REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Ghardaïa

Faculté des Sciences de la Nature et de Vie et Sciences de la Terre Département de Biologie

Mémoire présenté en vue l'obtention du diplôme de

MASTER

Filière: Sciences biologiques

Spécialité : Microbiologie appliquée

Par: - Benaissa Aouatef

- Rebroube Khadedja

Thème

Etude des groupes sanguins ABO et Rhésus dans la population de la valle de Mzab (Ghardaïa) Analyse comparative dans le bassin méditerranée

Soutenu Publiquement, Le 11/06/2023, Devant Le Jury Composé de :

Mme. HAMID OUDJANA Aicha Maitre de conférences B Univ. Ghardaïa Présidente

M. BELHACHEMI, M Habib Maitre de conférences B Univ. Ghardaïa examinateur

M. HAMDAOUI Houari Maitre de conférences B Univ. Ghardaïa encadreur

Année Universitaire: 2022/2023

Remerciements

Au terme de ce travail, nous tenons à remercier Dieu le tout puissant de nous avoir donner le courage, la volonté et la patience pour achever ce travail.

Grâces à dieu le tout puissant qui nous a donné du courage, la volonté et la santé pour terminer nous études et préparer ce mémoire.

Un grand merci d'abords à notre encadreur : Mr. HAMDAOUI Haouari (encadreur) pour avoir accepté de diriger ce travail, qu'il trouve ici, l'expression de nos profonde reconnaissance, nos immenses gratitudes et nos grand respects, pour tous ses efforts, son savoir, ses idées, sa confiance et ses encouragements.

Nos reconnaissances à nos enseignants et membres du jury qui ont accepté de juger ce travail la présidente Madame HAMID OUDJANA Aicha, maitre de conférences B à l'université de Ghardaïa et l'examinateur Mr. BELHACHEMI Med Habib Maitre de conférences B l'université de Ghardaïa

A tous nos collègues de Microbiologie

Ce travail a bénéficié du soutien de plusieurs personnes qu'il nous fait plaisir de remercier, en particulier

Dédicace

C'est avec une profonde gratitude et sincère, que je dédie ce modeste travail de fin d'études

Aux parent les plus chers, BELOUFA et AICHA, qu'ALLAH prolonge leur vie, qui ont toujours

été là pour moi

J'espère qu'un jour je pourrai leur rendre un peu de ce qu'ils ont fait pour moi, et que dieu les bénira et leur pardonnera.

A' mes frères « Mourad et Ibrahim »

A' mes chères sœurs « Fadila, Asma et Faiza »

A' toute ma famille BENAISSA

A ma chère grand-mère « Djablia »

A mon chère grand-père « Sidi Ibrahim »

A' mes amies « Hafsa, Yamina, wail » merci pour tous ce que vous m'avez donné, vous m'avez soutenu avez soutenue vraiment aux moments difficiles moment je vous remercie au fond du mon cœur.

A' tous mes autres amis

A' tous mes collègues de la promotion Microbiologique

A' tous ceux que j'aime et à ceux qui m'aiment

AOUATEF

Dédicace

Je dédie ce modeste travail

A la femme qui a souffert sans me laisser souffrir, qui n'a jamais dit non à mes éxigences et qui n'a épargnée aucun effort pour me rendre heureuse: mon adorable mère Massouda.

A l'homme, mon precieux offre du dieu, qui doit ma vie, ma réussite et tout mon respect : mon cher père Rachid.

A mon mari Lalmi qui n'a pas cessé de me conseiller, encourager et soutenir tout au long de mes études. Que dieu le protège et l'offre la chance et le bonheur.

A mes chers enfants : Hicham, Karim, Abdelhak et mes chères filles : Saida, Heba ,Imen , que Dieu leur accorde le succès .

A mes chères soeurs Nadjet et Fairouz

A mon adorable binome Aouatif

Et à toutes les personnes qui me connaissent et qui m'ont encouragé.

khadidja

Liste des Abréviations

%: pourcentage

RH+: Rhésus positive

RH-: Rhésus négative

HTA: Hyper Tension Artérielle

G R: globules rouge

GB: globules blancs

TLR: Toll-LikeReceptor

RÉSUMÉ

الملخص

نظام الدم عبارة عن مجموعة من المستضدات النمطية التي تكتشفها اجسام مضادة محددة على سطح اغشية خلايا الدم الحمراء. هناك أنواع مختلفة من فصائل الدم, وأهمها في الممارسة نظام ABO و Rhésus

تهدف در استنا إلى توصيف سكان غرداية من خلال نظامي الدم ABO و Rhésus من أجل إنشاء توزيع للمجموعات المختلفة. هذه در اسة وصفية استباقية أجريت على عينة مكونة من 753 شخص تم اختيارها عشوائياً من أربع مناطق في غرداية (غرداية، برايان، قرارة، متليلي).

كشفت النتائج عن الترددات المظهرية لنظام ABO والتي تتفاوت من 64% للمجموعة 0 و25% للمجوعة A و 00% للمجموعة B و 01% بالنسبة للمجموعة AB في سكان الميزاب. وبالمثل اظهرت النتائج بالنسبة لنظام الريسوس ان العامل الريسوسي الايجابي يختلف بنسبة 09% وان 01% بالنسبة لعامل الريسوس سالبي. بالإضافة الى دلك، ابرزت المقارنات بين السكان اوجه تشابه كبيرة بين سكاننا وتلك المجموعة في البحر الابيض التوسط.

الكلمات المفتاحية: نظام ABO و Rhésus, فصائل الدم، سكان غرداية, دراسة مقارنة.

Résumé

Le système sanguin est un groupe d'antigènes allo-typiques détectés par des anticorps spécifiques à la surface des membranes des globules rouges. Il existe déférents types de groupes sanguins, les plus importants en pratique sont les systèmes ABO et Rhésus.

Notre étude a pour objectif de caractériser la population de Ghardaïa par les systèmes sanguins ABO et Rhésus afin d'établir une répartition des différents groupes. Il s'agit d'une étude prospective descriptive mené sur un échantillon de 753 choisi aléatoirement des quatre régions de Ghardaïa (Ghardaïa, Baraiane, Guerrara et Metlili).

Les résultats obtenus ont révélé pour le système ABO des fréquences phénotypiques qui varient de (64%) pour le O, et (25%) pour le A, 10% pour le groupe B, qu'est (1%) pour l'AB. Absent de groupe AB chez la population de mozabite. De même, pour le système Rhésus les résultats ont montré que le rhésus positive varie de (90%) et que est (10%) Pour le Rhésus négatif. De plus, les comparaisons inter-populationnelles ont mis en évidence de grandes similitudes entre notre population et celles du bassin méditerranée.

Mots clés :

Système ABO, Rhésus, Groupes sanguins Population de Ghardaïa, Etude comparative.

Abstract

The blood system is a group of allo-typical antigens detected by specific antibodies on the surface of red blood cell membranes. There are several types of blood group, the most important in practice being the ABO and Rhesus systems.

The aim of our study is to characterize the Ghardaïa population by ABO and Rhesus blood systems in order to establish a distribution of the different groups. This is a prospective descriptive study conducted on a sample of 753 randomly selected from the four regions of Ghardaïa (Ghardaïa, Baraiane, Guerrara and Metlili).

The results obtained for the ABO system revealed phenotypic frequencies varying from (64%) for O, and (25%) for A, 10% for group B, to (1%) for AB. There is no AB group in the Mozabite population. Similarly, for the Rhesus system, results showed that Rhesus positive varies from (90%) to (10%) for Rhesus negative. In addition, inter-population comparisons revealed major similarities between our population and those of the Mediterranean basin.

Key words:

ABO system, Rhesus, Blood groups, Ghardaïa population, Comparative study.

1
4
4
4
4
4
4
5
5
8
8
8
9
10
10
11
11
12
13
14

III. Système Rhésus	. 20
1. Historique	. 20
2. Définition	. 20
3. Aspects phénotypiques du système Rhésus	. 20
4. Anticorps du système Rhésus	. 21
5. Biochimies du systèm Rhésus	. 21
6. Génétique de système Rhésus	. 22
7. Répartition de système Rhésus dans le monde	. 23
9. Répartition du système Rhésus en Algérie	. 24
IV. Consanguinité	. 24
Chapitre II: Matériel et méthodes	
1. Description de la zone d'étude	. 31
1.1.Situation géographique	. 31
2. Critères d'inclusion et d'exclusion	. 32
2.1. Critères d'inclusion	. 32
2.2. Critères d'exclusion	. 32
3. Traitement statistique de données	. 32
Chapitre III: Résultats et interprétation	
1. Répartition du système ABO	. 35
2. Répartition du système Rhésus	. 36
3. Répartition de systèmes ABO et Rhésus selon l'origine ethnique	. 36
4. Répartition des systèmes ABO et Rhésus selon le lieu de résidence	. 38
5. Répartition des systèmes ABO et Rhésus selon le sexe	. 42
6. Consanguinité dans la population de Ghardaïa	. 43
6.1. Répartition de consanguinité dans les quatre régions de Ghardaïa	. 43
6.2. Répartition de système ABO et Rhésus selon la consanguinité	. 44
7. Morbidités fréquentes dans notre population d'étude	. 46

Chapitre IV: Discussion

1. Système ABO	49
1.1. Comparaison de la population de Ghardaïa avec les populations nationales	49
1.2. Comparaison de population de Ghardaïa à l'échelle méditerranéenne	50
1.3. Comparaison de population de Ghardaïa avec les populations mondiales :	51
2. Système Rhésus	52
2.1. Comparaison de la population de Ghardaïa avec les populations nationales	52
2.2. Comparaison de population de Ghardaïa à l'échelle méditerranéenne	52
2.3. Comparaison de la population de Ghardaïa avec les populations mondiales	53
3. Comparaison des taux de consanguinité de notre population de Ghardaïa	54
Conclusion	57
Références	60
Annexes	71

Liste des figures

N°	Titres	page
01	Composants de sang	5
02	Quatre principaux Phénotypes du système ABO	9
03	Biosynthèse des substances A, B et H	13
04	Organisation du gène ABO humain	14
05	Structure moléculaire de l'antigène D du système Rhésus	22
06	Mécanismes de duplication et de délétion du gène RH	22
07	Carte de l'Algérie montrant la zone d'étude (wilaya de Ghardaïa)	31
08	Répartition du système ABO dans la population de Ghardaïa	35
09	Répartition du système Rhésus dans la population de Ghardaïa	36
10	Répartition de systèmes ABO et Rhésus selon l'origine ethnique	37
11	Répartition des groupes ABO et rhésus selon l'origine ethnique	38
12	Répartition de système ABO et Rhésus selon la région de provenance	39
13	Répartition des systèmes ABO et rhésus selon le lieu de résidence et l'origine ethnique.	40
14	Fréquences phénotypiques des systèmes ABO et Rhésus dans les différentes régions de Ghardaïa	41
15	Réparation phénotypiques des systèmes ABO et Rhésus en fonction du sexe	42
16	Consanguinité dans la population de Ghardaïa	43
17	Répartitions des consanguinités dans les différentes régions de Ghardaïa	44
18	Répartition de système ABO et Rhésus selon la consanguinité dans la population mozabite	45
19	Répartition de système ABO et Rhésus selon la consanguinité dans la population arabe	46
20	Morbidité dans la population de Ghardaïa	46

Liste des tableaux

N°	Titres	page
01	Phénotypes et génotypes du système sanguins MNSs	6
02	Principaux polymorphismes érythrocytaires humains	7
03	Phénotypes A1 et A2	10
04	Répartition des groupes ABO dans le monde	15
05	Répartition allèliques du système ABO dans le bassin méditerranéen	16
06	Répartition allèliques de système ABO en Algérie.	17
07	Répartition du système rhésus dans le monde	23
08	Répartitions de system Rhésus en Méditerranéen	24
09	Répartition du système Rhésus en Algérie	24
10	Fréquences de la consanguinité de quelques populations dans le Monde	26
11	Fréquences de la consanguinité en Algérie	27
12	Répartition phénotypique des systèmes ABO et Rhésus	39
13	Réparation des fréquences phénotypiques des systèmes ABO et Rhésus en fonction du sexe	42
14	Morbidités les plus fréquentes dans notre population d'étude	46
15	Comparaison des fréquences du système ABO de la population de Ghardaïa avec celle des autres wilayas.	49
16	Comparaison des fréquences du système ABO de la population de Ghardaïa avec celles de la méditerranée.	51
17	Comparaison des fréquences du système ABO de la population de Ghardaïa avec celles du monde.	52
18	Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celle des autres wilayas.	53
19	Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celles des populations du bassin méditerranéen.	54
20	Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celles des populations mondiales	54

INTRODUCTION

Introduction

Introduction

Tous les êtres humains sont génétiquement très similaires, mais l'existence d'un polymorphisme dans l'information génétique crée une variabilité et rend chaque être humain unique (Janot et al, 2002).

Les principaux facteurs pouvant affecté le développement de la population peuvent être regroupés en deux catégories :

-1^{er}, principalement biologique et /ou génétique : ceux-ci incluent la mutation, la dérive génétique et la sélection naturelle.

-2^{ème}, est essentiellement culturel : on y retrouve les effets de la consanguinité, de sélection conjugale, des différences de fécondité entre les couples, et des migrations humaines (**Afkir**, **2004**).

Le développement d' un groupe est donc le résultat de l' interaction permanente entre son patrimoine biologique, sa structure sociale, sa culture et le comportement des est membres .La composition génétique des populations peut être caractérisée et quantifiée aux niveaux phénotypique, génotypique et allélique. Elle peut également être étudiée à l'aide de troubles autosomiques et hétérosomiques liées ou non à la consanguinité (**Solignac et al, 1995**).

Le sang est un ensemble d'éléments qui permettent de caractériser, d'individualiser et de regrouper des individus au sein d'une population en fonction de traits communs (**Debra et Connie, 2019**).

Le groupe sanguin est un ensemble d'antigènes allo typique déterminés et produites génétiquement, séparés les uns des autres, affichés à la surface d'un ou de plusieurs types de composante sanguins. Actuellement, il existe environ 700 antigènes de divers systèmes érythrocytaires de groupes sanguins, environ 339, répartis en 36 systèmes, dont le système ABO et Rh (**Debra et Connie, 2019**).

La répartition des groupes sanguins a été largement étudiée dans le monde. Les centres de transfusion sanguine ont contribué à l'étude des polymorphismes ABO Rhésus et ont permis ainsi de connaître les variations régionales et locales des populations des pays (**Kherumian**, 1965).

Introduction

Le groupe sanguin ABO rhésus présente un grand intérêt clinique, notamment en transfusion et en médecine légale (Lefrère et al, 2010).

Bien que de nombreuses études aient été menées au niveau national, il existe peu de données sur les populations du sud, en particulier Ghardaïa.

Devant la rareté de données sur ces populations, l'objectif principal de la présente étude est de décrire les groupes sanguins et rhésus dans la population e Ghardaïa et de déterminer les conséquences biologiques de la consanguinité sur la distribution de ces groupes sanguins dans la population de valle de Mzab dans le sud Algérien.

A travers notre travail nous essaierons de couvrir quatre chapitres,

- Chapitre 1 : Une synthèse bibliographique qui traite deux volets (le premiers 'intéresse
 à donner des informations sur les groupes sanguins en général et le système ABO et
 Rhésus en particulier, tandis que le second contient des données sur notre population
 d'étude).
- Chapitre 2 : matériel et méthodes qui traitent les caractéristiques de notre population et les méthodes d'analyse de données.
- Chapitre 3 : Les résultats obtenus.
- Chapitre 4 : Analyse et discussion des résultats.
- Enfin, nous avons terminé notre travail par une conclusion générale et des perspectives.

