (litre) des acides aminés achetés et vendues par les fournisseurs de la région d'étude sont mentionnés dans la figure 11.

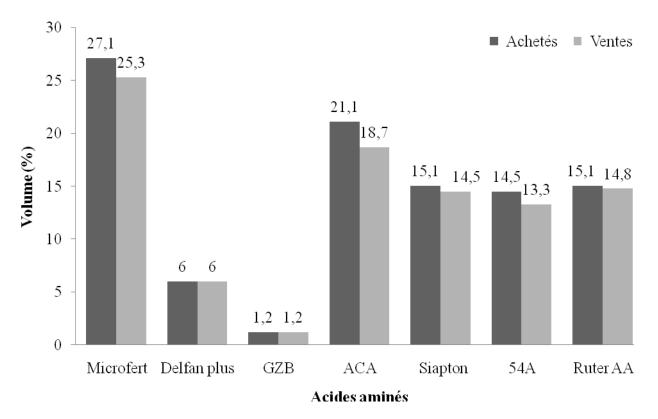


Fig. 11 – Volumes des acides aminés achetés et vendues par les fournisseurs

D'après la figure 11, les quantités des acides aminés les plus achetés par les fournisseurs du Souf en termes de volume sont les Microfert (27,1 %) et l'ACA (21,1 %), alors que les moins achetés le GZB (1,2 %). De même pour les quantités vendues les Microfert (25,3 %) et l'ACA (18,7 %) qui sont les plus vendues alors que le GZB est le moins marchandé (1,2 %) (Fig. 11).

3.2.1. – Importance des acides aminés en fonction des utilisations des agriculteurs

La figure ci-dessous expose les résultats obtenus suite à l'utilisation des en acides aminés par les agriculteurs dans la région du Souf (Fig. 12).

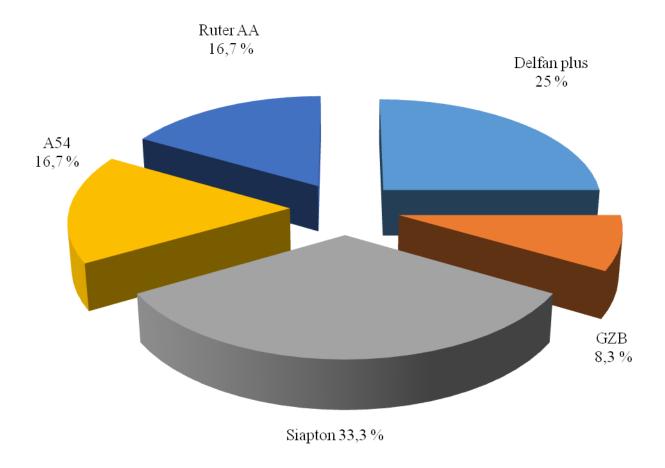


Fig. 12 – Importance des acides aminés en fonction des utilisations des agriculteurs

La figure 12 montre que le Siapton est le plus utilisé avec un taux de 33,3 %. Il est suivi par le Delfan plus (25 %) et le Ruter AA; et A54 (16,7%), alors que le moins utilisé est le GZB (8,3 %) (Fig. 12). Certaines cultures sont très exigences en intrants, comme la culture de pomme de terre qui sollicite près de 250-300 kg d'eau par kilogramme de matière sèche. Par ailleurs, ses besoins sont constants pendant toute la durée de végétation (Moule, 1972).

3.3. – Importance des pesticides dans la région du Souf

Dans cette partie sont exposés les résultats portant sur le flux d'échange et d'utilisation des pesticides dans la région du Souf.

3.3.1. – Volumes (litre) des pesticides achetés et vendus en fonction des fournisseurs

Le tableau 10 regroupe les résultats enregistrés sur les quantités de pesticides achetées et vendues par les fournisseurs et d'utilisation des agriculteurs.

Tableau 12 – Volumes (litre) des pesticides achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région du Souf

		Volume	Utilisation	
Pesticides	Paramètres	Achetées	Vendues	(agriculteurs)
	Min	230	222	3
Fongicides	Max	595	501	5
Tongiciaes	Moy	438,8	381,8	3,3
	SD	153,4	117,1	0,5
	Min	100	86	2
Insecticides	Max	540	465	5
1110000101000	Moy	283,5	249,6	3,3
	SD	184,7	157,6	1
	Min	0	0	0
Herbicides	Max	190	175	2
1101010100	Moy	83,8	72,5	1,3
	SD	81,8	74,9	0,5
	Min	0	0	1
Acaricides	Max	390	338	2
11041101000	Moy	199,8	173,9	1,5
	SD	163,4	143,7	0,6

Min : quantité minimale: Max; quantité maximale; Moy : moyenne; SD : déviation standard.

Le volume moyen des pesticides les plus approvisionné par les fournisseurs de la région du Souf sont les fongicides (438,8 \pm 153,4 litre) (Tab. 12), les herbicides sont les moins achetés (83,8 \pm 81,8 litre). De même le volume moyen des fongicides vendus est estimé à 381,8 \pm 117,1 litre et les herbicides sont les moins marchandés avec 72,5 \pm 74,9 litre. D'une manière globale, il est à constater que les achats dépassent légèrement les ventes. Pour ce qui concerne les agriculteurs, la plupart utilisent les fongicides (3,3 \pm 0,5 utilisateurs) et les insecticides (3,3 \pm 1 utilisateurs) (Tab. 12).

Les résultats portant sur les volumes en litre des pesticides achetées et vendues par les fournisseurs de la région de la région du Souf sont affichés dans la figure suivante (Fig. 13).

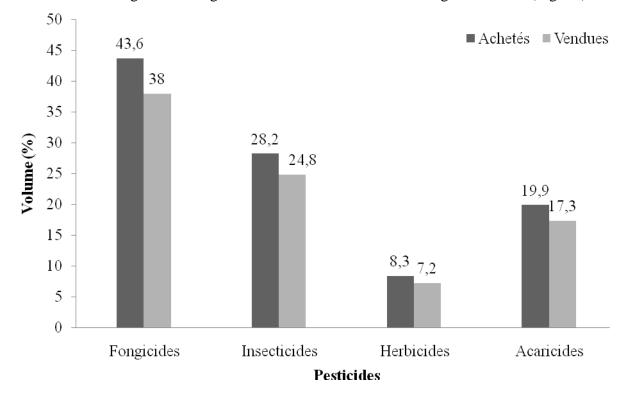


Fig. 13 – Volume (litre) des pesticides achetées et vendues par les fournisseurs du Souf

Selon la figure 13, les fongicides (43,6 %) et les insecticides (28,2 %) sont les plus achetés, alors que les moins achetés sont herbicides (8,3 %). De même pour les plus vendues, où les fongicides (38 %) et les insecticides (24,8 %) constituent la part la plus grande du marché, contrairement aux herbicides (7,2 %) (Fig. 13).