SYNTHESE BIBLIOGRAPHIQURE

I. Système sanguin

1. Notion du sang

Le sang est un liquide biologique important qui circule dans le corps par les vaisseaux sanguins et joue un rôle essentiel dans le transport de l'oxygène. Il se compose de globules rouges, de plasma, de plaquettes et de globules blancs. Il n'y a actuellement aucun produit Il peut complètement remplacer le sang humain, rendant le don de sang irremplaçable et essentiel pour sauver des vies. En Algérie, le don de sang est un acte volontaire, anonyme, volontaire et gratuit de sa part qui apporte des bénéfices importants à des tiers par les donneurs de sang (Agence Nationale du Sang, 2002).

2. Tissu sanguin

Le sang est un tissu composé de cellules sanguines ou d'éléments de forme libre en suspension dans un milieu liquide : plasma (Bacha et Bacha, 2000) et (Gautrand, 2003) dont on sait qu'ils jouent un rôle important depuis la préhistoire et qui constituent un élément clé de la vie .si la découverte de cette circulation avait déjà été faite par WILLIAM HARVEY en 1628, mais seuls les groupes sanguins ont été découverts (à partir des années 1900, KARL LANDSTEINER). La connaissance a permis le développement extraordinaire de la transfusion sanguine (Eru et al ,2014).

3. Constituants du tissu sanguin

3.1. Globules rouges

Les globules rouge (GR) ou encore appelés « hématies ou érythrocytes » est une cellule anucléée unique dont le cytoplasme est composé de 95% d'hémoglobine. Cette cellule présente de nombreuses propriétés attribuées aux protéines et aux lipides membranaires et est hautement spécialisée dans le transport des complexes d'oxygène des poumons vers le reste du corps. (Girasole et al, 2012 ; Kozlova et al, 2012). Ils ont une durée de vie de 120 jours, pendant lesquels ils parcourent environ 500 km de la microcirculation (Guilaum, 2007).

3.2. Globules blancs

Les globules blancs, ou leucocytes, sont des cellules nucléées qui comprennent des cellules polymorphonucléaires (p. neutrophiles, p. basophiles), des lymphocytes et des monocytes. Les leucocytes sont principalement impliqués dans la réponse immunitaire dans la lutte contre les agents infectieux (**Kubab Net al, 2014**).

3.3. Plaquettes

Les plaquettes ou les thrombocytes sont des cellules non nucléées qui jouent un rôle important dans l'hémostase primaire. Les plaquettes expriment, parmi de nombreux récepteurs à leur surface, le Toll-LikeReceptor (TLR), un récepteur clé dans l'interaction entre l'immunité innée et adaptative. Les réponses plaquettaires varient lors de l'activation par des stimuli hémostatiques (Berthet, 2011).

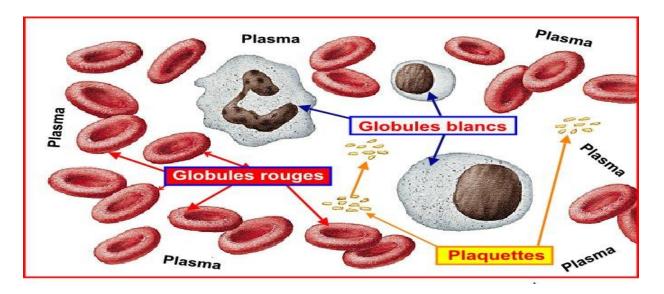


Figure 1. Composant de sang (Karima, 2020).

4. Définition du système sanguin

Les groupes sanguins peuvent être définis comme un groupe d'antigènes allo typiques génétiquement transmis détectés par des anticorps, Spécifique à la surface des membranes des globules rouges (Chiaroni et al, 2005). Ils sont génétiques et indépendants les uns des autres. Parce que ces allo antigènes peuvent induire la formation d'anticorps (allo anticorps) et se fixer spécifiquement sur eux, il est intéressant de connaître les phénotypes sanguins des donneurs et des receveurs pour éviter les accidents transfusionnels qu'il y a (Pipatpanukul et al, 2018).

Les déférant types des groupes sanguins, Les plus importants en pratique sont les systèmes ABO et Rhésus (Rh) en suite viennent le système Kell, le système Duffy et le système Kidd et le système MNS et des autres types comme ce qu'il y a dans la table suivante.

> Système MNSs (MNS)

Le system MNS ont été découverte en 1927par Landsteiner et levine (Madiba Sissoko, 2021). C'est un system très complexe impliquant 48 antigènes. Il existe deux couple de allèles M /N et S/s: MNS1(m), MNS2(N), MNS3(S), MNS4(s), sont localise sur le chromosome 4(4q28-q31).les haplotypé sont MS, Ms, NS, Ns (Chiaroni, 2003).

Tableau 1. Phénotypes et génotypes du système sanguins MNSs (Otmani Salima, 2009)

Phénotype	Anti-M	Anti-N	Anti-S	Anti-S	génotypes
MS	++	+	++	-	MS /MS
MSs	++	+	++	++	MS/Ms
Ms	++	+	-	++	Ms/Ms
MNS	++	++	++	-	MS/MS
MNSs	++	++	++	++	MS/Ns ou Ms/NS
MNs	++	++	-	++	Ms/Ns
NS	-	++	++	-	NS/NS
NSs	-	++	++	++	NS/Ns
Ns	-	++	-	++	Ns/Ns

(++): Réaction forte; (+): réaction très faible.; (-): absence de réaction

> Système Kell

Le system Kell découverte en 1946 par les coulages Coombs, Mourant et Race. Ont décrit des anticorps dans le sérum de femmes qui ont donné naissance à des enfants atteints de jaunisse. Cet anticorps a été détecté par un test à l'anti globuline qu'ils ont développé. Cet anticorps a été nommé Anti-Kell d'après la femme qui l'a écrit, et l'antigène correspondant serait l'antigène K (K1), présent chez 5 à 10 sujets caucasiens. Compose par 24 antigènes, localise sur le chromosome 7(7q33). Le system kell définie par deux antigènes principaux : K (k1) et l'autre k (cellano, k2) (Lee, 1997).

Chapiter I:

Synthèse bibliographique

Tableau 2. Principaux polymorphismes érythrocytaires humains (Sanchez-Mazas, 2006)

Acronyme	Nom	Découverte	Principaux	Allèles/Haplotypes	Dominance/	Chromosome
	complet		anti sérum	Principaux	Récessivité	
ABO	ABO	1900	Anti-A, B,	A1, A2, B, O	A=B>>O et	9q34
			A1		A1>>A2	
RH	Rhésus	1940	Anti-D, C,	R1 (Cde), R2	D>>d, E=e,	1p36.2
			c, E, e	(cDE), R0 (cDe),	C=e	
				Rz (CDE) r (cde),		
				r'(Cde), r' (cdE),		
				ry(CdE		
MNS	MNSs	1927-47	Anti-M, N,	MS, Ms, NS, Ns,	M=N,S=s>>Su	4q28-q31
			S, s	MSu, NSu		
P	P	1927	Anti-P1,	P1, P2, p	P1>>P2>>p	6р
			P+P1			
LU	Lutheran	1945	Anti-Lu(a),	Lua, Lub	Lua=Lub	19q13.2
			Lu(b)			
K	Kell	1946	Anti-K, k	K, k	K=k	7q33
LE	Lewis	1946	Anti-Le(a),	Le, le	Le>>le	19p13.3
			Le(b)			
FY	Duffy	1950	Anti-Fy(a),	Fya, Fyb, Fy	Fya=Fyb>>Fy	1q21-q22
			Fy(b)			
JK	Kidd	1951	Anti-Jk(a),	Jka, Jkb, Jk	Jka=Jkb>>Jk	18q11-q12
			Jk(b)			
DI	Diego	1955	Anti-Di(a),	Dia, Dib	Dia=Dib	17q12-q21
			Di(b)			

II. Système sanguin ABO

1. Historique

Les systèmes des groupes sanguins ABO ont été découverts par le pathologiste, médecin biologique d'origine autrichien, Karl Landsteiner en 1901 (Dean, 2005). En 1900 Landsteiner a constaté que le sérum de certains des employés agglutinait les globules rouges d'autres employés. Cette découverte n'a été mentionnée pour la première fois que brièvement dans la revue bactériologique "Zentralblatt fur Bakeriologie origine", mais il y a un article détaillé décerné en 1901 dans la 17ème publication scientifique de la Wiener Klinische Wochenschrift (Lefrère et Berche, 2010). Cette étape a ouvert un nouveau domaine de la biologie humaine, permettant le développement de traitements qui devraient sauver des millions de vies : transfusion. En 1911, Von Dungern et Hirsfeld ont décrit des sous-groupes de A (A1 et A2). (Lefrère et Berche, 2010). En 1930, Landsteiner fut honoré par le prix Nobel de physiologie et de médecine pour la découverte des groupes sanguins (janot et al 2002; Rath et al 2014).

En 1908, Epstein et Otten berg ont proposé que le groupe sanguin ABO fût héréditaire et a été confirmé par Dungarn deux ans plus tard. Bernstein a déterminé le mode de transmission en 1924 et a décelé que ces groupes sont transmis par les trois allèles A, B et O (Geoff, 2013). En 1930 Worsaee et Thomsen Friedrich ont contient les sous-groupes A₁ et A₂ et avancé la théorie héréditaire de quatre allèles (Chiaroni et al 2005). Morgan et Watkins ont montré la structure biochimique des groupes sanguins ABO en 1952 et 1953(Chiaroni et al, 2005; Geoff, 2013). En 1990 Yamamoto et al ont copié et campé les bases moléculaires des trois principaux allèles ABO (Yamamoto et al, 1990).

2. Définition de systèmes ABO

Ensemble d'antigènes génétiquement déterminés présents à la surface de la membrane des cellules sanguines, regroupés en systèmes génétiquement codés et indépendants les uns des autres. Les groupes sanguins ABO sont définis par la présence ou l'absence d'antigènes à la surface des globules rouges et d'anticorps dans le plasma (Hamoudi, 2020).

3. Aspects phénotypique du system ABO

Le système de groupe sanguin ABO est divisé en quatre phénotypes (A, B, O, AB), selon la présence ou l'absence d'antigènes et d'anticorps spécifiques sur la membrane des globules rouges ou dans le plasma (**figure 2**).

- Le groupe A, la présence des antigènes A sur les globules rouge (hématie) et des anticorps B (anti-B) dans le sérum.
- Le groupe B, la présence des antigènes B sur les globules rouge (hématie) et des anticorps A (anti-A) dans le sérum.
- Le groupe AB, la présence des antigènes A et B sur les globules rouge (hématie) et ne pas des anticorps dans le sérum.
- Le groupe O, ne présent pas des antigènes sur les globules rouge (hématie) et des anticorps A et B (anti-A et anti-B) dans le sérum (**Tayou Tagny et al, 2009**).

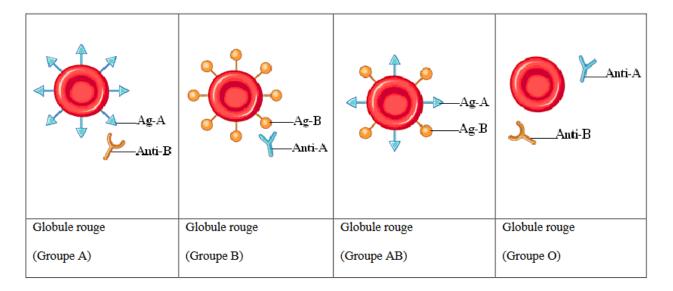


Figure 2. Quatre principaux Phénotypes du système ABO (Saouli et Ayad, 2022)

a) Sous phénotype A1 et A2

Déjà en 1911, von Dangern a souligné les différences individuelles dans l'antigène A et a divisé le groupe A en deux sous-groupes A1 et A2 (et groupe AB de A1 B et A2 B). Ces érythrocytes sont agglutinés par le réactif anti-A, mais seuls les érythrocytes A1 et A1B sont agglutinés par l'anticorps polyclonal anti-A1 (généré par absorption du plasma du sujet B). Parmi ces sujets avec l'antigène A, environ 80 sont A1 et 20 sont A1. Le phénotype A1 est caractérisé par la présence d'Ag A1, qui peut être détecté par des réactifs tels que la lectine Dolichos biflorus. Les globules rouges de phénotype A2 sont dépourvus d'AgA1 et AgA1, un

anticorps anti-A1 naturel irrégulier, peut être détecté dans le plasma d'individus de phénotype A2 ou A2B. Inversement, les individus de phénotype A1 ou A1B peuvent avoir des agglutinines naturelles irrégulières avec une spécificité anti-H dans leur plasma sans effets transfusionnels (Chiaroni et al, 2005).

Tableau 3. Phénotypes A1 et A2

Phénotypes	Anti-A1	Anti-A2
A2	+++	
A1		+++

b) Phénotype Bombay

En 1952, le phénotype Bombay détecte par Bhende chez un sujet indien, un phénotype ABO particulier caractérisé par l'absence d'Ag A, B et de substance H sur les GR et la présence dans son plasma d'anti- B, d'anti-A et surtout d'un anti-H très puissant. Le substance H code par un gène suite sur chromosome 19, ce gène représente par un couple des allés gronde H et petite h (Hh) ou petite h et petite h (hh, pratiquement tous les individué sont des génotype (HH) ou (Hh), sont exprimé H sur les globules rouges, soufre un partie des individus sont des génotype (hh), est donc les exprime A la substance H sur la surface de globule rouge Si individué appelée les individué de phénotype Bombay (Seltsam et al, 2003).

4. Anticorps de system ABO

Le système de groupe sanguin ABO se caractérise par la présence constante dans le sérum d'un individu d'anticorps correspondant à des antigènes non présents à la surface des globules rouges (**Louati, 2008**). Dans le system ABO il existe deux types des anticorps, anticorps naturel et anticorps Immuns :

4.1. Anticorps naturel

Ce sont des anticorps naturels normaux, réguliers, ils sont systématiquement présents chez tous les individus adultes dépourvus d'antigènes A et/ou B et ce en dehors de Toute stimulation antigénique. Il a de nature IgM, agglutinants et ayant un optimum thermique à 4°

Chapiter I:

Synthèse bibliographique

C. Ils n'ont pas de pouvoir hémolysant. De plus, sous l'influence de: divers stimuli supplémentaires de l'environnement. Et ne traversent pas la barrière placentaire.ils correspondent en évidence à une immunisation acquise vis-à-vis d'antigènes étrangers ubiquitaires qui sont largement présents dans l'environnement, en particulier chez les bactéries. Ils apparaissent spontanément vers le 5-6 mois après la naissance. Ainsi, les individus de groupe A ont des Ac anti-B, les individus de groupe B possèdent des anti-A, les individus de groupe O ont à la fois des anti-A et des anti-B, ceux du groupe AB ne possèdent pas d'anticorps naturels dans le système ABO (Louati, 2008; Mannessier et al, 2002).