3.3.2. — Quantité en poids (kg) des pesticides achetées et vendues en fonction des fournisseurs

Le tableau 13 mentionne les résultats sur les quantités acheté et vendus des pesticides par les fournisseurs et l'utilisation des agriculteurs.

Tableau 13 - Quantités en kilogramme achetées et vendues par les fournisseurs et leur utilisation par les agriculteurs de la région du Souf

		Volumes (litre)		Utilisation
Pesticides	Paramètres	Achetées	Vendues	(agriculteurs)
	Min	150	140	3
Fongicides	Max	740	612	5
1 ongreraes	Moy	426,7	367,3	3,5
	SD	296,7	236,5	0,8
	Min	65	85,67	2
Insecticides	Max	120	114	5
	Moy	91,7	85,7	3,5
	SD	27,5	27,1	1
	Min	70	64	1
Herbicides	Max	360	325	2
Tieroreides	Moy	151,3	137,3	1,2
	SD	139,8	126	0,4
	Min	120	110	1
Acaricides	Max	140	118	2
	Moy	130	114	1,5
	SD	14,1	5,7	0,5

Min : quantité minimale: Max; quantité maximale; Moy : moyenne; SD : déviation standard.

Le poids moyen des les fongicides les plus achetés par les fournisseurs est avec de $426,7 \pm 296,7 \text{ kg}$ (Tab. 13), alors que les moins achetés sont l'insecticides $(91,7 \pm 27,5 \text{ kg})$. De même les quantités le plus vendues sont estimées à $367,3 \pm 236,5 \text{ kg}$. Pour ce qui concerne les agriculteurs, la plupart utilisent les fongicides $3,5 \pm 0,8$ et les insecticides $3,5 \pm 1$ (Tab. 13).

Les résultats concernant les quantités en poids (kg) des pesticides achetés et vendues par les fournisseurs de la région du Souf sont affichés dans la figure suivante (Fig. 14).

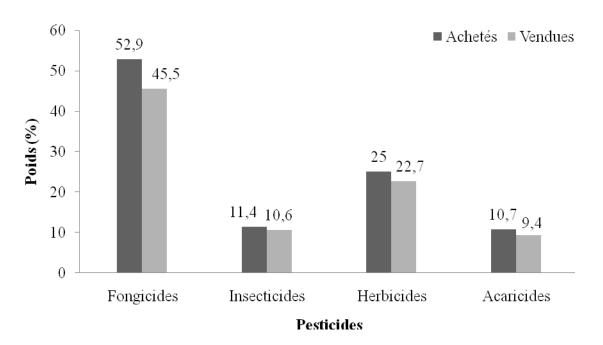


Fig. 14 – Quantités en poids (kg) des pesticides achetées et vendues par les fournisseurs du Souf

Les quantités de pesticides (kg) les plus achetés par les vendeurs des produits phytosanitaires sont les fongicides (52,9 %) et les herbicides (25 %), alors que les moins achetés sont acaricides (10,7 %) (Fig. 14). De même pour les quantités vendues, c'est les fongicides (45,5 %) et les herbicides (22,7 %) qui sont les plus vendues alors que les acaricides sont les moins vendues (9,4 %) (Fig. 14).

3.3.3. – Utilisation pesticides par les agriculteurs de la région du Souf

Les taux d'utilisation des pesticides par les agriculteurs de la région d'étude sont déclarés dans la figure 15.

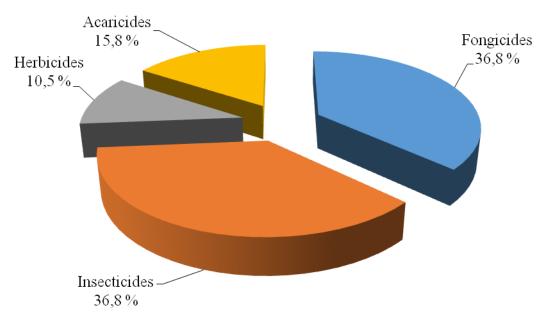


Fig. 15 – Proportions des pesticides selon leur importance d'utilisation

D'après la figure 15, les pesticides les plus utilisés dans la région d'étude sont les fongicides (36,8 %), les insecticides (36,8 %), suivis par les acaricides (15,8%) et les herbicides sont les moins utilisés (10,5 %) (Fig. 15). Les résultats obtenus sur les pesticides et les fongicides sont justifiés par le faite que ces des produits très utilisés du faite que la plus part des cultures souffrent d'avantage des ravageurs et des champignons (Lamari, 2015). Par contre les herbicides sont peux utiliser car la région d'étude est caractérisée par une mentalité qui fait passer en priorité en générale la lutte culturale (arrachage à la main), surtout à l'état plantule des adventices. En plus la structure de sol est très perméable ce qui augmente de plus en plus les doses d'irrigation, ces perte d'eau provoque la multiplication des champignons. De plus, les pesticides possèdent tous, à différents degré, un potentiel de toxicité et peuvent malheureusement être toxiques pour des organismes non visés, y compris l'Homme (Samuel et Saint-Laurent., 2001). Par leurs sérieux effets secondaires sur la santé humaine et sur l'environnement (Cormis, 1994 et Deguine et *al.*, 2008), les consommateurs, les utilisateurs ou les contaminés en général peuvent courir des risques sanitaires tels que le cancer (Ramade, 2003).

3.4. – Caractérisation de la lutte chimique dans la région du Souf

Les résultats portant sur la caractérisation de l'utilisation des pesticides par les agriculteurs de la région du Souf sont consignés dans le tableau ci-dessous (Tab. 14).