4.2. Anticorps immuns

Ce sont des anticorps qui apparaissent après des événements dans la vie d'un individu. ce sont des Ac immuns de nature IgG et des autre à mélange de types IgG et IgM. Ils sont peuvent déclencher la cascade du complément complet et avoir ainsi un fort effet hémolytique. Ce dernier se caractérise par une activité maximale à 37 °C et est majoritairement de nature IgG. Ne sont pas s'agrège pas spontanément dans les milieux salins. La détection de ces anticorps immuns présente un grand intérêt pratique pour les donneurs de sang, car leur présence dans le plasma du donneur est susceptible de provoquer de graves accidents hémolytiques chez les receveurs (Louati, 2008 ;Mannessier et al, 2002).

Détermination des anticorps

Les anticorps naturels sont détectés à l'aide du test indirect à la simonine « méthode plasmatique ». Les immuno-anticorps peuvent être obtenus par la méthode indirecte de Coombs en utilisant des substrats solubles qui permettent l'absorption d'anticorps naturels, la rupture par la chaleur ou la détermination directe de l'effet hémolytique de ces anticorps.

5. Antigènes de system ABO

Les antigènes A, B, H de système ABO ce sont des natures oligosaccharides portés par des glycolipides membranaires des hématies, des endothéliales et épithéliales (Vince et al, 2006). Il est présent dans les liquides biologiques, la salive, le plasma et le lait maternel. Pas complètement développé à la naissance. Ils sont présents chez le fœtus à partir de la cinquième semaine, et leur expression n'est définitive que vers l'âge de trois ans (Oumou, 2002).

Chapiter I:

Synthèse bibliographique

Elle se caractérise par la liaison au substrat de deux sucres différents à la surface des globules rouges, la N-acétylgalactosamine pour l'Ag A et le galactose pour l'Ag B, appelée substance H (Saitou et al, 1997).

Les deux Ag principaux (A et B) définissent quatre groupes sanguins :

- ➤ Si le antigène A est présente sur les hématies, est le groupe A.
- > Si le antigène B est présente sur les hématies, est le groupe B.
- ➤ Si le antigène A et B est présente sur les hématies, est le groupe AB.
- Si n'est pas présente aucun antigène (ni Ag A, ni Ag B), est le groupe O (Traore,
 2018).

> Détermination des antigènes

Les antigènes sont détectés par une méthode simple, appel l'épreuve de Beth Vincent ou la méthode globulaire, Mettre en évidence l'antigène globulaire à l'aide de sérums de test connus anti-A, B, AB (**Traorte, 2018**).

6. Biochimies de system ABO

Le system sanguin ABO est déterminé par la présence des antigènes A et B à la surface des globules rouges (GR). Outre les globules rouges, ces antigènes sont largement exprimés sur les membranes d'une grande variété de cellules, y compris les plaquettes, le foie, les reins et les reins. Les membranes d'une grande variété de cellules, y compris les plaquettes, l'endothélium vasculaire et l'épithélium (**Zhang, 2012**), ainsi que dans la salive et les fluides corporels par exemple : les larmes, les urine (**Hosoi, 2008**).

Tous les globules rouges sont stipule par une substance appelée la substance H. Si les sujets porte le allée A, la substance H peut être convertie en substance A. pour le phénotype B, la substance H convertie en substance B. Logiquement les sujets de phénotypes AB, la substance H convertie en substance A et B. Allouer que le sujets de groupe O, l'allée O est un allée s'élance ne codée accent substance, dans cette satiation la substance H reste en substance H (Chiaroni et al, 2005).

Les antigènes ABO sont localise sur la parte terminale de chaine polysaccaride : « Gal _ GlaNAc _ Radical saccharidique ». Si chaine polysaccaride sont reliée soi de protéine ou lipide membranaire, de mes sens à des glycoprotéines ou à des glycolipides. La parte

tarminale de cette chaine polysaccaride est compose par un N-acétyl- galactosémine relié à un D-galactosémine. Si les individué « HH ou Hh », l'allé H codée par un enzyme appelée la Fucosyl Transférase1 « Fut1 » est cette enzyme à la capacité de fixe un sucre appelée le Fucose « Fuc » sur le D-galactose (Gal), transforment un ci le polysaccharide en substance H. L'allée A code pour un enzyme appelée « N-Acetyl-Galactosamyle Transférase » est cette enzyme à la capacité de fixe « N-Acetyl-Galactosamyle (GlcNAc) » sur la substance H de mais la sancie à la substance A. L'allée B code pour un D-galactosyle Transférase est cette enzyme à la capacité de fixe un D-Galactose sur la substance H, donc la substance H convertie à la substance B. L'allée O est un allée silences un ne code accent enzyme est donc la substance H reste en substance H (Chiaroni et al, 2005).

Figure 3. Biosynthèse des substances A, B et H (www.facmed-univ-oran.dz consulté le 03 Juin 2020)

7. Génétique de système ABO

Le locus ABO était situé sur le bras long du chromosome 9 (9q34.1-q34.2) en 1976 (**Groot et al, 2020**). En 1990, Yamamoto a cloné le gène ABO, composé de 7 exons et 6 introns. Les exons 6 et 7 codent 91 % des a du le site catalytique d'une enzyme. Le produit de l'allèle A ou B est une protéine membranaire Une cellule de Golgi de 42 kDa contenant 354 a de l'enzyme

A1 avec un domaine IC de 16 aa, un domaine TM de 20 aa et un domaine EC-C-terminal de 218 aa à l'extrémité NH2. Il n'y a pas de différence entre les allèles humains de référence A1 (A101) et B (B101). Au niveau de l'exon, seuls 7 des 1065 nucléotides (297, 526, 657, 703, 796, 803, 930) entraînent 4 substitutions AA (Olsson et al, 2001; Ogasawara et al, 2001).

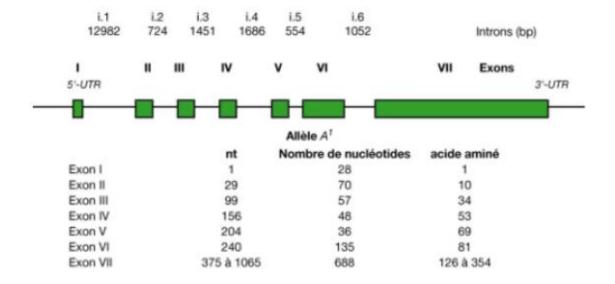


Figure 4. Organisation du gène ABO humain (chiaroni et al, 2005)

8. Répartition du system sanguin ABO dans le monde

La distribution des groupes sanguins ABO, elle est détermine par le phénotype O occupe la position majoritaire, suivie par le phénotype A, après le phénotype B, le phénotype AB est le moins fréquent.

En 1982, Vogel et Moulski ont établi un lien entre la prévalence mondiale des polymorphismes du système ABO et épidémies majeures et des maladies infectieuses spécifiques. Par conséquent, la haute fréquence la spécificité de l'allèle O chez les Amérindiens est probablement due à l'avantage sélectif de cet allèle dans la réponse immunitaire à la syphilis.

L'allèle B est relativement élevé dans les populations Asiatique, le résultat peut être d'une double action sélective de la peste contre l'allèle O et de la variole contre l'allèle A et la peste contre l'allèle O (Vogel et Motulski, 1982).

La fréquence de l'allèle A1 est élevée chez les Européens de la région scandinave et d'Europe centrale, chez les natifs d'Australie, et est également très élevée dans l'ouest de l'Amérique du Nord (Goudemand et Salmon, 1980).

La fréquence du groupe ABO est assez constante dans le monde et montre moins de variation d'un endroit à l'autre que les autres gènes (Cavalli-sforza, 1994) (Tableau 4).

Tableau 4. Répartition des groupes ABO dans le monde (Boufrioua et al., 2020)

Population	A%	В%	Ο%	AB%
USA 2002	41	9	46	4
Bretagne 2008	42	8	47	3
Inde 2011	28.38	31.89	30.99	8.72
Nigeria 2000	21.6	21.4	54.2	2.8
Ethiopie 2015	28.11	23.35	43.08	5.44
Arabia Saudia2001	24	17	52	4
Napal 2000	34	29	32.5	4
Guinée 2007	22.5	23.7	48.9	4.4
Pakistan 2015	22.4	32.4	30.5	8.4

9. Répartition du système sanguin dans le bassin méditerranéen

Le tableau qui présent la distribution allélique du système ABO au niveau du bassin méditerranéen, l'allèle O est majoritaire par rapport aux autres allèles et est plus intensément distribué au niveau du sud de l'Italie (69,6%). France (67,2%), Maroc, Algérie. Vient ensuite l'allèle Avien. Ceci est principalement au niveau de la Grèce (Platier) (32,1%) et de la Turquie (28,8%), une faible fréquence après le dernier allèle B est bien observée au niveau de la Tunisie (5%) (**Tableau 5**).

Tableau 5. Répartition allèliques du système ABO dans le bassin méditerranéen.

Pays	Allèle A	Allèle B	Allèle O	Références
Algérie	0.209	0.123	0.677	Boufrioua et al, 2020
Maroc	0.214	0.105	0.677	Boufrioua et al, 2020
Tunisie	0.33	0.05	0.62	Chaabani et al, 1988 in Belkhatir, 2015
Libye	0.222	0.132	0.643	Walter et al, 1975
Egypte	0.222	0.104	0.674	Azim et al, 1974 in Belkhatir, 2015
Turquie (centre)	0.288	0.132	0.58	Atasoy et al, 1995 in Belkhatir, 2015
Grèce	0.321	0.072	0.607	Tills et al, 1983 in Belkhatir, 2015
Espagne (centre)	0.272	0.115	0.613	Mesa et al, 1994 in Belkhatir, 2015
France (sud)	0.275	0.053	0.672	Kherummian, 1961 in Belkhatir, 2015
Italie (sud)	0.275	0.053	0.672	Piazza et al, 1989 in Belkhatir, 2015

10. Répartition du système sanguin en Algérie

La distribution allélique de system ABO en Algérie, au niveau dans plusieurs wilaya selon le tableau suivant, le allèle O est prédominante en Algérie, suivie par un allèle A légèrement dominant. La distribution suivante est celle de l'allèle B qui occupe la position la plus basse au niveau algérien (**Tableau 6**).

Tableau 6. Répartition allèliques de système ABO en Algérie

Wilayas	A	В	0	Références
Tlemcen	0.182	0.099	0.719	Aouar et al, 2012
Oran	0.212	0.105	0.682	Ruffié al, 1962
Sidi Belabbès	0.188	0.122	0.631	Lefevre et al, 2006
Saida	0.196	0.143	0.661	Lefevre et al, 2006
Miliana	0.251	0.117	0.631	Lefevre et al, 2006
Alger	0.216	0.127	0.656	Lefevre et al, 2006
Bejaia	0.222	0.127	0.651	Lefevre et al, 2006
Constantine	0.195	0.124	0.68	Lefevre et al, 2006
Annaba	0.227	0.132	0.64	Lefevre et al, 2006
Msila	0.198	0.111	0.69	Ruffie et al, 1962
Ain Salah	0.137	0.137	0.725	Lefevre et al, 2006
Tizi-Ouzou	0.17	0.149	0.681	Ruffie et al, 1962

11. Relation de maladie avec le system ABO

Certains auteurs attribuent à cela la propagation mondiale du polymorphisme du système ABO. Épidémies graves et certaines maladies infectieuses. En fait, des maladies telles que le choléra et la diarrhée infantile causées par des souches d'*E. Coli* ont toujours été favorisées par les personnes du groupe O. De même, la tuberculose pulmonaire et les ulcères gastriques et duodénaux sont plus toxiques chez les sujets A. Sujet uniquement O (**Chadli et al, 2007**).

Des maladies de toutes sortes ont été étudiées, y compris les maladies infectieuses, les maladies dégénératives, les maladies malignes et les maladies psychiatriques, et certaines associations importantes ont été trouvées, comme le lien de Johansen en 1927 entre le cancer et le groupe sanguin A. Les résultats ont été jugés pertinents. Les relations entre les groupes sanguins et les maladies spécifiques ont montré des liens génétiques entre la sensibilité aux maladies et les gènes des groupes sanguins (**Livingstone**, 1960).

Il existe des preuves que le type O a un avantage sélectif sur la gravité du paludisme. L'argument est convaincant. On pense que le groupe O est né avant que les premiers humains ne migrent vers l'Afrique. Le paludisme grave tue des millions de personnes chaque année

Synthèse bibliographique

avant qu'elles n'atteignent la petite enfance, sélectionnant ainsi des gènes pour leur survie (Anstee, 2015).

La base moléculaire du système de groupe sanguin ABO a été élucidée en 1990.7 Le gène code pour une glycosyltransférase qui transfère la N-acétyl D-galactosamine (groupe A) ou le D-galactose (groupe B) aux extrémités non réductrices des glycanes sur les glycoprotéines et les glycolipides. Le phénotype du groupe O résulte de l'inactivation du gène A1 de la glycosyltransférase, et les extrémités non réduites des glycanes correspondants chez les sujets du groupe O expriment l'antigène du groupe sanguin H . Les antigènes ABH ne se limitent pas aux globules rouges, mais sont largement exprimés dans les fluides et les tissus de l'organisme. L'importance biologique de la transférase A/B n'a pas été clairement démontrée, mais on peut s'attendre à ce que la perte de cette protéine fonctionnelle chez les patients du groupe O ait des conséquences délétères pour les patients de ce groupe sanguin (Anstee, 2010).

Le groupe sanguin fait une différence dans la structure antigénique du corps humain. Étant donné que le système antigène-anticorps de l'organisme est la principale défense contre les infections, des différences dans ce système peuvent contribuer aux infections. Différentes réactions à certaines maladies. En outre, des preuves qu'il existe d'autres types d'interactions qui peuvent avoir une importance sélective, telles que les substances du groupe sanguin A inhibant la réplication du virus de la grippe ou les substances inhibant la réplication du virus de la grippe. Le groupe sanguin A augmenté la virulence de S. typhi chez la souris (Livingstone, 1960).

À l'inverse, Aird et al6 ont également rapporté que les personnes de groupe sanguin O avaient un risque 20 % plus élevé de développer des problèmes de santé que les autres. Le groupe sanguin O était 20 % plus susceptible que le groupe sanguin A de développer un ulcère duodénal. Il a également été rapporté que le groupe sanguin ABO-HISTO affecte la sensibilité à divers agents infectieux. Sensibilité à divers agents infectieux, notamment *Pseudomonas* (groupe A), *Helicobacter pylori* (groupe O) et *Salmonella typhi* (groupe B).

a. Maladies fréquentes dans le nord et sud Algérien

Le syndrome métabolique est répandu dans les zones urbaines du nord de l'Algérie, avec un faible taux de cholestérol HDL et une obésité abdominale, en particulier chez les femmes (Houti et al, 2014).

Chapiter I:

Synthèse bibliographique

Les maladies qui ont été éradiquées jusqu'à présent mais qui sont particulièrement récurrentes comprennent.

Le paludisme doit être mentionné en particulier dans les régions du sud du pays. Le nombre de personnes infectées par le paludisme était de 541. Déclaré en 2000 (contre 701 en 1999). Les Wilayas les plus touchées sont Tamanrasset, Adral, Wargla, Ghardaïa et Iriji. En 2000, 88,3 % des cas de paludisme signalés étaient des cas importés d'Afrique subsaharienne associés à des mouvements de population transfrontaliers. Une région (en particulier la population du Mali et du Niger). Le trachome reste la première cause de morbidité dans la Wilaya du sud avec 791 cas. Nombres rapportés en 2000 (755 en 1995, 2601 en 1990) : En 2000, le trachome a été particulièrement observé à El Huedo, Ghardaïa, Ouargla, Adral, Viskra et Wilaya d'Irizi (Ministère de la santé et de la population, 2002).

À l'inverse, Aird et al 6 ont également rapporté que les personnes de groupe sanguin O avaient un risque 20 % plus élevé de développer des problèmes de santé que les autres. Le groupe sanguin O était 20 % plus susceptible que le groupe sanguin A de développer un ulcère duodénal. Il a également été rapporté que le groupe sanguin ABO-HISTO affecte la sensibilité à divers agents infectieux. Sensibilité à divers agents infectieux, notamment Pseudomonas (groupe A), Helicobacter pylori (groupe O) et Salmonella typhi (groupe B) (Garratty, 2000. et Greenwell, 1997).

b. Groupes sanguins ABO et maladies infectieuses

De nombreuses études épidémiologiques ont mis en évidence des relations statistiques entre les antigènes des groupes sanguins (en particulier ABH et Lewis) et les infections humaines. Les anticorps naturels anti-A ou anti-B se lient en fait aux antigènes glucidiques exprimés par les bactéries ou les virus et peuvent prévenir ou réduire la gravité de l'infection. Plus généralement, les antigènes ABH présents sur les cellules épithéliales servent de récepteurs à des agents infectieux ou à des toxines. Cette interaction entre les agents pathogènes et les groupes sanguins

III. Système Rhésus

1. Historique

Historiquement, la découverte du système Rhésus est liée à la première description de la maladie hémolytique du nouveau-né. Landsteiner et Wiener ont découvert le système en 1940. Levine et Steton avaient décrit la première allo-immunisation en se basant sur les recherches de Landsteiner. La présence d'un anticorps (allo-anticorps) agglutinant les hématies de l'enfant et du père, a été observée chez une femme parturiente qui avait engendré un enfant atteint d'anémie hémolytique du nouveau-né (Cartron, 1993).

Karl Landsteiner et Alexander Wiener ont également mis en évidence la première immunisation hétérologue en immunisant des cobayes ou des lapins avec des globules rouges de singe Rhésus MaCacus en 1940. Cet anticorps hétérologue capable de reconnaître 85 % des globules rouges humains était appelé « antigène Rhésus », mais a ensuite été renommé anti-LW en l'honneur de Landsteiner et Wiener.

Par conséquent, il a été démontré qu'il existe deux types distincts d'antigènes sur les globules rouges humaines (**Fauchei et Ifrah, 1995**). L'allo-anticorps détermine l'antigène Rhésus tandis que l'antigène LW (de Landsteiner et Wiener) est défini par l'hétéro-anticorps.

2. Définition

Le Système RH est un système de groupes sanguins de la lignée érythrocytaire qui est déterminé par un ensemble de gènes adjacents situés sur la paire de chromosomes numéro 1. Les parents transfèrent ces gènes ensemble ou en bloc aux enfants pendant la méiose. Il s'agit d'un système génétique différent des autres systèmes sanguins. Le système est considéré comme le plus complexe et le plus polymorphe de tous, car 50 antigènes ont été découverts jusqu'à présent (**Bergaentzle**, **2010**).

3. Aspects phénotypiques du système Rhésus

L'antigène majeur RH1(D), qui est très immunogène, est codé par le gène RHD, ainsi que les antigènes RH 2 (C), RH 3 (E), RH 4 (c) et RH 5 (e) codés par le gène RHCE, font partie du phénotype RH. Le chromosome 1 porte ces deux gènes, qui ont chacun dix exons et sont organisés de manière similaire (Brossard et al, 2008). La protéine D n'est pas exprimée à la surface des globules rouges chez ceux qui ne possèdent pas le gène RHD, que l'on qualifie de « RhD négatif » (ou Rh : -1 en nomenclature internationale). Le phénotype Rhésus est déterminé par la technique d'agglutination à l'aide de sérums de test. En cas de résultats négatifs sur le panel le phénotype rhésus doit être complété Effectuer la recherche du variant de l'antigène Du (Brossard et al, 2008).

Chapiter I:

Synthèse bibliographique

4. Anticorps du système Rhésus

La plupart des anticorps du système rhésus présentent une réponse immunitaire déclenchée par une grossesse ou des transfusions sanguines incompatibles, contrairement aux anticorps dits naturels anti-A ou anti-B. Cependant, il n'est pas rare de trouver des anticorps "naturels" anti-E chez des sujets E négatifs qui n'ont jamais été en contact avec l'antigène E, pour une raison inconnue. L'antigène D est considéré comme le plus immunogène, suivi des antigènes E et c. 80 % des sujets RH- transfusés avec du sang RH+ produisent un anticorps anti-D qui peut persister pendant plusieurs mois ou même des années. Une nouvelle exposition à l'antigène D a provoqué une réponse immunitaire secondaire rapide qui pourrait entraîner des incidents immunologiques graves (Cartron, 1993). La compatibilité RHD en transfusion sanguine est systématique et obligatoire en raison de la fréquence et de l'importance transfusionnelle des anticorps anti-D. Ces anticorps sont fréquemment impliqués dans l'incompatibilité fœto-maternelle. Important de souligner que leur présence est importante et qu'elle indique une transfusion incompatible pour les antigènes C, E, c et e. Les cinq antigènes Rhésus doivent être compatibles lors des transfusions de globules rouges, en particulier chez les femmes ante la ménopause et chez les personnes souffrant de transfusions répétitives et/ou chroniques (Chiaroni et Legrand, 2001; Chiaroni, 2003).

5. Biochimies du système Rhésus

Les protéines D et CE codées par les gènes RHD et RHCE sont des protéines membranaires palmitoylées (sur des résidus Ser situés à la frontière du cytoplasme et de la bicouche lipidique) et non glycolyses de 417 acides aminés, qui diffèrent par 35 substitutions d'acides aminés. Les protéines de poids moléculaire entre 30 et 32 kDa ont douze domaines transmembranaires et les extrémités N et C sont intra cytoplasmiques. Ils sont exprimés uniquement par les cellules hématopoïétiques de la lignée érythroïde, avec 100 à 200 000 copies par cellule. Un polypeptide ayant la spécificité D est codé par le gène RHD.Selon la constitution de son porteur, le gène RHCE code pour un polypeptide qui présente les spécificités C ou c et E ou e. La base moléculaire des phénotypes RH:1 (D positif) et RH:-1 (D négatif) est déterminée par la présence ou l'absence de la protéine D (Cartron et al, 1998) (Figure 5).

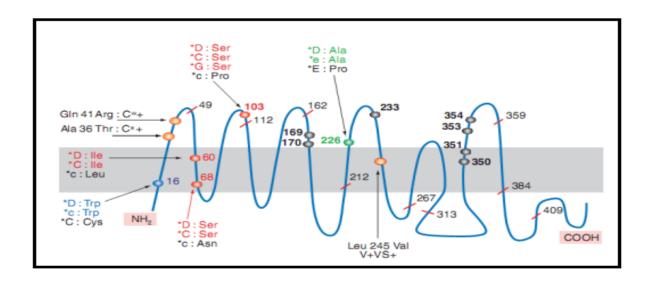


Figure 5. Structure moléculaire de l'antigène D du système Rhésus (Chiaroni et al, 2005)

6. Génétique de système Rhésus

Localiser le locus Rhésus sur le bras court du chromosome 1 (Chérif Zahar et al, 1991). Selon Wiener en 1943, il y a une seule unité génétique composée de plusieurs allèles qui ont chacun un code pour un agglutinogène. Selon Fisher et Race, trois paires de gènes concentrés liés, Dd, Cc et Ee, contrôlent la production des antigènes Rhésus après une année en 1944. Les trois paires de gènes sont rarement séparées par cross-over. Cc et Ee sont respectivement antithétiques. En 1991, l'équipe de Cartron a remis en question les deux théories. Selon ces recherches, le gène C a existé avant le gène D. Le gène C est constitué d'un seul gène qui s'est dupliqué pour donner le gène D, tandis que les antigènes E et e sont apparus tardivement grâce à une mutation probable du gène C, c (Chiaroni et al, 2005) (Figure 6).

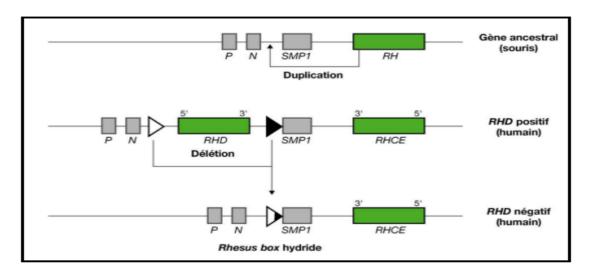


Figure 6. Mécanismes de duplication et de délétion du gène RH (Chiaroni et al, 2005)

7. Répartition de système Rhésus dans le monde

Le tableau (7) présente la répartition du système Rhésus dans plusieurs pays, le Rhésus positif est plus dominant que le Rhésus négatif au niveau mondial, la fréquence du Rhésus positif très élevée dans la population indienne avec une fréquence de (95.36%) tandis que la fréquence la plus basse du Rhésus négatif est rapportée chez la population guinéenne à pourcentage (4.1%).

Tableau 7. Répartition du système rhésus dans le monde (Boufrioua et al, 2020)

Population	Rh +(D)%	Rh –(D)%
USA 2002	85	15
Grande-Bretagne 2008	83	17
Inde 2011	95.36	4.64
Nigeria 2000	95.2	4.8
Ethiopia 2015	92.06	7.94
Saudi Arabia 2001	93	7
Guinia 2007	95.9	4.1
Pakistan 2004	93	7

8. Répartition du système Rhésus dans le bassin méditerranéen

Pour comprendre la répartition du système Rhésus en Méditerranée, on utilise les résultats de quelque recherche des pays Méditerranéens (Algérie, Maroc, Tunisie, Italie, Turquie). A remarqué que le Rh (+) prédomine dans toutes les populations de la région méditerrané (**Tableau 8**), quant au Rhésus négatif qui occupe une position minimale, est plus fréquent en Italie.

Tableau 8. Répartition de system Rhésus en Méditerranéen

Pays	Rhésus positive (+)	Rhésus négative (-)	Références
Tunisie	90.18%	9.14%	Boufrioua et al, 2020
Algérie	91.53%	9.14%	Boufrioua et al, 2020
Italie	72%	13.32%	Kaufmann, 1952
Maroc	91%	9%	Boufrioua et al, 2020
Turquie	89.6%	10.38%	Buyukyuksel, 1973

9. Répartition du système Rhésus en Algérie

Le tableau 9, présente la répartition du système Rhésus à l'échelle nationale, une prédominance du rhésus positif est remarquées dans toutes les populations nationales, elle variait de 88 % à Oran jusqu'à 95% à Alger. Quant au rhésus négatif il reste minimal dans toutes les régions et ne dépassait pas les 11%.

Tableau 9. Répartition du système Rhésus en Algérie

Wilaya	% Rh+	% Rh-	Référence
Biskra	91.6%	8.4%	Ziani, 2017
El Oued	92%	8%	Ziani, 2017
Annaba	94.7%	5.3%	Ziani, 2017
Alger	95.3%	4.7%	Ziani, 2017
Bejaïa	92.5%	7.5%	Ziani, 2017
Oran	88.20%	11.80%	Deba et al, 2017
Tlemcen (littoral)	91.91%	8.09%	Saouli et al, 2022

IV. Consanguinité

La consanguinité est un ca s particulier des relations conjugales entre époux, définie comme le phénomène qui naît du rapprochement entre personnes apparentées qui partagent au moins un ancêtre commun (Moussouni et al, 2017).

Étant donné que les idées scientifiques sur les relations génétiques ne sont pas partagées par toutes les sociétés, les critères de consanguinité doivent être utilisés avec une grande prudence pour déterminer la parenté. Chaque système de parenté définit le concept de parenté et d'inceste à sa manière (**Ghasarian**, 1996).

Chapiter I:

Synthèse bibliographique

Le mariage consanguin est pratiqué depuis le début de l'humanité Environ 20% personnes vivent maintenant dans des communautés consanguines à travers le monde (Modell et Darr, 2002; Tadmori et al, 2009).

La fréquence de la consanguinité dépend de la taille de la population, du niveau de ségrégation et de la présence de pratiques socioéconomiques et culturelles (Valls, 1982).

En général, les musulmans sont les plus touchés par cette pratique (Talbi et al, 2007).

Dans la région arabe, jusqu'à la moitié des mariages sont consanguins, Les statistiques montrent que les taux moyens de mariages consanguins varient entre de 40 et 50 % de l'ensemble des mariages dans le monde arabe. Ces chiffres peuvent atteindre 60 % dans certaines sociétés, comme au Soudan, Mauritanie, les Émirats arabes unis, l'Irak et l'Arabie saoudite (Al-Ghanim, 2020).

La consanguinité est une pratique courante du mariage en Algérie, déterminé par la tradition et la coutume (Bachir et al, 2017).

Les effets biologiques du mariage consanguin sur des paramètres de santé tels que la fécondité, la mortalité et la morbidité ont attiré l'attention des médecins, des biologistes et des généticiens depuis de nombreuses années. Cela a donné lieu à de nombreuses publications depuis la fin du XXe siècle. (Abdulrazzaq et al., 1997; Zlotogora et al., 2000; Bener et Alali., 2006; Tadmouri et al., 2009; Bittles et Hamamy 2010; Bener, 2012; Bildirici et al., 2011; Yamamah et al., 2013; Ehlaye et al., 2013; Anwar et al., 2014; Saadat, 2015; Abbad et al., 2016; Riaz et al., 2016) (**Tableau 10**).

Tableau 10. Fréquences de la consanguinité de quelques populations dans le Monde

Payes	Pourcentage	Référence	
	de consanguinité		
Egypt	35.3%	Aldeeb et al, 2022	
Saudia arabe	56%	Middle, 2027	
Qatar	59% en 2013	Al-Ghanim, 2020	
Palestine	27.70%	Assaf and Khawaja, 2009	
Population Maroc	43.2%	El Goundali et al, 2022	
Libye (Benghazi)	37.6%	Abudejaja, 1987	
Population Chaouia	25.38%	Cheffi et al, 2022	
(Maroco)			
la population marocaine	22.79%	Talbi et al, 2007	
Tunisie	32.71%	BenM'Rad et Chalbi, 2004	
Emirates	46%	Arabes Bener et al, 2001	
Liban	25%	Khlat, 1989	
Koweit	20.5%	Awadi et al, 1986, In	
		AouarMetri et al, 2005	
Yemen (Sana'a)	44.7%	Gunaid et al, 2004	
Iraq	33%	Cosit, 2005	
Turquie	33.9%	Radovanovic et al, 1999	
Inde	9.9%	Sharma, 2021	
Amérique du Nord et	1%	Hussein et al, 2022	
Europe			
Inde du Sud	23% (2010-2014)	Sahoo al, 2022	

Tableau 11. Fréquences de la consanguinité en Algérie

Ville	Pourcentage	Références
	de consanguinité	
Algérie	38.30%	Forem, 2007
Ghardaïa	56%	Forem, 2007
Biskra	34%	Forem, 2007
El Oued	22.5%	Forem, 2007
Beni Abbes	55.06%	Bachir al, 2019
(wilaya de Bachar)		
Tlemcen, population du	30.85%	Mortad etal, 2015
littoral (Msirda)		
Tlemcen (sabra)	33.33%	Moussouni, 2019
Oran	18.5%	Forem, 2007
Beni Abbes	39%	Guidoum et al, 2015.in
(wilaya de Bachar)		Romdhane, 2019.
Tébessa (commune de Bir	88%	Forem, 2007
El Ater)		
Aïn Defla	52%	Forem, 2007
Béjaïa	50.6%	Forem, 2007
Bouira	42.5%	Forem, 2007
Boumerdès	42%	Forem, 2007
Bordj BouArréridj	27%	Forem, 2007
Béni Ouarsous dans les	38.33	Benkou al, 2018
Monts de Traras		

MATÉRIEL ET MÉTHODES

1. Description de la zone d'étude

1.1. Situation géographique

Cette étude est portée sur un échantillon pris de quatre régions de la population de la région de Ghardaïa : Ghardaïa (chef-lieu), Baraiane, Guerrara, et Metlili.