Tableau 14 – Propriétés et caractérisation de la lutte chimique par les agriculteurs de la région d'étude

Agriculteurs	Pesticides	Produits	Répétition	Duré (J)	Mode d'utilisation Pul	Quantités	Coût de lutte (DA)
		Agrimexazole	2	3	+	112 L	358 400
	Fongicides	Beltanol_L	2	5	+	28 L	280 000
1		Agriconazole	-	-	+	3,5 L	63 000
	Insecticides	Topgun	-	-	+	56 L	67 200
	Herbicides	Metribuzall	-	-	+	56 Kg	82 000
2	Fongicides	Beltanol_L	2	5	+	12 L	120 000
2	Acaricides	Romectin	-	-	+	2 L	2 400
	Danaiaidaa	Score	3	7	+	0,5 L	3 400
2	Fongicides	Amistar top	-	-	+	0,5 L	8 500
3	Insecticides	Oberon	2	1	+	1 L	17 000
	Acaricides	Vertimec	3	2	+	2	11 000
	Fongicides	Ortiva	2	1	+	0,5 L	6 500
	Insecticides	Ambligo	2	20	+	0,5 L	16 500
4		Topgun	-	1	+	5 L	6 000
	Herbicides	Metribuzall	-	-	+	2 Kg	3 000
	Acaricides	Romectin	-	-	+	15 L	18 000
	Danaiaidaa	Foliette	-	-	+	8 L	10 400
5	Fongicides	Beltanol_L	2	2	+	4 L	40 000
	Herbicides	Vabcore	-	-	+	4 Kg	16 000
(Fongicides	Gold fos	-	-	+	4 Kg	4 000
6	Herbicides	Select	-	-	+	4 L	5 200
7	Fongicides	Tachigazole	-	-	+	10 L	36 000
	Famaiaidas	Curzate	-	-	+	10 Kg	20 000
8	Fongicides	Agrimexazole	-	-	+	2 L	36 000
	Insecticides	Fastac	-	-	+	2 L	17 800
	Concided	Beltanol_L	2	3	+	6 L	60 000
	Fongicides	Nando	-	-	+	3 L	8 500
9	Herbicides	Tribizine	-	-	+	3 Kg	6 000
	Insecticides	Topgun	-	ı	+	2 L	2 400
	Acaricides	Zoro	2	3	+	1 L	8 000

	Fongicides	Ortiva	2	1	+	0,5 L	6 500
		Ambligo	2	20	+	1 L	33 000
10	Insecticides	Topgun	-	-	+	0,5 L	600
	Herbicides	Metribuzall	-	-	+	2 Kg	3 000
	Acaricides	Romectin	-	-	+	1 L	1 200
	Fongicides	Ortiva	2	1	+	1 L	13 000
	To a set all a	Ambligo	-	-	+	0,5 L	16 500
11	Insecticides	Vertimec	-	-	+	1 L	17 000
	Herbicides	Metribuzall	-	-	+	2 L	3 000
	Acaricides	Romectin	-	-	+	0,5 L	600
	Fancisidas	Beltanol_L	2	3	+	3 L	30 000
10	Fongicides	Agriconazole	-	-	+	3 L	27 000
12	Haubiaidaa	Tribizine	-	-	+	1 Kg	2 000
	Herbicides	Vabcore	-	-	+	2 Kg	3 000
		Foliette	-	-	+	8 Kg	16 000
	Fongicides	Beltanol_L	-	-	+	4 L	40 000
12		Ortiva	-	-	+	0,5 L	6 500
13	Insecticides	Rufast	-	-	+	0,5 L	8 400
	Herbicides	Select	-	-	+	8 L	10 400
	Acaricides	Tina	-	-	+	1 L	10 000
14	Fongicides	Beltanol_L	2	3	+	10 L	100 000
	Ei-i-i	Beltanol_L	2	3	+	18 L	180 000
15	Fongicides	Agriconazole	-	-	+	4 L	360 00
	Acaricides	Tina	-	-	+	1 L	10 000
	Fancialdes	Beltanol_L	2	3	+	2 L	20 000
	Fongicides	Agriconazole	-	-	+	2 L	20 000
16	Insecticides	Vertimec	2	1	+	2 L	34 000
	Herbicides	Tribizine	-	-	+	2 Kg	4 000
	Acaricides	Masai	-	-	+	2 Kg	24 000
	Fongicides	Ortiva	2	1	+	2 L	26 000
	Inaceticida	Ambligo	2	20	+	4 L	132 000
17	Insecticides	Topgun	-	-	+	2 L	2 400
	Herbicides	Metribuzall	-	-	+	4 Kg	6 000
	Acaricides	Romectin	-	-	+	2 L	2 400

Pul: pulvérisation; j: jour; - pas de repetition.

Les agriculteurs de la région du Souf protègent le maximum possible leur culture par des traitements réalisés tout au long du cycle de la plante cultivée (Tab. 14). Tous les pesticides sont appliqués par pulvérisation. Pour les fongicides qui sont souvent utilisés pour la lutte contres les déprédateurs des cultures (pomme de terre, tomate en plein champ, plasticulture poivron et piment), on cite Beltanol L, Ortiva, Agrimexazole et Agriconazole. Les champignons causent des dégâts sur les cultures souvent palpables le rendement, notamment le mildiou qui ce manifeste beaucoup avec de fortes doses irrigation. Concernant la quantité du produit utilisé, pour le beltanol-l (le plus souvent efficace) est 1 litre par hectare avec un cout de 10 000 DA. Alors que pour goldfos, c'est 2 kg par hectare avec un prix le moins chère de 1 000 DA. Donc le choix du produit revient aux agriculteurs.

Concernant les insecticides, c'est les moins utilisés après les fongicides, pour lutter contre les pucerons en plasticulture, alors que pour la tomate en plein champs c'est *Tutta absoluta* qui cause les dégâts les plus impressionnant. Les agriculteurs utilisent contre cette dernière espèce ambligo (0,5 litre par hectare avec un prix de 16 500 DA) et topgun (2 litre par hectare de 2 400 DA).

Pour ce qui concerne les herbicides, ils sont classés en troisième place de point de vue utilisation (Tab. 14). Les agriculteurs utilise sur pomme de terre Metribuzal, tribizine et select pour une dose de deux kilogramme par hectare. La mauvaise herbe sérieuse comme utilise Focus ultra 1 litre/ha à 4 000 DA le prix. Pour la tomate, les acaricides les plus utilisés par les agriculteurs sont le romectin (1 litre à un prix de 1 200 DA) et le masaï (1 kg à 1 200 DA). Alors que pour le palmier dattier, l'acaricide tina est le plus utilisé contre le boufaroua (1 litre a un prix de 10 000 DA.)