La wilaya de Ghardaïa s'étend sur une superficie de 26 165km², occupée par une population estimée à 457 513 habitants répartie sur 10 communes. La population de Ghardaïa est composée de deux origines ethniques majeures ; les arabes et les mozabites

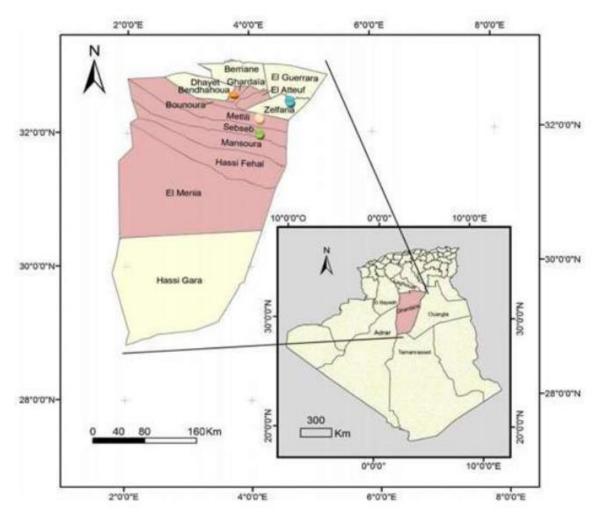


Figure 7. Carte de l'Algérie montrant la zone d'étude (wilaya de Ghardaïa) (Kheloufi et Meddah, 2020)

2. Type d'étude

Il s'agit d'une étude prospective descriptive, à l'aide d'un questionnaire préétabli destiné à la population des quatre régions de Ghardaïa.

Notre étude est portée sur un échantillon de 753(486 arabe et 267 mozabite) personnes interrogés aléatoirement, Afin de collecter des informations sur la répartition du système ABO et Rhésus dans la population, ainsi que l'impact des pratique sociales sur cette répartition.

3. Critères d'inclusion et d'exclusion

3.1. Critères d'inclusion

Les personnes inclus dans cette étude sont choisies aléatoirement résider dans les quêter régions de Ghardaïa (Ghardaïa, Guerrara, Baraiane et Metlili)

3.2. Critères d'exclusion

Les personnes inclus dans cette étude sont choisies aléatoirement sans considération de tous âges, sexe et ethnie confondue

4. Traitement statistique des données

Toutes les analyses ont été réalisées grâce au Logiciel « Microsoft Excel2007 ».

Les résultats sont présentés en valeur absolues et en pourcentage pour les variables qualitatives et par moyennes +/- écart types pour les variables quantitatives.

Définition de mariage consanguinité 1er degré et 2eme degré

- ✓ 1^{er} degré est le mariage de cousins ou oncle.
- ✓ 2éme degré le mariage avec les enfants des enfants du frère du père ou de la mère.

RÉSULTATS

Notre enquête est menée sur un échantillon de 753 individus résidants quatre régions de Ghardaïa (Ghardaïa chef-lieu, Guerrara, Baraiane, et Metlili), et appartenant aux deux origines ethniques (arabe et mozabite).

1. Répartition du système ABO

Nous avons tout d'abord réparti notre population d'étude selon les fréquences phénotypique du système ABO.

La figure 8 montre que la fréquence du groupe O représente plus de 60% de cas, suivi de groupe A (25%). On trouve en dernière position le groupe AB avec une fréquence moins importante (1%).

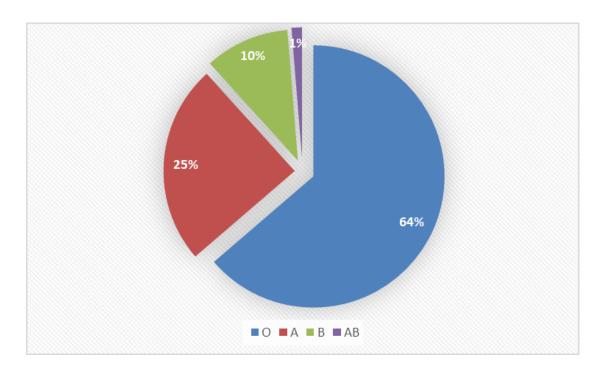


Figure 8. Répartition du système ABO dans la population de Ghardaïa

2. Répartition du système Rhésus

Les résultats obtenus ont montré une dominance du rhésus positif avec 90% de cas contre seulement 10% qui présentaient un rhésus négatif (**figure 9**).

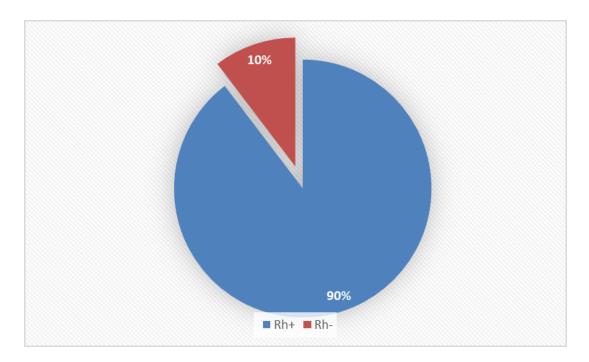


Figure 9. Répartition du système Rhésus dans la population de Ghardaia

3. Répartition de systèmes ABO et Rhésus selon l'origine ethnique

Nous avons ensuite réparti les individus en deux groupes, selon leur origine ethnique (Arabes et Mozabites). La figure 3 montre que le groupe O est plus fréquent chez les mozabites (70.41%) que chez les arabes (53.09%), alors que le groupe A est plus fréquent chez les arabes (33.13%) que chez les mozabites (23.97%). Pour le groupe B, les résultats sont plus ou moins similaires dans les deux groupes ethniques.

Nous avons remarqué une absence du groupe AB chez les mozabites, contre moins de 5% chez les arabes (**Figure 10**).

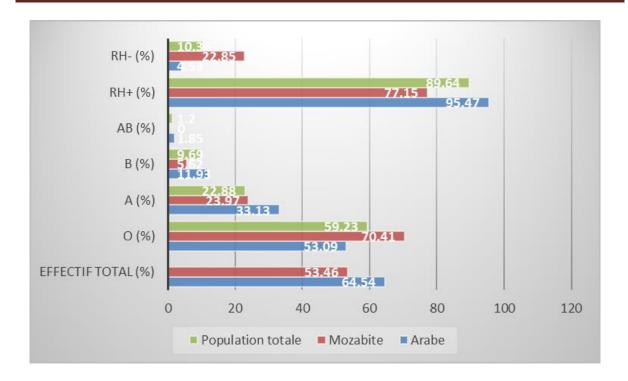


Figure 10. Répartition de systèmes ABO et Rhésus selon l'origine ethnique

- Comparaison des systèmes ABO et rhésus entre les deux ethnies (arabe et mozabite)
- Pour les groupes O, A, B. les proportions sont comparables les proportions sont comparables entre les deux populations comme l'indique la **figure (10).**
- Pour le groupe AB, une absence chez la population mozabite est remarquée. Cela pourrait être dû à un mauvais échantillonnage ou à l'effectif réduit.
- La fréquence du Rh+ demeure dominante dans les deux groupes avec une différence en faveur de la population des arabes.
- Par contre le Rh- est plus présent chez la population mozabite.

La figure 11 montre une prédominance des groupes majoritaire (O+, A+, B+) dans les populations arabes que dans les populations mozabite. Par contre on remarque une présence des groupes minoritaire (O-, A-) chez les populations mozabites.

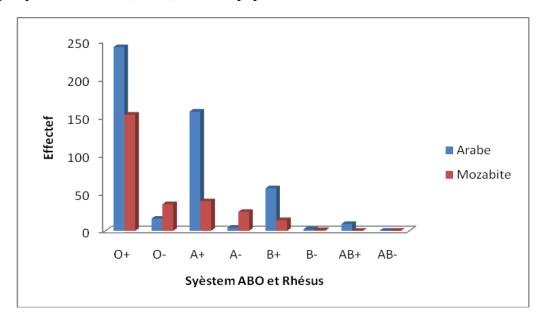


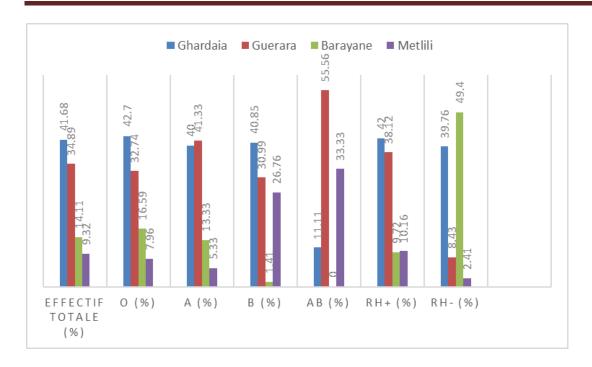
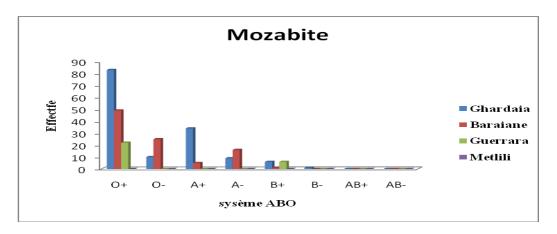
Figure 11. Répartition des groupes ABO et rhésus selon l'origine ethnique

4. Répartition des systèmes ABO et Rhésus selon le lieu de résidence

Nous avons ensuite réparti les individus en quatre groupes, selon leurs lieux de résidence (Ghardaïa, Guerrara, Baraiane, Metlili). **La figure** (12) montre que le groupe O est plus fréquent chez la population de Ghardaïa (427%) suive par la population de Guerrara (32.47%) et moins fréquent chez la population de Metlili (7.96%). Alors que le groupe A est plus fréquent chez la population de Guerrara (41.33%) et moins fréquent chez la population de Metlili (5.33%). Pour le groupe B, il est plus fréquent chez la population de Ghardaïa (40.85%).

Nous avons remarqué une absence du groupe AB chez la population de Baraiane, alors qu'il est très présent dans la population de Guerrara (55.56%).

Nous avons remarqué quel rhésus positif est plus fréquent chez la population de Ghardaïa (42%), de même chez les populations de Baraiane et Metlili, tandis que le rhésus négatif est très fréquent dans la population de Baraiane (49.4%).

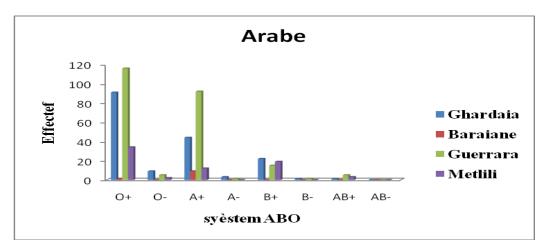

Figure 12. Répartition de système ABO et Rhésus selon la région de provenance

Tableau 12. Répartition phénotypique des systèmes ABO et Rhésus

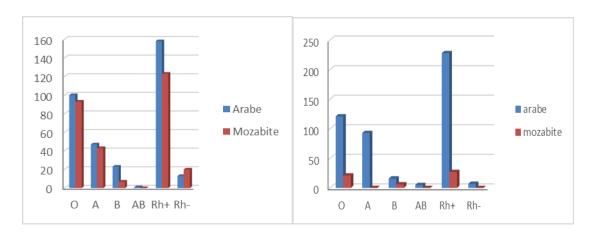
Lieu de résidence	effectifs	0	A	В	AB	Rh+	Rh-
Ghardaïa	313	193	90	29	1	281	33
Guerrara	262	148	93	22	5	255	7
Baraiane	106	75	30	1	0	65	41
Metlili	70	36	12	19	3	68	2

A. La région mozabite

B. La région arabe

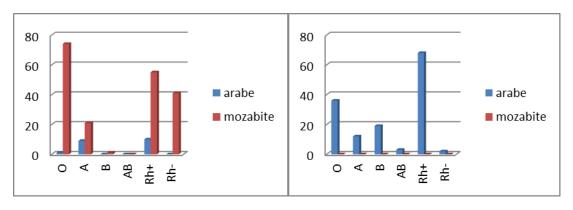
Figure 13. Répartition des systèmes ABO et rhésus selon le lieu de résidence et l'origine ethnique.

• Comparaison au niveau Régional


La répartition de groupe ABO de notre étude dans les quatre régions « Ghardaïa, Guerrara, Bariane, Metlili ».

- -Pour le groupe A, la région de Guerrara montre une fréquence supérieure à celle des autres populations **Figure (13).**
- -Pour le groupe B, la région de Baraiane montre une fréquence inférieure à celle des autres populations, Avec similarité chez les deux régions de (Metlili, Baraiane), **Figure (13).**
- -Pour le groupe O, le chef-lieu de Ghardaïa montre une fréquence supérieure à celle des autres régions. Et pour le groupe AB une absence dans la région de Baraiane est signalée, **figure 13.**

- -Pour le groupe Rh (+), le chef-lieu de Ghardaïa montre une fréquence supérieure à celle des autres régions, **Figure (13).** Avec similitude entre les deux populations Baraiane et Metlili.
- -Pour le groupe Rh (-), Baraiane montre une fréquence supérieure à celle des autres populations, **Figure (13).**


La répartition des systèmes ABO et Rhésus dans les quatre régions de Ghardaïa

Les individus ont ensuite réparti selon leurs localités de provenance. Les résultats obtenus sont illustrés dans la **figure 14** (A, B, C, D).

A. La région de Ghardaïa (chef-lieu)

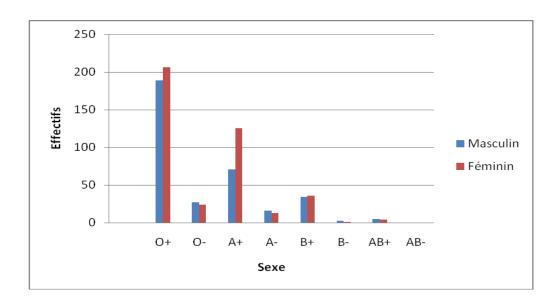
B. La région de de Guerrara

C. La région de Baraiane

D. La région de Metlili

Figure 14. Fréquences phénotypiques des systèmes ABO et Rhésus dans les différentes régions de Ghardaïa

5. Répartition des systèmes ABO et Rhésus selon le sexe


Une répartition des individus selon leurs groupes sanguins et par sexe a été également faite (tableau 13).

Dans notre population d'étude, le sexe féminin est légèrement prédominant avec 54% de cas contre 46% pour le sexe masculin.

Cette prédominance est remarquée dans les groupes majoritaires, à l'occurrence de groupe O (51.57%), A (61.3%) et du groupe de Rhésus positif (54.21%) [**Tableau 13**].