Conclusion

A la lumière des résultats obtenus dans le cadre de ce présent travail, nous pouvons conclure que:

- Les zones prises en considération se caractérisent par divers problèmes phytosanitaires dus à des facteurs, notamment biotiques (ravageurs) signalés par des symptômes sur les cultures.
- Les agriculteurs de la région du Souf utilisent les pesticides sous les différentes formes, notamment en poids. Les fongicides (36,8%) et les insecticides (36,8%) sont les plus utilisés, suivis par les acaricides (15,8 %) et les herbicides (10,5 %).
- Alors que pour les fournisseurs, les fongicide sont très marchandés avec des quantités acheté 426,7 ± 296,7 kg et la quantité vendues 367,3 ± 236,5 kg. En terme de volume, les pesticides les plus achetés sont aussi les fongicides 438,8 ± 153,4 litre et qui aussi les mieux vendues 381,8 ± 117,1 litre.
- Pour les engrais, le poids moyen d'engrais granulés acheté par les fournisseurs de la région du Souf est de 2968 ± 2750,7 Qx. Alors que les quantités vendues sont estimées à 2881,8 ± 2691,7 Qx. Le poids moyen d'engrais foliaire acheté par les fournisseurs de la région d'étude est de 114,4 ± 207,1 kg. Alors que les quantités vendues sont estimées à 114,5 ± 161,7 kg.
- Pour ce qui concerne les agriculteurs, la plupart d'entre eux utilisent les engrais en poudre $(5,5\pm1,7)$ par rapport aux liquides $(5,5\pm1,7)$.
- La moyenne quantité des acides aminés achetés par les fournisseurs de la région d'étude est de 415 ± 130,8 litres et les quantités vendues sont motionnées à 388,8 ± 100,4 litres. Pour ce qui concerne les agriculteurs, la moyenne utilisation est 2 ± 0,6.
- Concernant les pesticides en volume, une moyenne est ciblé par les fournisseurs, notamment pour les fongicides (438,8 ± 153,4 litre) qui sont les plus achetés à cause des problèmes fongiques causés par l'irrigation, contrairement aux herbicides qui sont moins achetés (83,8 ± 81,8 litre).
- En termes de volume, les fongicides sont les plus vendus (381,8 ± 117,1 litre) et les herbicides sont les moins marchandés (72,5 ± 74,9 litre). D'une manière globale, il est à constater que les achats dépassent légèrement les ventes pour les fournisseurs.

• Pour ce qui concerne les agriculteurs, Pour ce qui concerne les agriculteurs, la plupart utilisent les fongicides $(3.5 \pm 0.8 \text{ utilisateur})$ et les insecticides $(3.5 \pm 1 \text{ utilisateur})$.

References bibliographiques

Références bibliographiques

AMARA A., 2013 - Evaluation de la toxicité de pesticides sur quatre niveaux trophiques marins : micro algues, échinoderme, bivalves et poisson. Thèse De Doctorat En Cotutelle Entre L'université De Tunis El-Manar Et L'université De Bretagne Occidentale ; p163.

ALIA Z et FERDJANI B., 2008 – *Inventaire de l'entomofaune dans la région d'Oued Souf.* Mémoire Ing. Agro. Univ, Ouargla, 134p.

BEGGAS Y., 1992 - Contribution à l'étude bioécologique des peuplements rthopterologiques dans la région d'El Oued – régime alimentaire d'Ochrilidia tibialis. Mémoire Ing. Agro., Insti. nati. Agro. El Harrach, 53p.

BOURBIA A., 2013 - Evaluation de la toxicité de mixtures de pesticides sur un bio indicateur de la pollution des sols Helix aspersa. Thèse de Doctorat. Univ, Annaba. 110p.

BOUZIANI M., 2007 - L'usage immodéré des pesticides de graves conséquences sanitaires. Le guide de médecin et de la santé. *Santémarghreb*. (Consulte, 11/12/2011).

CORMIS L., 1994 – Qualité de l'environnement, pesticides et pratiques agricoles enjeux et contractions des procédures de controle. Etud. Rech. Syst. Agraires Dév, 28, 65-72.

CLAVET R., BARRIUSO E., BSDOS C., BENOTT P., CHARNAY M.-P., COQUET Y., 2005. Les pesticides dans le sol conséquences agronomiques et environnementales. France Agricole, Paris. 625 p.

CUNNIF P., 1995 - *Official methods of analysis of AOAC International.* 16th Edition. Editeur Arlington, VA: AOAC international. 1995, ISBN/ISSN 0935584544.

DAJOZ R., 1971 - *Précis d'écologie*. Ed. Dunod, Paris, 434p.

DEGUINE J., FERRON P., RUSSELL D., 2008 - *Protection des cultures*: De l'agrochimie à l'agroécologie, Quæ (2008).

DI CORCIA A., MARCHETTI M., 1992 - Method Development for Monitoring Pesticides in Environmental Waters: Liquid-Solid Extraction Followed by Liquid chromatography. *Environ. Sci. Technol.*, 26:1 (1992) 66-74.

DUBIEF J., 1963 - *Le climat du Sahara*. Mém. Hors série. instituts de recherches Sahariennes, 2, Université d'Alger, 275p.

FAURIE C., FERRA C. et MEDORI P., 1980 – Ecologie. Ed. Baillére, Paris, 168p.

HILLISSE., 2007 - *Encyclopédie des plantes de la région d'Oued Souf.* Ed. El-Walide ; El-Oued ; 302p.

ISENMANN P et MOALI A., 2000 – *Oiseaux d'Algérie* – *Birds of Algeria*. Ed. Société d'études ornithologiques de France, Mus. nati. hist. natu., Paris, 336 p.

KOWALSKI K et RZEBIK-KOWLSKA., 1991- *Mammals of Algeria*. Ed Ossodineum, Wroklaw, 353 p.

LAMARI., 2015 - La pomme de terre à El Oued : possibilité de produire une semence saine. 2ème Séminaire international sur la : *Biodiversité faunistique en zone aride et semi-aride.*, 29 et 30 novembre 2015, 34p..

LE BERRE M., 1990 - Faune du Sahara (2) Mammifères. Ed. RAYMOND CHABAUD-LECHEVALIER, 359 p.

MOSBAHI L et NAAM A., 1995 - Contribution à l'étude de la faune de la palmeraie du Souf et synthèse des travaux faunistiques effectués au Sud algérien. Mémoire Ing. agro. Inst. nati. form. sup. agro. sah., Ouargla, 153p.

NADJAH A., 1971 - Le Souf des oasis. Ed. maison livres, Alger, 174p.

OERKE, E., AND DEHNE, H., 1997 - Global crop production and the efficacy of crop production current situation and futures trends. *European Journal of Plant Pathology*. 103(203-215).

RAMADE F., 2003 – Eléments d'écologie, écologie fondamentale. Ed. Dunod, Paris, 690 p. SAAD L et HAMZA K., 2008 – Contribution à l'étude de l'effet de la fertilisation azotépotassique sur la culture de pomme de terre (var spunta) dans la région d'Oued Souf. Mémoire Ing. Agro. Univ, Ouargla, 134p.

SAMUEL O., SAINT-LAURENT L., 2001 - Guide de prévention pour les utilisateurs de pesticides en agriculture maraîchère. Québec : Institut de recherche en santé et en sécurité du travail du Québec (IRSST) Press. 92 p.

SCHIAVON M., JQCAUIN F., 1973 - Studies on the migration of two triazines as influenced by precipitation. *Symposium on Herbicides and the Soil.* 80-90.

STEWART P., 1969 - *Quotient pluviométrique et dégradation biosphérique.* Bull. soc. hist. nat. agro. : 24 -25.

TANOR NDAO., 2008 - Etude des principaux parameters permettant une evaluation et une reduction des risqué d'exposition des operateurs lors de l'application de traitements phytosanitaires en culture maraichère et cotonniere au SENEGAL. Mémoire de Doctorat. Academie Universitaire Wallonie-Europe. 77p.

VOISIN P., 2004 - Le Souf; Ed. El-Walide, El-Oued; 319p.

Organismes et sources éléctroniques

ONS: Office National de Statistique

DSA: Direction des Services Agricole

Encarta, 2006

DHW: Direction d'Hydraulique de la Wilaya

UNESCO, 1972

www.Tutiempo.com, 2017

Annexe 1

Tableau. 3 - Liste des plantes spontanées et plantes cultivées de la région du Souf (Hlisse, 2007)

Types de végétation	Familles	Espèces	Noms communs
	D	Aristida pungens Desf.	Halfa
	Poaceae	Cutandia dicotoma Trab.	Ennemas
	Citaceae	Helianthemum lipii Pers.	Essemhrie
	Eshagaa	Retama retam Webb.	Retem
	Fabaceae	Astragalus gombiformis Pmel.	Foul elbel
	Cyperaceae	Cyperus conglomeratus Rottb.	Essaad
	Plumbaginaceae	Limoniastrum guyonianum Dur	Ezitta
	Ephedraceae	Ephedra alata DC.	Alenda
	Euphorbiaceae	Euphorbia guyoniana Bois	Ellebien
	Chenopodiaceae	Haloxylon articulatum Boiss.	Elbegle
Plantes Spontanées	Brassicaceae	Mathiola livida DC.	Echgara
	Drassicaceae	Malcolmia aegyptiaca Spr.	Elharra
	Plantaginaceae	Plantago psyllium L.	Esninet azouz
		Atractylis flava L.	Louban azaiz
	Asteraceae	Launeae resedifolia O.K.	Adhide
		Launeae glomerata Hook.	Krichet arneb
	Liliaceae	Asphodelus refractus Boiss.	Attazea
	Caryophyllacea	Silene villosa forsk.	Lemdihina
	Tamaricaceae	Tamarix boveana Bunge.	Ettarfa
	Zygophyllaceae	Fagonia latifolia Delil.	Echerric
	Baraginaceae	Moltikia ciliata Mair.	Elhelma
	Cucurbitaceae	Cucumis sativus	Concombre
	Cucuibitaceae	Cucumis melo L.	Melon
	Chenopodiaceae	Beta vulgaris L.	Betterave
Caltanna	Liliaceae	Allium cepa	Oignon
Cultures maraichères	Linaceae	Allium sativum L.	Ail
maraicheres	Apiaceae	Daucus carota L.	Carotte
		Solanum tuberosum	Pomme de terre
	Solanaceae	Lycopersicum exulentum	Tomate
		Capsicum annuum	Poivron
	Palmaceae	Phoenix dactylefera	Palmier dattier
	Oliaceae	Olea europaea	Olivier
	Ampelidaceae	Vitis vinifera	Vigne
Les arbres fruitiers		Malus domestica	pommier
	Rosaceae	Prunus armeniaca	Abricotier
		Pirus communis L.	Poirier
	Rutaceae	Citrus sp.	Agrume

Cultures	Solanaceae	Nicotiana tabacum	Tabac
industrielles	Papilionaceae	Arachis sp.	arachide
		Setaria verticillata	El-laffa
	Poaceae	Cynodon dactylon	Ennejem
Mauvaises herbes		Polypogon monspeliensis	Thouil fare
	Chenopodiaceae	Chenopodium murale L.	Mezrita
	Malvaceae	Malva parviflora L.	Khobiez
C 1	Fabaceae	Medicago sativa	Luzerne
Cultures fourragères	Poaceae	Hordium vulgar L.	Orge
Tourrageres	Poaceae	Avena sativa L.	Avoine

Annexe 2

Tableau 4 - Principales espèces d'invertébrés recensées dans la région d'Oued Souf ont été traitées par Beggas (1992), Mosbahi et Naam (1995), Alia et Ferdjani (2008)

Classes	Ordres	Espèces
		Anax imperator Leachs
		Anax parthenopes Selys
		Erythroma viridulum Charpentier, 1840
		Ischnura geaellsii Rembur. 1842
	Odonata	Leste viridis
		Sympetrum striolatum
		Sympetrum danae Sulzer, 1776
		Sympetrum sanuineum
		Urothemis edwardsi Selys, 1849
		Duroniella lucasii Bolivar, 1881
		Aiolopus thalassinus Fabricius, 1781
Insecta		Aiolopus strepens Latreille, 1804
nisecta		Anacridium aegyptiatium (Linné)
		Sphingonotus rubescence (Fieber)
		Gryllotalpa gryllotalpa Linné, 1758
		Phanenoptera nana Fieber, 1853
	Orthoptera	Pirgomorpha cognata minima (Uvarov, 1943).
		Thisoicetrus adspersus (Redtenbacher, 1889)
		Thisoicetrus annulosus (Walker, 1913)
		Thisoicetrus haterti (Ibolivar, 1913).
		Pezotettix giornai (Rossi, 1794).
		Anacridium aegyptiume (Linnee, 1764).
		Acrida turrita (Linnee, 1958).
		Acrotylus patruelis (Herrich-Scaeffer 1883)