Tableau 13. Réparation des fréquences phénotypiques des systèmes ABO et Rhésus en fonction du sexe

Sexe	Effectifs	0	A	В	AB	Rh+	Rh-
	(%)						
Masculin	344	216	87	36	5	299	45
	45.68%	48.43%	38.7%	49.31%	55.60%	44.6%	54.21%
Féminin	409	230	138	37	4	371	38
	54.32%	51.57%	61.3%	50.69%	44.4%	55.4%	45.80%
Total	753	446	225	73	9	670	83
	100%	100%	100%	100%	100%	100%	100%

Figure 15. Réparation phénotypiques des systèmes ABO et Rhésus en fonction du sexe

6. Consanguinité dans la population de Ghardaïa

Pour étudier l'impact des pratiques sociales de mariage consanguin sur la répartition des systèmes sanguins, nous avons inclus la question de la consanguinité et liens de parenté dans notre enquête. Les résultats obtenus sont présentés dans la **figure 16.**

19% de cas ont issus d'un mariage consanguin chez les populations arabes (12% étaient de 1^{er} degré), contre 7% chez les mozabites (0% de 1^{er} degré).

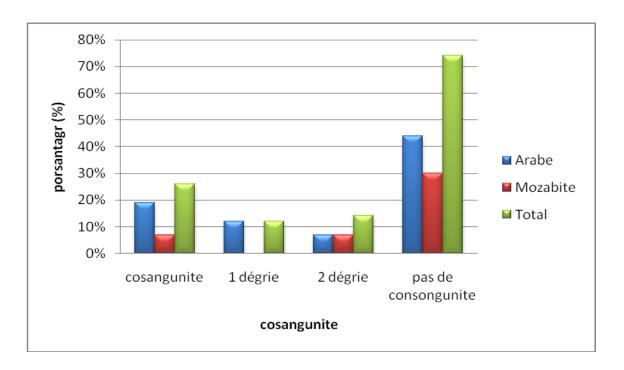
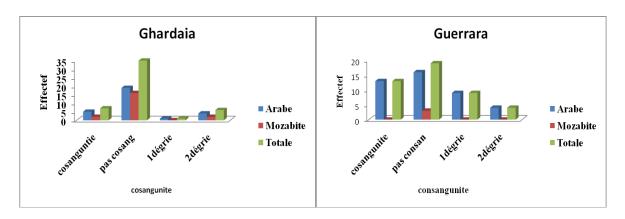
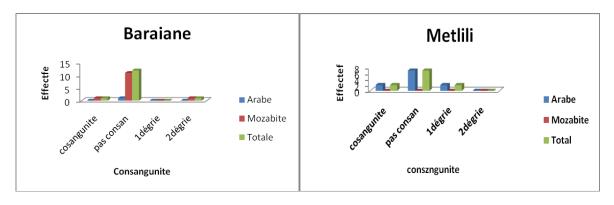



Figure 16. Consanguinité dans la population de Ghardaïa


6.1. Répartition de consanguinité dans les quatre régions de Ghardaïa

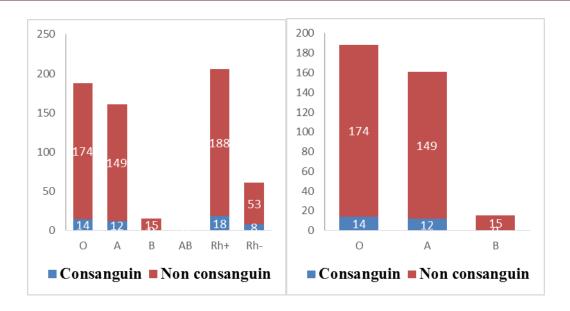
Les individus ont ensuite réparti selon leurs taux de consanguinités dans les quatre populations. Les résultats obtenus sont illustrés dans la **figure** (17) (A, B, C, D).

A. la région de Ghardaïa

B. la région de Guerrara

C. la région de Baraiane

D. la région de Metlili

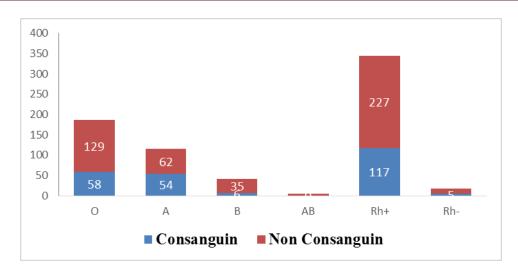

Figure 17. Répartitions des consanguinités dans les différentes régions de Ghardaïa

6.2. Répartition de système ABO et Rhésus selon la consanguinité

Chez la population mozabite

La figure (18) montre la réparation de système ABO et Rhésus selon la consanguinité dans la population mozabite.

- pour le groupe O, sont pressante un 174 cas non consanguin, et 14 cas consanguin. Et même chose pour le groupe A la non consanguinité plus élève que la consanguinité. Par contre le groupe B est pressante notamment que les couples non consanguine.
- Pour le système rhésus, la répartition de RH (+) et RH (-) sont très fréquent en couple consanguinité, contrairement à couple non consanguinité.
- notre résultat, on note qu'il n'y a pas de différence significative entre les deux groupes consanguins et non consanguins, pour les groupes O, A, B (P = 0.441) sans pour les rhésus (P =0.159).


Figure 18. Répartition de système ABO et Rhésus selon la consanguinité dans la population mozabite.

> Chez la population d'arabe

La figure (19) montre la réparation de système ABO et Rhésus selon la consanguinité dans la population arabe.

- pour le groupe A, est à une similarité entre les couples consanguinité et non consanguinité.
- pour la groupe O, sont élève que les copules non consanguinités.
- Pour le système rhésus, la répartition de RH (+) et RH (-) sont fréquent en couple consanguinité, contrairement à couple non consanguinité.

Notre résultat, on note qu'il existe une différence entre les deux groupes les systèmes O, A et B (p < 0.05) et pour le rhésus (p < 0.05).

Figure 19. Répartition de système ABO et Rhésus selon la consanguinité dans la population arabe.

7. Morbidités fréquentes dans notre population d'étude

Afin d'évaluer le lien entre certaines morbidité fréquentes dans la population et la distribution des systèmes sanguins, nous avons enquêté sur les morbidités les plus fréquentes dans les deux groupes ethniques. Le tableau montre les résultats obtenus (**Tableau 14**).

Tableau 14. Morbidités les plus fréquentes dans notre population d'étude

Maladie	Arabe	mozabite	Total
Diabète	1.99%	0.92%	2.92%
HTA	1.99%	1.19%	3.19%
Autres	1.33%	0.26%	1.59%
Total	5.31%	2.39%	7.70%

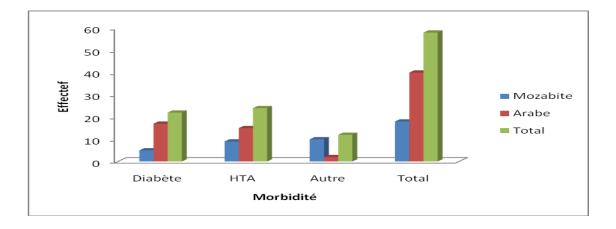


Figure 20. Morbidité dans la population de Ghardaïa

DISCUSSION

La distribution phénotypique des systèmes ABO et Rh(D) dans notre échantillon a montré que le groupe O représente la majorité de l'effectif, alors que le groupe A représenté moins de la moitié de l'effectif du groupes O. Vient ensuite le groupe B. Alors que le groupe AB est minoritaire.

1. Système ABO

1.1. Comparaison de la population de Ghardaïa avec les populations nationales.

- Pour le groupe O, nos résultats sont similaire à ceux trouvés à Annaba (**Lefevre et al, 2006**), et supérieurs à ceux trouvés à Sidi Bel abbés et Miliana (**Lefevre et al, 2006**).
- Pour le groupe A, Nos données sont supérieures aux autres wilayas, tableau (15).
- Pour le groupe B, les résultats obtenus sont comparables à ceux de similaire à Tlemcen (Aouar et al, 2012) et Oran (Ruffié al, 1962), et inférieurs à d'autres wilayas, tableau (15).

Tableau 15. Comparaison des fréquences du système ABO de la population de Ghardaïa avec celle des autres wilayas.

Wilayas	A%	В%	Ο%	Références
Ghardaïa	25	10	64	Nos résultats 2023
Tlemcen	18.2	9.9	71.9	Aouar et al, 2012
Oran	21.2	10.5	68.2	Ruffié al, 1962
Sidi Belabbès	18.8	12.2	63.1	Lefevre et al, 2006
Saida	19.6	14.3	66.1	Lefevre et al, 2006
Miliana	25.1	11.7	63.1	Lefevre et al, 2006
Alger	21.6	12.7	65.6	Lefevre et al, 2006
Bejaia	22.2	12.7	65.1	Lefevre et al, 2006
Constantine	19.5	12.4	68	Lefevre et al, 2006
Annaba	22.7	13.2	64	Lefevre et al, 2006
Msila	19.8	11.1	69.	Ruffie et al, 1962
Ain Salah	13.7	13.7	72.5	Lefevre et al, 2006
Tizi-Ouzou	17	14.9	68.1	Ruffie et al, 1962

1.2. Comparaison de population de Ghardaïa à l'échelle méditerranéenne

La comparaison du système ABO, de notre population avec les populations du méditerrané est présentée dans le **tableau** (16).

- -La répartition du groupe A de notre population est inférieure à ceux trouvées en Tunisie en Turquie (centre) en Grèce en Espagne (centre) en France (sud) en Italie (sud). Tandis qu'elle est supérieures à ceux du Maroc, Libye et Egypte.
- -Pour le groupe O nos résultats sont supérieurs à ceux de la Turquie (centre), et plus ou moins similaire aux autres populations, **tableau (16).**
- De même pour le groupe B, nos résultats présentent une similitude avec les populations de l'Egypte et du Maroc, tandis qu'ils sont supérieurs à ceux de la Tunisie, de la France (sud), et de l'Italie (sud), **tableau** (**16**

Tableau 16. Comparaison des fréquences du système ABO de la population de Ghardaïa avec celles de la méditerranée.

Pays	A%	В%	%O	Références
Ghardaïa	25%	10%	64%	Nos résultats
Algérie	20.9	12.3	67.7	Boufrioua et al, 2020
Maroc	21.4	10.5	67.7	Boufrioua et al, 2020
Tunisie	33	5	62	Chaabani et al, 1988 in Belkhatir,
				2015
Libye	22.2	13.2	64.3	Walter et al, 1975
Egypte	22.2	10.4	67.4	Azim et al, 1974 in Belkhatir, 2015
Turquie (centre)	28.8	13.2	58	Atasoy et al, 1995 in Belkhatir, 2015
Grèce	32.1	7.2	60.7	Tills et al, 1983 in Belkhatir, 2015
Espagne (centre)	27.2	11.5	61.3	Mesa et al, 1994 in Belkhatir, 2015
France (sud)	27.5	5.3	67.2	Kherummian, 1961 in Belkhatir, 2015
Italie (sud)	27.5	5.3	67.2	Piazza et al, 1989 in Belkhatir, 2015

1.3. Comparaison de population de Ghardaïa avec les populations mondiales

Dans le monde, les fréquences les plus élevées du groupe Ose trouvent au Nord-Ouest de l'Europe, le Sud-Ouest del'Afrique et en Australie II paraît être le seul présentchez les amérindiens d'Amérique du Sud où il est présentdans 100% des populations de la Guyane Française.Ladistribution du groupe B est maximale en Asie centrale, dans le nord de l'Inde, élevée en Afrique centrale et en Egypte etabsente chez les populations amérindiennes Lafréquence du groupe A est plus élevée en Europe, certaineszones du Proche Orient et certaines tribus du sud de l'Australie, comparativement aux autres régions mondiales.

La répartition du groupe A dans notre population de Ghardaïa est supérieure à ceux de Nigeria 2000, Guinia 2007, Pakistan 2015. Alors qu'elle est inférieure à USA 2002, Britain 2008, Inde 2011.

Pour la répartition de groupe B, elle est inférieure à ceux trouvées en Inde 2011, Nigeria 2000, Saudia Arabia 2001. Bien qu'elle est supérieure à USA 2002 et Britain 2008.

Pour le groupe O ce dernier est largement diffusé dans notre population par rapport aux populations mondiales, **tableau** (17). Contrairement au groupe AB qui est à l'instar des populations du monde moins répondu dans notre population.

Tableau 17. Comparaison des fréquences du système ABO de la population de Ghardaïa avec celles du monde.

Population	A%	В%	Ο%	AB%
Ghardaïa	25	10	64	1
USA 2002	41	9	46	4
Britain 2008	42	8	47	3
Inde 2011	28.38	31.89	30.99	8.72
Nigeria 2000	21.6	21.4	54.2	2.8
Ethiopia 2015	28.11	23.35	43.08	5.44
Saudi Arabia 2001	24	17	52	4
Napal 2000	34	29	32.5	4
Guinia 2007	22.5	23.7	48.9	4.4
Pakistan 2015	22.4	32.4	30.5	8.4

2. Système Rhésus

Quant au système Rhésus, le Rhésus positif est nettement prédominant par rapport au Rhésus négatif et représente 90% de cas.

2.1. Comparaison de la population de Ghardaïa avec les populations nationales

Pour le Rh+, les résultats obtenus dans notre étude sont supérieurs à ceux trouvés à Oran dans l'ouest Algérien, tandis qu'ils sont inférieurs aux autres études nationales (**tableau 18**).

Quant au Rh-, nos résultats sont contrairement au Rh+, inférieurs à ceux d'Oran et supérieurs au reste wilaya, (tableau 18).

Tableau 18. Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celle des autres wilayas.

Wilaya	%Rh+	%Rh-	Référence
Ghardaïa	90%	10%	Notre résultat
Biskra	91.6%	8.4%	Ziani, 2017
El Oued	92%	8%	Ziani, 2017
Annaba	94.7%	5.3%	Ziani, 2017
Alger	95.3%	4.7%	Ziani, 2017
Bejaïa	925%	7.5%	Ziani, 2017
Oran	88.20%	11.80%	Deba et al, 2017
Tlemcen (littoral)	91.91%	8.09%	Saouli et al, 2022

2.2. Comparaison de population de Ghardaïa à l'échelle méditerranéenne

La fréquence de groupe Rh(+) dans notre population est comparable à celles des pays du Maghreb (Tunisie et Maroc), bien qu'elle est supérieure à celles trouvées dans les pays du rive nord de la méditerranée (France, France et France).

Quant à la fréquence de Rh-, nos résultats sont similaires aux résultats nationaux et ceux trouvés en Tunisie, en Turquie et au Maroc, bien qu'ils sont inférieurs à ceux trouvés en France, en France et en France (tableau 19).

Tableau 19. Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celles des populations du bassin méditerranéen.

Pays	Rhésus positive (+)	Rhésus négative (-)	Références
Ghardaïa	90%	10%	Notre résultat
Tunisie	90.18%	9.14%	Boufrioua et al, 2020)
Algérie	91.53%	9.14%	Boufrioua et al, 2020)
France	72%	13.32%	Kaufmann, 1952
Maroc	91%	9%	Boufrioua et al, 2020
Turquie	89.6%	10.38%	Buyukyuksel, 1973
France	61.1%	38.9%	Vona, 1994
France	68.3%	31.7%	Memmi, 1999

2.3. Comparaison de la population de Ghardaïa avec les populations mondiales

-La répartition de groupe Rh (+) dans notre population est supérieure à celle des états unis d'Amérique 2002, de l'Angleterre 2008, et inférieur aux autres populations, **tableau (20).**

-Pour Rh(-), les données de notre population sont inférieures à celles des états unis d'Amérique 2002, de l'Angleterre 2008, est supérieures aux autres populations, **tableau (20).**

Tableau 20. Comparaison des fréquences du système Rhésus de la population de Ghardaïa avec celles des populations mondiales (**Boufrioua et al, 2020**).