	Acrotylus longipes (Charpentier, 1845)
	Ochrilidia kraussi (Ibolivar, 1913)
	Ochrilidia geniculat (Ibolivar, 1913)
	Ochrilidia gracilis (Krauss, 1902)
	Ochrilidia tibialis (Krauss, 1902)
	Ochrilidia harterti (Ibolivar, 1913)
	Truxalis nasuta (Linnee, 1758)
	Concephalus fuscus (Chopard, 1919)
	Labidura riparia Pallas,1773
	Forficula barroisi
Dermaptera	Forficula auricularia
	Forficula sp Linné
	Lygaeus equestris
Heteroptera	Pentatoma rufipes linné Patidia juniparina Linné
	Petidia juniperina Linné
	Corixa geoffroyi Leach,
	Tribolium castenum Herbest, 1907
	Tribolium confusum. Duval, 1868
	Lixus anguinus. Linné
	Tropinota hirta Poda
	Oryzaephilus surinamensis. Linné, 1758
	Ateuchus sacer. Linné
	Ciccindella hybrida. Linné
	Ciccindella compestris. Linné
	Epilachuna Chrysomelina Fabricius
	Coccinela septempunctata. Linné
	Blaps lethifera Marsk
	Blaps polychresta
	Blaps superstis Tioisus
Coleoptera	Asida sp
	Pachychila dissecta
	Anthia sex maculata. Fairm
	Anthia venetor. Fabricius
	Grophopterus serrator. Forsk
	Brechynus humeralis
	Cimipsa seperstis. Tioisus
	Cetonia cuprea. Fabricius, 1775
	Staphylinus dens. Muller
	Phyllogathus sillenus. Eschochtz, 1830
	Apate monachus. Fabricius, 1775
	Pimilia aculeata
	Pimilia angulata
I	Pimilia grandis

	Pimilia interstitialis
	Pimilia latestar
	Prionotheca coronata
	Rhizotrogus deserticola
	Sphodrus leucophtalmus. L, 1758
	Loemosthenus complanatus. Dejaen, 1828
	Scarites occidetalis, Redel, 1895
	Scarites eurytus .Fisher
	Polyathon pectinicornis. Fabricius
	Plocaederus caroli. Leprieux
	Hypoeschrus strigosus. Gyll
	Lerolus mauritanicus. Byg
	Cybocephalus seminulum. Boudi
l	Cybocephalus globulus
	Pharoscymnus semiglobosus. Karsch
	Hyppodamia tredecimpunctata. L
	Hyppodamis tredecimpunctata. L
	Oterophloeus scuuticollis. Fairm
	Venator fabricius. L
	Compilita olivieri. Dejean
	Adonia variegata Goeze.
	Polistes gallicus. L
	Polistes nimpha.Christ
	Dasylabris maura. Linné, 1758
	Pheidole pallidula. Muller, 1848
l	Sphex maxillosus.Linné
l	Eumenes unguiculata. Villiers
	Mutilla dorsata. Var Exocoriata
I I - was an a matana	Componotus sylvaticus .Ol, 1791
Hymenoptera	Camponotus Herculeanus. Linné, 1758
	Camponotus liniperda.Latr
	Cataglyphis cursor. Fonscolombr, 1846
	Cataglyphis bombycina. Roger
	Cataglyphis albicans
	Messor aegyptiacus .Linné, 1767
	Aphytis mytilaspidis. Baron, 1876
	Apis mellifeca
	Ectomyelois ceratonae Zeller
Lamidantan	Pieris rapae Linné
Lepidoptera	Vanessa cardui Linné
	Phodometra sacraria
Dinters	Musca domestica linné
Diptera	Sarcophage cornaria Linné

		Lucilia caesar Linné
		Culex pipiens Linné
	Nevroptera	Myrmelean sp. Linné
	Actinotrichida	Oligonichus afrasiaticus
	Aranea	Argiope brunnicki
	Aranea	Epine zelnee
Arachnida	Scorpionida	Androctonus amoreuxi Aud et Sav ,1812 et 1826
		Androctonus australis hector C.L.Koch, 1839
		Buthus occitanus Amor
		Leiurus quinquesttriatus HUE 1929
		Orthochirus innesi Simon
Marrianada	Chilonodo	Geophillus longicornis Diehl
Myriapoda	Chilopoda	Lithobuis ferficatus
Crustacea	Isonodo	Clopocte isopode
Crustacea	Isopoda	Oniscus asellus Brandt

Tableau 5 - Avifaune de la région d'Oued Souf ont été traitées par Isenmann et Aissa (2000) et Mosbahi et Naam (1995)

Familles	Noms scientifiques	Noms communs
Ardeidae	Egretta garzetta Linnaeus, 1766	Aigrette garzette
Accipitridae	Circus pygargus	Busard cendré
	Falco pelegrinoides	Faucon de barbarie
Falconidae	Flaco biarmicus	Faucon lanier
	Flaco naumanni	Faucon crécerellette
Rallidae	Gallinula chloropus Linnaeus, 1758	Gallinule poule-d'eau
	Columba livia Gmelin, 1789	Pigeon bisect
Columbidae	Streptopelia senegalensis Linnaeus, 1766	Tourterelle des palmiers
	Streptopelia turtur (Linnaeus, 1758)	Tourterelle des bois
Strigidae	Strix aluco Linnaeus, 1758	Chouette hulotte
Surgidae	Athene noctua (Kleinschmidt,O) 1909	Chouette chevêche
	Sylvia cantillans	Fauvette passerinette
	Sylvia atricapilla (Linnaeus, 1758)	Fauvette à tête noire
	Sylvia nana (Hemprich et Ehrenberg, 1833)	Fauvette naine
Cylviidaa	Sylvia deserticola Tristram, 1859	Fauvette du désert
Sylviidae	Achrocephalus schoenobaenus (Linnaeus, 1758)	Phragmite des joncs
	Phylloscopus trochilus (Linnaeus, 1758)	Puillot fitis
	Phylloscopus collybita Vieillot, 1817	Pouillot véloce
	Phylloscopus trachilus	Pouillot fitis
Corvidae	Corvus corax Linnaeus, 1758	Grand corbeau
Corvidae	Corvus ruficollis Lesson, 1830	Corbeau brun

Passeridae	Passer simplex (Lichtenstein, 1823)	Moineau blanc
Passeridae	Passer montanus	Moineau friquet
Laniidae	Lanius excubitor elegans	Pie grièche grise
Lamidae	Lanius senator Linnaeus, 1758	Pie grièche à tête rousse
Timaliidae	Turdoides fulvus (Desfontaines, 1789)	Cratérope fauve
Ploceidae	Passer domesticus (Linnaeus, 1758)	Moineau hybride
Upupidae	Upupa epops Linnaeus, 1758	Huppe fasciée