Population	Rh +(D)%	Rh -(D)%
Ghardaïa (notre résultat)	90%	10%
USA 2002	85	15
Bretagne 2008	83	17
Inde 2011	95.36	4.64
Nigeria 2000	95.2	4.8
Ethiopia 2015	92.06	7.94
Saudi Arabia 2001	93	7
Guinia 2007	95.9	4.1
Pakistan 2004	93	7

3. Comparaison des taux de consanguinité de notre population de Ghardaïa

> A l'échelle nationale

Le taux de consanguinité dans notre population est inférieur au taux trouvé dans une étude antérieure de la population de Ghardaïa (Forem, 2007). Ce taux est également inférieur à d'autres populations de l'Algérie tel que les populations de Bachar (Bachir et al, 2019), Tlemcen (Moussouni, 2019), Biskra, Tébessa, Béjaïa, Bouira, Ain Defla(Forem, 2007). Cependant, elle est supérieure à Oran, El Oued (Forem, 2007). Par contre il est comparable au taux trouvé à Bordj Bou Arreridj (Forem, 2007).

➤ A l'échelle mondiale

Le taux de consanguinité trouvé dans notre population est également supérieur aux taux trouvés dans les populations du Maroc (Talbi et al, 2007), du Koweit (Awadi et al, 1986, In Aouar Metri et al, 2005), supérieur aussi aux taux des populations indiennes (Sharma, Sk. 2021), et des populations de l'Amérique du nord et Europe (Hussein et al, 2022).

Cependant il est inférieur des taux trouvés dans les populations de l'Egypte (Aldeeb et al, 2022) Arabie saoudite (Middle, 2007) et Tunisie (Ben M'Rad et Chalbi, 2004) alors qu'il est similaire au taux trouvé dans une étude menée sur les populations chaouia du Maroc (Cheffi et al, 2022) Et la population palestinienne (Assaf and Khawaja, 2009).

CONCLUSION

Conclusion

Afin de caractériser phénotypiquement la population de Ghardaïa par le polymorphisme des systèmes ABO et Rhésus, nous avons pris un échantillon de 753 individus des quatre régions de Ghardaïa (chef-lieu de Ghardaïa, Baraiane, Metlili et Guerrara).

La distribution des groupes sanguins ABO et Rhésus était plus ou moins similaires dans les différentes régions d'étude. Cette répartition nous a évoqué des groupes sanguins majoritaires présentaient plus de 85% de cas et des groupes minoritaires qui présentaient moins de 15%.

Au total, les fréquences phénotypiques sont respectivement:

- ➤ 64% pour la fréquence de groupe O. avec un taux plus élevé au chef-lieu de Ghardaïa.
- ➤ 25% pour la fréquence de groupe A. Une proportion plus élevée est remarquée dans la région de Guerrara et une similarité dans les autres régions.
- ➤ 10% pour la fréquence de groupe B. Cette fréquence est plus basse dans la région de Baraiane.
- ➤ 1% pour la fréquence de groupe AB. Cette catégorisation est largement rapportée dans les populations du bassin méditerranéen avec des fréquences plus ou moins différentes.
- ➤ De même pour le système Rhésus le Rh+ était largement dominant dans toutes les régions avec 90% de cas, sans différence remarquable entre les régions d'études.
- Quant à la fréquence de Rh- qui représentait 10% de la population, elle était supérieure à cette proportion dans la région de Baraiane.
- ➤ Pour mieux comprendre l'impact des origines ethniques sur la distribution des groupes sanguins, nous avons constaté une différence en faveur du groupe A chez les populations arabes et une absence du groupe AB chez les mozabites, qui pourrait du aux effectifs réduits.
- ➤ Une différence significative a été trouvée entre les deux populations pour le rhésus négatif.

A l'instar des populations du Maghreb, dans notre population, les groupes O et A sont les plus fréquents. Cependant une étude génotypique pourrait nous dévoiler les sous-groupes les plus présents dans la population.

Conclusion

Perspectives

Pour compléter ce travail, et afin de mieux caractériser notre population nous comptons élargir L'échantillon d'étude par :

- L'application du polymorphisme étudié sur un grand nombre de population.
- Une étude sur un autre marqueur érythrocytaire et d'autres facteurs.
- Une étude génétique et moléculaire.

REFERENCES

- **Anstee, D, J**, 2015. The relationship between blood groups and disease. Blood 115(23), 4635-4643.
- **Anstee, D, J**, 2010. The relationship between blood groups and disease. Blood, The Journal of the American Society of Hematology, *115*(23), 4635-4643.
- Aouar, A., Sidi-Yakhlef, A., Biemont, C., Saidi, M., Chaif, O., Ouraghi, S. A. 2012. A genetic study of nine populations from the region of Tlemcen in Western Algeria: a comparative analysis on the Mediterranean scale. Anthropological Science. 2012, pp.120 (3), 209-216.
- Abdulrazzaq, Y.M., Bener, A., al-Gazali, L.I., al-Khayat, A.I., Micallef, R., Gaber, T.1997. A study of possible deleterious effects of consanguinity. Clin Genet, 51, 167-173.
- Anwar, W.A., Khyatti, M., Hemmink, K. 2014, Consanguinity and genetic diseases in North Africa and immigrants to Europe. European Journal of Public Health, Vol. 24, Supplement, 1, 57–63.
- Abbad, Z., Drissi, A., Abdelmajid, S., Khadmaoui, A. 2016. Etude de l'impact de la consanguinite sur la sante des descendants dans la population de Ti flet (Maroc). European Scientific Journal, 12, 143-159.
- Al-Ghanim, K, A. 2020. Consanguineous marriage in the Arab societies. Journal of Psychology and ClinicalPsychiatry, 11(6):166–168.
- Abudejaja A, Khan MA, Singh R, Toweir AA, Narayanappa M, et al. 1987. Experience of a family clinic at Benghazi, Libya, and sociomedical aspects of its catchment population. Fam. Pract. 4:19–26
- Aldeeb, A, F., Aboraya, H. H., Zidan, O, O., Elsabagh, H, M. 2022. Prevalence and perception of consanguineous marriage among medical students. The Egyptian Family Medicine Journal, 6(1), 50-65.
- Assaf, S., Khawaja, M. 2009, Consanguinity trends and correlates in the Palestinian Territories. J BiosocSci, 41, 107–124.
- Abudejaja A, Khan MA, Singh R, Toweir AA, Narayanappa M, et al. 1987.
 Experience of a family clinic at Benghazi, Libya, and sociomedical aspects of its catchment population. Fam. Pract. 4:19–26

- Bacha, W, J, J et Bacha, L, M. 2000. Color Atlas of Veterinary Histology, 2nd. Edition. Part 6: Blood. Lippincott Williams and Wilkins, U.S.A.
- Boufrioua, El Ghali, et Oujidi Mohammed1, Yahyaoui Hicham1, Ait Ameur Mustapha. 2020. « Les fréquences phénotypiques et génotypiques des systèmes ABO et Rh dans la population marocaine : expérience du Service de Transfusion de l'Hôpital Militaire Avicenne, Marrakech ». PAMJ Clinical Medicine 2(140).
- Buyukyuksel, C. 1973. Groupes sanguins ABO et Rh (D) dans la population turque.
 1973, 403-410.
- Bachir, S., Aouar, A. 2019. Study of the impact of consanguinity on abortion and mortality in the population of Beni Abbes (southwestern Algeria). Egyptian Journal of Medical Human Genetics, 20, 1-7.
- Benkou, F., Metri, A. A., Chaif, O. 2018. Caractérisation anthropososio-culturelle de la population endogame des Monts de Traras (Beni Ouarsous) dans l'Ouest Algérien par la consanguinité et le lien de parenté. Antropo, 39, 49-58
- Bener. 2012. Consanguineous marriages and their effect on common diseases in the Qatari population. Genetic disorders in the arab world, 4, 30-39.
- Bildirici, M., Ersin,O,O., Kokdener, M.2011. Genetic structure, consanguineous marriages and economic development: Panel cointegration and panel cointegration neural network analyses. Expert Systems with Applications, 38, 6153–6163.
- **Bittles, AH.**2008. A community geneticsperspective on consanguineous marriage.Community Genet. 11, 324–330.
- Bergaentzle, P.2010. Le génotypage foetal Rhésus sur sang maternel dans le cadre dela prévention de l'allo-immunisation Rhésus. Mémoire d'étudiante sagefemme. Nancy. Université Poincaré.
- Brossard, Y., Cortey, A., Mailloux, A., Rouillac-Le Sciellour, C.2008. Le génotypage RhDfoetal. Jan.

 \mathcal{C}

• C. Tayou Tagny, V., Fongué Fongué ., D. Mbanya, 2009. Le phénotype érythrocytaire dans les systèmes ABO et Rh chez le donneur et le receveur de produits sanguins en milieu hospitalier camerounais : adapter l'offre à la demande. Rev Med Brux, 30, 159-62.

- Chiaroni, J., Ferrera, V., Dettori, I., Roubinet, F. 2005. Groupes sanguins érythrocytaires. *EMC-Hématologie*, 2(2), 53-112.
- Chadli. S., Brakerz. Z., Belhachmi. A. et Izaabel . H. 2007. Gradient de distribution des alléles du système ABO au Maroc : Polymorphisme du système ABO dans la population du Souss. Antropo 15: 49 –53.
- C. Pipatpanukul., et al. 2018. Rh blood phenotyping (D, E, e, C, c) microarrays using multichannel surface Plasmon resonance imaging », Biosensors and Bioelectronics, vol. 102, p. 267-275.
- Chiaroni, J., 2003. Etude athropogénétique de la population comorienne de Marseille.
 Doctorat de l'université de la Méditerranée. Aix. Marseille II. Faculté de Médecine.
- Cavalli-sforza I.I., Menozzi p. et Piazza a. 1994. History and geography of humain Genes.princeton University press.
- Cheffi, K., Dahbi, N., El Khair, A., Stambouli, H., Elbouri, A., Talbi, J., El Ossmani, H. 2022. Consanguinity in the Chaouia population (Morocco): prevalence, trends, determinants, fertility, and spontaneous abortions. Egyptian Journal of Medical Human Genetics, 23(1), 128.
- Cartronjp. 1993 Les groupes sanguins. In : Traité d'immunologie, Flammarion Médecin.
 Sciences (Paris) ,187-238.
- Cartron, J, P., Agre, P., Colin, Y. Bases moléculaires du système Rh et Rh nul. In:Cartron JP, Rouger PH. Bases moléculaires des antigènes des groupes sanguins de l'immunogénétique à la biologie cellulaire
- Chiaroni, J., Legrand, D. 1998. Sécurité immunitaire des transfusions sanguines. Rev Prat 2001; 51:1311-8. Masson ,191-212.
- Chiaroni, J. 2003. Risque immuno-hémolytique des transfusions sanguines et analyses d'immun hématologie érythrocytaires. Rev Fr des laboratoires, 355, 45-51.

 \mathfrak{D}

- Dean, L. 2005. Blood Groups and Red Cell Antigens. Bethesda: National Centre for Biotechnology Information; Chapter 5:1-9. The ABO Blood group.
- Danic B, Gouézec H, Bigant E, Thomas T. Les incidents du prélèvement. Daniels,
 G. (2008). Human blood groups. John Wiley et Sons.
- Deba, T., Ayad, S., Setti, H., Lahmar, A., Hammadi, M. 2017. Fréquences phénotypiques et alléliques ABO Rhésus chez les donneurs de sang à Oran. *JFMO*, 2, 155-159.

- E. Hosoi.2008. Biological and clinical aspects of ABO blood group system, Journal of Medical Investigation, vol. 55, no. 3-4, pp. 174–182.
- Eru,E, Adeniyi,O, Jogo,A. 2014 a-b-o and rhesus blood group distribution among students of benue state university makurdi, nigeria. african journal of biomedical research, vol 17 n° 1.
- El Goundali, K., Bouab, C., Rifqi, L., Chebabe, M., Hilali, A. 2022. Les mariages consanguins et leurs effets sur les maladies non transmissibles dans la population marocaine: étude transversal. The Pan African Medical Journal, 41(221).
- Ehlayel, M., Bener, A., Abu Laban, M. 2013. Effects of family history and consanguinity in primary immunodeficiency diseases in children in Qatar. Open Journal of Immunology, 3, 47-53.
- **El Ossmani, H,.** *et al.* 2008. Etude dupolymorphisme des groupes sanguins, (ABO, SS, RHESUS ET DUFFY) chez la populationarabophone du plateau de Beni Mellal, Vol. 9, 1.

F

- **FOREM**. 2007, EL Watan (le quotidien indépendant). Edition du 19 septembre.
- Fauchetr, Ifrahn. 1995. Les sites antigéniques des cellules hématopoïétiques. Hématologie, biologie médicale, 2ème édition, 313-365.

G.

- Groot, H. E., Villegas Sierra, L. E., Said, M. A., Lipsic, E., Karper, J. C., van der Harst, P. (2020). Genetically determined ABO blood group and its associations with health and disease. Arteriosclerosis, thrombosis, and vascular biology, 40(3), 830-838.
- **Gautrand,**C .2003 . Les Modalités de Prélèvement Sanguins. Personnel Soignant n° 3.Supp. Prat. Méd. Chir. Anim. Comp, 2003, 38; 15 18.
- Girasole, M., Dinarelli, S., Boumis, G. 2012. Structure and function in native and pathological erythrocytes: a quantitative view from the nanoscale. Micron 43(12), 1273–1286.
- Goudemand, M., Salmon, C, H.1980. Immuno-hématologie et immunogénétique. Flammarion Med.Sciences. 2020.

- **Guillaume**, L. (2007). Elasticité de squelette de globules rouge humain-une étude en pince optique. Thèse de doctorat, université de paris 4, p17.
- Goudemand,M., Salmon C.H.1980. immuno- hematologie et immunogenetique flammarion med.sciences.
- Garratty G. Blood groups and disease: a historical perspective. Transfus Med 2000; 14:291-301.
- **Greenwell, P. 1997.** Blood group antigens: molecules seeking a function? Glycoconj J; 14:159-73.
- Ghasarian, C.1996, Introduction à l'étude de la parenté. (Paris: Ed du Seuil) pp. 276.
- Guidoum, M., Kefi, R., Abdelhak, S., Bouslama, Z. (2015). Consanguinity and endogamy of a Northeastern Algerian population (population of El-Kala). Advances in Environmental Biology, 457-466.

\mathcal{H}

- Hamoudi, K. 2020. Analyse de l'Evolution de l'Activité Transfusionnelle au niveau de la Structure de Transfusion Sanguine de l'EPH Mohamed Boudiaf de Bouira depuis 1995.
- Houti, L., Hamani-Medjaoui, I., Lardjam-Hetraf, S. A., Ouhaibi-Djellouli, H., Goumidi, L., Mediene-Benchekor, S. 2014. Épidémiologie du syndrome métabolique dans la population urbaine en Algérie. Oran, Algérie. Revue d'Épidémiologie et de Santé Publique, 62, S226-S227.
- H. Aireche et M. Benabadji.1994. Les fréquences géniques dans les systèmes ABO P et Luthédran en Algérie. Centre National de Transfusion Sanguine, C.H.U. Mustapha, Alger. 3: 279-289.
- Hussein, W, M., El-Gaafary, M, M., Wassif, G, O., Wahdan, M, M., Sos, D, G., Hakim, S, A., Anwar, W, A. 2022. Correlates and reproductive consequences of consanguinity in six Egyptian governorates. African Journal of Reproductive Health, 26(12), 48-56.

Ĺ

Janot, C, Manessier ,L., Chiaroni ,J. ,Legealle, A., Mathieu ,N., Roubinet ,F.2002.; Immun hématologie et groupes sanguine .Cahier de formation Biologie médicale. Paris.

- Kozlova, E.K., Chernysh, A.M., Moroz, V.V., Kuzovlev, A.N. 2012. Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images. Micron 44, 218–227.
- Kubab N., Hakawati L., Alajati S.2014. GUIDE es examens biologiques ; 6 éditions.
- Karima, H.2020. Analyse de l'Evolution de l'activité transfusionnelle au niveau de la structure de transfusion sanguine de 1 ERH Mohamed Boudiaf de Bouira depuis 1995. Bouira, université Aklimohand oulhadj.
- Kaufmann, Hélène. 1952. La répartition des groupes sanguins des systèmes ABOet Rhésus en Suisse. Archives Suisse d'anthropologie générale. 1952, Vol. 17, 1, pp. 18-51.

 \mathcal{I}

- Lee, S. 1997. Molecular Basis of Kell Blood Group Phenotypes. *Vox Sanguinis*, 73(1), 1–11.
- **Lefevre-Witier**, **P**., et *al*. 2006. Genitic structure of Algerien population. American journal of Human Biology. 2006, pp. 18:492-501.
- **Livingstone. F.B.** 1960. Natural selection, disease and ongoing Human evolution, as illustrated by the ABO blood groups. Human Biology 32(1): 17-27.
- Louati, N., Cherif, J., Ben Amor, I., Rekik, H., Gargouri, J. 2008. Recherche des hémolysines chez les donneurs de sang. *Tinisia. J Inform Méd Sfax*, 15(16), 17-19.
- Lefrère, J. J., Berche, P. 2010. Karl Landsteiner découvre les groupes sanguins. *Transfusion clinique et biologique*, 17(1), 1-8.

 \mathcal{M}

- M.Madiba Sissoko .2021, Apport des tests de compatibilité ABO/Rhésus dans l'amélioration de la sécurité transfusionnelle au CNTS de BAMAKO /MALI.
- Mme Otmani salima. 2009. Caractérisation Anthropogénique de la population de Honaïne dans l'Ouest Algérien. Analyse comparative du polymorphisme des groupes sanguins (ABO, Rh, MNSs, Duffy) et des dermatoglyphes à l'échelle de la Méditerranée. Mémoire, Université Abou Bekr Belkaïd Tlemcen.
- Ministère de la santé et de la population. L'état de santé des algériennes et des algériens. Rapprot Annuel. (2002).

- Mannessier l, Chiaroni j, Roubinet f, Lejealle ,A. 2002 septembre-octobre. Les difficultés du groupage sanguin. Hématologie; 8 (5): 370-5.
- Mortad, N., AouarMetri, A., Chaif, O. 2015. Etude socio-anthropologique des mariages consanguins et liens de parenté dans la population du littoral (Msirda) dans l'extrême Ouest Algérien. Etude comparative à l'échelle du bassin Méditerranéen.. Antropo, 33, 21-38.
- Moussouni, A., Aouar, A., Otmani, S., Chabni, N., Sidiyekhlef, A. 2017. Etude de l'impact de la consanguinité sur l'avortement et la mortalité dans la population de Sabra (ouest algérien). Antropo, 37, 149-160.
- Moussouni, A. Metri, A. A. Chaif, O. et Bouazza, H. 2019. Etude anthroposociologique des mariages consanguins dans la population de sabra (ouest-Algérien). Journal Scientifique Libanais. 20(2): 323-341.
- Modell, B., Darr, A. 2002, Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet, 3, 225-9.
- Modell, B., Darr, A. 2002, Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet, 3, 225-9.
- Middle, I., Al-Salloum, A, A., Al-Herbish, A. S., Qurachi, M. M., Al-Omar, A. A. 2007. Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudimed J, 28(12), 1881-1884.

O

- Oumou, T. 2002. Phénotype érythrocytaires dans les systèmes de groupes sanguins immunogènes chez les donneurs de sang de Bamako. Thèse pour l'obtention du grade de Docteur en Pharmacie (Diplôme d'Etat).
- Olsson, M, L., Chester, M, A.2001. Polymorphism and recombination events at the ABO locus: a major challenge for genomic ABO blood grouping strategies. Transfus Med; 11:295–313.
- Ogasawara K, Yabe R, Uchikawa M, Nakata K, Watanabe J, Takahashi Y, et al.2001. Recombination and gene conversion-like events may contribute to ABO gene diversity causing various phenotypes. Immunogenetics, 53:190–9.

P. Vince Jenkins et James S. O'donnell. 2006. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all?. TRANSFUSION Volume 46, 1836-1844.

R

- Rath, G., Mitra,R.,Mishra,N.2014.Blood groups systems .Indian J Anaesth.58;(5)524.
- Ruffie, J, Cabannes, R et Larrouy, G. 1962. Etudes ématologique des populations berbères de M'sirda Fouaga (Nord-Ouest Oranais). Bull et Mein. Soc d'anthrop de Paris, 3,294-314.
- Riaz, H.F., Mannan, S., Malik, S. 2016. Consanguinity and its socio-biological parameters in Rahim Yar Khan District, Southern Punjab, Pakistan. Journal of Health, Population and Nutrition 35, 14.
- Romdhane, L., Mezzi, N., Hamdi, Y., El-Kamah, G., Barakat, A., Abdelhak, S. 2019. Consanguinity and inbreeding in health and disease in North African populations. Annual review of genomics and human genetics, 20, 155-179.
- Radovanovic, Z., Shah, N., Behbehani, J.1999.Prevalence and social correlates to consanguinity in Kuwait. Ann Saudi Med, 19, 206-210.

3

- Seltsam A., Hallensleben M., Kollmann A., Blasczyk R. 2003. The nature of diversity and diversification at the ABO locus .the americansociety of hematology .102 (8):3035-3042p.
- Saitou, N., et Yamamoto, F. I. 1997. Evolution of primate ABO blood group genes and their homologous genes. Molecular Biology and Evolution, 14(4), 399-411.
- Saadat, M; Ansari-Lari, M; Farhud, D.D. 2004, Consanguineousmarriage in Iran. Annals of HumanBiologiy, 31(2),263-269. 1962.
- Sanchez-Mazasa. 2006. Cours de biologie humaine. Ver. 07-11-2006.
- Saouli, A, A et Ayad, M, R.2022. Etude des groupes sanguins ABO et Rhésus dans les populations du Littoral, des Monts et des Hauts plateaux de la wilaya de Tlemcen.

- Analyse comparative dans le bassin méditerranéen. Mémoire de master, université de Tlemcen.
- Saadat, M. 2015, Association between consanguinity and survival of marriages. The Egyptian Journal of Medical Human Genetics, 16, 67–70..
- Sharma, Sk., Kalam MA., Ghosh, S., Roy, S.2021. Prevalence and determinants of consanguineous marriage and its types in India, Evidence form the NationalFamilyHealthSurvey, 2015-2016.J Boisoc Sci; 53:566-76.
- Sahoo, H., Debnath, P., Mandal, C., Nagarajan, R., Appunni, S. 2022. Changing trends of consanguineous marriages in South India. Journal of Asian and African Studies, 57(2), 209-225.

T

- Traore, A .2018. Connaissances et pratiques des étudiants sur le groupe sanguin ABO et Rhésus à la FMOS/FAPH et à la FST de Bamako. Thèse de médecine, université de Médecine et d'Odonto Stomatologie.
- Talbi, J. Khadmaoui, A.E. Soulaymani, A.E.M, Chafik, A.E.A. 2007, Etude de la consanguinité dans la population marocaine. Impact sur le profil de la santé. Antropo, 15: 1-11.
- Tadmouri, G, O., Nair, P., Obeid, T., Al Ali, T.M., Al Khaja, N and Hamamy, H.A.2009, Consanguinity and reproductive health among Arabs. Reproductive Health, 6, 17.

Po

• Vogel, F., et Motulski, A. 1982. Humain genetics. Springer Verlag. Berlin.

y

Yamamoto, F. I., Marken, J., Tsuji, T., White, T., Clausen, H., Hakomori, S. I. 1990. Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1----2Gal alpha 1----3GalNAc transferase (histo-blood group A transferase) mRNA. *Journal of Biological Chemistry*, 265(2), 1146-1151.

Yamamah, G., Abdel-Raouf, E., Talaat, A., Saad-Hussein, A., Hamamy, H., Meguid, N, A. 2013. Prevalence of consanguineous marriages in South Sinai, Egypt. Journal of biosocial science, 45, 31-39.

 \mathcal{Z}

- Zhang, H., Mooney, C. J., et Reilly, M. P. 2012. ABO blood groups and cardiovascular diseases. *International journal of vascular medicine*, 2012.p11.
- Ziani, S .2017. Analyse comparative de la distribution des fréquences génotypiques et alléliques des systèmes sanguins ABO et Rhésus dans différentes localités d'Algérie. Mémoire. Université Abdurrahman Mira de Bejaia.
- Zlotogora, J., Shalev, S., Habiballah, H., Barjes, S. 2000. Genetic disorders among Palestinian arabs: Autosomal recessive disorders in a single village. American journal of medical genetics, 92, 343-345.

Groupage méthodes glopilaire

Matériel:

- > Plaque de travaille
- Lancettes stérilisées pour piquer le doigt du passion
- L'alcool pour désinfecter le doigt du passion
- > Coton
- Adjutateur stérilisé
- > Pipette
- > Echantillon de sang
- > Réactif:
- o Anticorps anti-B
- o Anticorps antiA
- o Anticorps anti-AB
- o Anticorps anti-D RH

Méthode:

Etape de travail:

- > Une 4 gouttes de sang est met sur la plaque du travail stérile à l'aided'une pipette
- Ensuite, une goutte de réactifs suivants : anti-A, anti-B, anti-AB, anti-D est ajouté sur chaque goutte de sang.
- ➤ Puis les gouttes sont mélangés on observe l agglutination et la interprétation des résultats se faite selon le tableau suivant.

Tableau: Principe de la détermination des groupes ABO (Sultan, 1991).

Anti-A	Anti-B	Anti -AB	Anti -D	Réactive
				Résultat
+	-	+	+	A RH+
+	-	+	-	A RH-
-	+	+	+	B RH+
-	+	+	-	B RH-
+	+	+	+	AB RH+
+	+	+	-	AB RH-
-	-	-	+	O RH+
-	-	-	-	O RH-

Détermination du groupe sanguine ABO

La détermination de la groupe sanguin doit être utilisé les deux épreuves, l'épreuve globulaire (**Beth-Vincent**) et l'épreuve sérique (**Simonien Michon**) :

Epreuve globulaire (Beth-Vincent)

Cette épreuve consiste à mettre en évidence les antigènes du système ABO à la surface des globules rouges du patient à l'aide d'anticorps spécifiques afin de déterminer le groupe ABO du patient .Lors de cette épreuve, il doit être utilisé un anti-A , un anti-B, un anti-AB(Chiaroni J., et al .2010)

Epreuve plasmatique (Simonien Michon)

Cette épreuve consiste à mettre en évidence les anticorps du système ABO contenus dans le plasma du patient à l'aide de globules rouges de groupe ABO connu. Lors de cette épreuve, il est utilisé des globules rouges de groupe A1 et des globules rouges B (hors difficulté de groupe). Un individu de groupe A possède les anti-B, le plasma conduira à une agglutination avec les globules rouges de groupe B ou de groupe AB. Un individu de groupe B possède des anti-A et des anti-A1, le plasma conduira à une agglutination avec les hématies de groupe A. Les individus O possèdent des anti-A, des anti-B, des anti-A, B et des anti-A1, le plasma

conduira à une agglutination avec les hématies A, B et AB, alors que les individus de groupe AB ne possèdent pas d'anticorps, il n'y aura donc aucune réaction avec les différentes hématies (Bhallil et al, 2015).

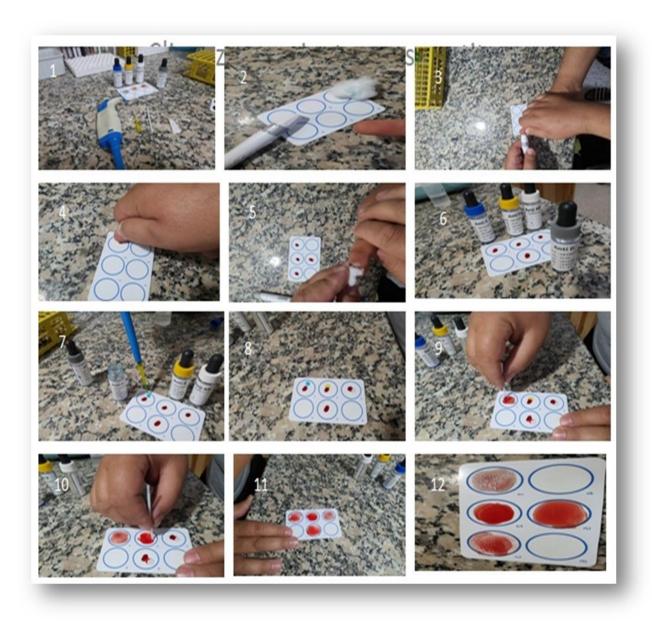


Figure : les étapes de groupage sanguine

Questionnaire

Université de GHARDAIA

1.1 Dans le cadre de la préparation de mémoire du master en sciences biologique spécialité microbiologique nous étudions sur le ETUDE DES GROUPES SANGUINE ABO ET RHESUS DANS LES POPULATION DE VALLE DE MZAB (GHARDAIA) ANALYSE COMPARATIVE DANS LE BASSIN Méditerranéen

Nous vous prion de bien vouloir répondre au questionnaire suivant et merci beaucoup.

1) Nom: prénom:					
2) Sexe ? masculin □	féminin □				
3) Age?					
4) Origine ?					
5) Lieu de résidence ?					
6) La durée de la résidence si vous n'êtes pas de la wilaya ?					
7) Le nombre de : frères ?	sœurs ?				
8) Groupe sanguine de :					
masculin	féminin				
1.	1.				
2.	2.				
3.	3.				
4.	4.				
5.	5.				
6.	6.				
9) La position dans la fratrie (du plus grande au 10) Quelle est votre situation dans la famille ? 11) Le groupe sanguin ? Le rhésus ? 12) Le groupe sanguin des parents ? Mère □ 13) Vos parents sont −ils maries .le mariage consa 14) Si oui quel est le degré de consanguinité ?	Père □ mère □ frère ou sœur □ Père □ unguine ? Oui □ .Non □				
Premier degré ? □ Deuxième degré ? □					
15) La mère a-t-elle eu un avortement ? Oui □ Non □					
Si oui, combien de fois ?					
16) Avez –vous une maladie chronique ? Si oui quel est vous maladie ?					
 17) Les maladies (chroniques ou non) présent dan Si oui quel est la maladie ?	s la famille ? Oui □Non. □ lycée□ Aucun □ lycée □ Aucun □				
<u> </u>	· , , , ,				