Tableau 6 - Principales espèces mammifères et des reptiles de la région de Souf ont été traitées par Lebbere (1990,1989), Kowalski et Rzebik-Kowalska (1991) et Voisin (2004)

Classes	Ordres	Familles	Espèces	Noms communs
	Artiodactyla	Bovidae	Gazella dorcas linnaeus, 1758)	Ghazel
			Canis aureus (Linnaeus, 1758)	Dib
			Fennecus zerda	
		G :1	(Zimmerman,1780)	Fennec
	Carnivora	Canidae	Poecilictis libyca (Hempricht et	
			Ehrenberg, 1833)	Sefcha
			Felis margarita (Loche, 1858)	Qat el kla
			Camelus dromedaries	
	Tylopodia	Camellidae	(Linnaeus,1758)	Jamal
			Gerbillus campestris (Le	
			vaillant, 1972)	Jerbil
Mammalia			Gerbillus gerbillus (Olivier,	
			1800)	Beyoudi
	Rodentia	Gerbillidae	Gerbillus nanus (blanford,	
			1875)	Jerbil
			Gerbillus pyramidum	_
			(I.Geoffroy, 1825)	Demsy
			Meriones crassus (Sundevall,	
			1842)	Zaboud
			Meriones libycus (lichtenstein,	7-11
			1823	Zaboud
		D: 4:4	Psammomys obesus, (Cretzschmar, 1828)	Jérad
		Dipodidae	, ,	
			Jaculus jaculus (Linnaeus, 1758	Gerbouh
			Agama mutabilis (Merrem, 1820)	Agama variable
			Uromastix acanthinurus (Bell,	Agailla vallable
			1825)	Fouette queue
Reptilia	Squamata	Agamidae	,	1 odolic quode
-			Stenodactylus sthenodactylus (Lahtanatain, 1823)	Dois Abjed
			(Lchtenstein, 1823)	Bois Abiod
			Tarentola neglecta (Stauch, 1895)	Wzraa
			1073)	11 Llaa

		A 4:1:-	I desert
		Acanthodactylus paradilis	Lézard
		(Lchtenstein, 1823)	léopard
	Lacertidae	Acanthodactylus scutellatus	
	Lacertidae	(Audouin, 1829)	Nidia Lizard
		Mesalina rubropunctata	Erémias à points
		(Lchtenstein, 1823)	rouge
		Mabuia vittata (Olivier, 1804)	Scinque rayé
		Scincopus fascatus (Peters,	
		1864)	Scinque fasciés
	Scincidae	Scincus scincus (Linnaeus,	
		1758)	Poisson de sable
		Sphenps sepoides (Audouim,	
		1829)	Dasasa
	Varanidae	Varanus griseus (Daudin, 1803)	Varan de désert
		Lytorhynchus diadema	Lytorhynque
Serpents	Colubridae	(Duméril et Bibron, 1854)	diadéme
Scrpents		Cerates cerates (Linnaeus,	
	Viperidae	1758)	Lefaa

Annexe 3

Enquête sur les produits phytosanitaires achetés et vendues par les fournisseurs dans la région du Souf

Tableau 7. A – Différentes pesticides achetés et vendues par les fournisseurs dans la région du Souf

Pesticides	Produits	Matier active
	Gold fos	Fosetyl aluminium 80%
	Aliette flash	Fosetyl aluminium 80%
	Foliette	Fosetyl aluminium 80%
	Beltanol_L	Quinazol 500 g/l
	Tachigazol	Hymexazol 300 g/l
	Score	Diféconazole 250g/l
	Ortiva	Azoxystrobine 250g/l
	Agriconazole	Diféconazole 25%
	Amistar	Azoxystrobine 250 g/l
E	Amistartop	Azoxystrobine 200 g/l +125 g/l Diféconazole
Fongicides	Consonto	Propanocarb hydrochloride 375 g/l + Fenamedone 75g/l
	Priori opti	Azoxystrobine 200 g/l + Diféconazole 125 g/l
	Nando	Fluazinam 500g/l
	Curzate M	Mancozeb 70%
	Equation pro	Cymoxanil 30% + Famoxadone 22,5%
	Mancozeb	Mancozeb 80%
	Rovral	Iprodione 50%
	Tiger	Chlorothalonil 250 g/l + Tebuconazole 125g/l
	Agrimexazole	Hymexazol 300 g/l
	Previcure 310 g/l	Propanocarb
Insecticides	Ambligo	Chlorantraniliprole 100 g/l
	Oberon 240 g/l	Spiromesyfen
	Rufaste 75 g/l	Acrinathrine
	Avaunt	Indoxacarbe 150g/l
	Coragen	Chlorantraniliprole 200 g/l
	Actara	Thiametoxam 25 %
	Rarates zeon 50 g/l	Abamectine 18 g/l
	Topgun	Tebufenozide 20 SL
	Evisecte	Thiocyclam 50%
	Katox	Lamda cyhalothrine 25 g/l
	Proact	Emamectin benzoate 50 g/l
	Fastac	Alphacyperméthrine 100 g/l
	Vertimec	Abamectine 18 g/l
Herbicides	Select	Cléthodime 120 g/l

	Role	Oxyfluorfen 24 %
	Vabcor	Metribozine 70%
	Metribuzall	Metribozine 70%
	Metribuzan	Tribizine 20%
	Tribizine	Tribizine 20%
	Round up	Glyphosate 450 g/l
	Focus ultra	Cycloxidim 100g/l
	Masai	Tebufenpyrad 20%
	Zoro	Abamectine 18 g/l
Acaricides	Romectin 18 g/l	Abamectine 18 g/l
Acaricides	Vertimec	Abamectine 18 g/l
	Somectin	Abamectine 18 g/l
	Abamectina	Abamectine 18 g/l

Tableau 7. B – Différentes engrais granulés et foliaires achetés et vendues par les fournisseurs dans la région du Souf

Engrais	Produits	Composition (NPK)
	Urée	46% P
	NPK	15/15/15
	NPK	0/20/25
Granulés	Patfer	08-10-1930
Granules	Potafert 50%	50% K + 45% S
	MAP	12/52/0
	Sulfane 24%	
	Calcium	Calcium
	Phosphoro	60% P
		22/22/22
		20/20/20
	Fortal	10/50/10
		12/61/0 + ET
		12-12-1944
		20/20/20
Foliaires	Amcopast	10/50/10 + ET
ronanes		10/20/50
		20/20/20 + ET
	Amfapest	10/50/10 + ET
		10/20/50
	Basfoliar	15/30/15
	Activec	20/20/20
	Master	45/55
	Paypotasse 39 %	

Geont	45/55
Potato foliare	
Potafert	10/10/50 + Matierre organiqes
Fertitop	10/10/50 + Matierre organiqes
Brok	8/8/30

Tableau 7. C – Différentes acide aminé achetés et vendues par les fournisseurs dans la région du Souf

Acides aminés
Microfert
Delfan plus
GZB
ACA (Acide amine + 8 Azote)
Siapton (69% Acide amine)
A54
Ruter AA

Tableau 8 – Fiche de questionnaire (enquête) applique sur les agriculteurs dans la région du Souf

							Cultures pratiquées												
,	Sup	Superfice Type d'irrigation			Plain champ (ha)										Plasticultures				
Agriculteurs	Stations	Superficie globale (ha)	Superficie exploité (ha)	Pivot	Goutte à goutte	Submersion	Pomme de terre	Tomate	Oignon	Courgette	Phoeniciculture	Pomme	Raisin	Citron	Féve	Haricot	Poivron	Piment	Pastéque
1	Robah	30	30	1	1	0	28		2										
2	Robah	15	15	1	1	1	12		1,5		1								
3	Hassani Ab Kerim	2	2	0	1	1									1		0,5	0.5	
4	Debila	8	6	1	1	1		1	0,5		3	0,3	0,1	0,1			0,75	0,25	
5	Lizerg	5	4	1	0	1	4												
6	Hassi khalifa	8	4	1	0	1	2		1										
7	Nakhla	40	40	1	1	0	40												
8	Nakhla	25	20	1	0	1	20												
9	Hassi khalifa	12	8	1	0	1	6				1								
10	Almagran	4	2	0	1	1		2											
11	Almagran	4	2	0	1	1		1		0,5							0,5		
12	Taghzoute	8	6	0	0	1	3			1					0,5	0,5			
13	Terifaoui	9	7	1	1	0	4				2						0,7	0,3	
14	Ouarmas	16	14	1	1	1	10		2										

15	Terifaoui	20	20	1	0	1	18			2				
16	Omih ouansa	6	4	1	1	1	2							2
17	Almagran	12	10	0	1	0		8		2				

Annexe 4

Vêtements de l'agriculteur lors de l'utilisation des pesticides et matériels de mélange des pesticides et de pulvérisation

Utilisation des produits phytopharmaceutiques dans la région du Souf : Gestion et ampleur

Résumé:

Les produits phytopharmaceutiques sont des substances ou des préparations destiné à la protection ou à l'amélioration de la production végétale et à la préservation des produits récoltés. Trois groupes peuvent être distingués à savoir les pesticides, les engrais et les biostimulants. Ils ont pour rôle la lutte contre les déprédateurs et l'amendement destiné pour l'amélioration de la qualités et propriété du sol. Néanmoins, l'utilisation abusive de se genre de produit à un effet néfaste que se soit pour la plante que pour son milieu, surtout lorsqu'il s'agit d'un écosystème équilibré et stable comme les régions sahariennes. Par ailleurs, Les agriculteurs de la région du Souf utilisent les pesticides sous les différentes formes, notamment en poids. Les fongicides (36,8%) et les insecticides (36,8%) sont les plus utilisés, suivis par les acaricides (15,8 %) et les herbicides (10,5 %). Pour ce qui concerne les agriculteurs, la plupart d'entre eux utilisent les engrais en poudre (5,5 \pm 1,7) par rapport aux liquides (5,5 \pm 1,7). En moyen, la plupart des agriculteurs utilisent les fongicides (3,5 \pm 0,8 utilisateur) et les insecticides (3,5 \pm 1 utilisateur).

Mots clés: Produit phytopharmaceutique, fournisseurs, agriculteurs, Gestion, Ampleur, Souf

Use of plant protection products in the Souf region: Management and scale Summary:

Plant protection products are substances or preparations intended for the protection or improvement of crop production and the preservation of harvested products. Three groups can be distinguished: pesticides, fertilizers and biostimulants. Their role is the fight against pests and the amendment intended for the improvement of the qualities and property of the soil. Nevertheless, the misuse of the product is harmful to both the plant and its environment, especially when it comes to a balanced and stable ecosystem such as the Saharan regions. In addition, farmers in the Souf region use pesticides in various forms, in particular by weight. Fungicides (36.8%) and insecticides (36.8%) are the most commonly used, followed by acaricides (15.8%) and herbicides (10.5%). As far as farmers are concerned, most of them use powdered fertilizers (5.5 \pm 1.7) compared to liquids (5.5 \pm 1.7). On average, most farmers use fungicides 0.8 insecticides (3.5)users) and (3.5)user).

Key words: Plant protection products, suppliers, farmers, Management, Magnitude, Souf

استخدام منتجات وقاية النبات في المنطقة سوف: إدارة وحجمها خلاصة القول:

منتجات وقاية النبات هي مواد أو مستحضرات للحماية أو تحسين الإنتاج النباتي والحفاظ على المنتجات المقطوع ثلاث مجموعات يمكن تمييز ها و هن المبيد والأسمدة والمنشطات الحيوية . دور ها في مكافحة الأفات والتعديل تهدف إلى تحسين نوعية وملكية الأراضي . ومع ذلك، سوء استخدام للأنواع من المنتج إلى الأثر السلبي الذي هو للمصنع لبيئتها، وخاصة عندما يكون نظام بيئي متوازن ومستقر كما في المناطق الصحراوية . وعلاوة على ذلك، والمزار عين في المنطقة صوف استخدام المبيدات في أشكال مختلفة، بما في ذلك الوزن .مبيدات الفطريات (86.8) والمبيدات الحشرية (86.8) هي الأكثر استخدام المبيدات العناكب (86.8)، ومبيدات الأعشاب (86.8) الما بالنسبة للمزار عين، ومعظمهم من استخدام الأسمدة مسحوق (86.8 ± 1.1) مقارنة السوائل (86.0 ± 1.1). (في المتوسط، ومعظم المزار عين يستخدمون مبيدات الفطريات (86.0 ± 1.1) مستخدم)

كلمات البحث: منتج حماية النباتات والموردين والمزار عين وإدارة والنطاق، سوف