
Registration n°:
...../...../...../...../.....

اܳލأٴ٭۰ اஓ୷ᄴᄟگݠاޗ٭۰ ل۰ اࠍ੊ݞا߉ߵ ل۰ ا۳৵৩ৠިر
People’s Democratic Republic of Algeria

اܳأగఒ޶ واܳٴۜت ሒᇿ؇اܳأ اܳٺأܹࡗࡲ وزارة
Ministry of Higher Education and Scientific Research

ਵؗدال۰ ༥؇݁أ۰
University of Ghardaia

واܳٺܝٷިܳިۏ٭؇ اܳأߺࠊم ၯ၍٭۰
Faculty of Science and Technology

ሒᇿ৚৑ا واఈః༟৕৑م ل؇ݪ٭؇ت ීෂا ྾ཏڢ
Department of Mathematics and Computer Science

اܳٺޚٴ٭گ٭۰ واܳأߺࠊم ل؇ݪ٭؇ت ීෂا ଫଊ᛻ෛ੼
Mathematics and Applied Sciences Laboratory

Master
For obtaining the Master’s degree

Domain: Mathematics and Computer Science
Field: Computer Science

Specialty: Intelligent Systems for Knowledge Extraction

Topic

Semi-Supervised Automatic
Modulation Classification

Publicly defended on 06 24, 2024

Presented by:
Hadj Daoud Daoud & Elouneg Mohammed

Before the jury composed of:
Mr. Abderrahmane Adjila MAA Univ. Ghardaia President
Mr. Ahmed Saidi MCB Univ. Ghardaia Examiner
Mr. Slimane Ouled Naoui MCB Univ. Ghardaia Examiner
Mr. Youcef Mahdjoub MAA Univ. Ghardaia Supervisor
Mr. Houssem Eddine Degha MCA Univ. Ghardaia Co-Supervisor

Academic Year: 2023/2024



Acknowledgment

After completing this humble work, we express our gratitude to our supervisor,
Mr. Youcef Mahdjoub, who provided us with support and assistance throughout

the time. We do not forget his kind treatment. Thank you very much for
supervision, guidance, advice, and also the help. It has been a great honor for us
to work with him on this thesis. We hope to have other opportunities to benefit

from your expertise.
We also thank the thesis evaluation committee for allocating time to read and

evaluate our humble work
As we do not forget to thank everyone who advised us, guided us, or contributed

to our research preparation.



Dedication

In the name of Allah, the Most Gracious, the Most Merciful. Peace and bless-
ings be upon the most honorable of messengers, Muhammad, may God bless him
and grant him peace. I express gratitude to the Almighty for His divine grace,
which has facilitated the accomplishment of this modest endeavor.
This work is dedicated to my esteemed parents for their unwavering support in my
pursuit of achievements and in navigating challenges.
I am grateful to my brothers for their continuous encouragement and unwavering
moral support during my academic journey.
I extend my sincere gratitude to my esteemed colleague and friend,Elouneg Mo-
hammed, for his diligent efforts in ensuring the success of this project. I wish him
continued success and prosperity in all his future endeavors.
To all my respected colleagues and friends with whom I have shared memorable
experiences, I sincerely wish that all your aspirations and dreams come to fruition.
To all administrative staff members, including the directors, college president, ad-
ministrators, and professors who provided me with unwavering support throughout
my academic journey, I express my heartfelt gratitude. Thank you.
Thank you to all who have provided us with encouragement, whether through a
kind word from near or far.

Daoud



Dedication

The praise is to Allah, the Lord of all worlds, and blessings and peace be upon
the noblest of messengers. I thank and praise Allah for His guidance in my humble
endeavor.
I dedicate this humble work to my dear parents, who have been a supportive pillar
in achieving numerous accomplishments, both academic and otherwise.
I extend my sincere expressions and appreciation to my colleague and friend, Mr.
Hadj Daoud Daoud, for his efforts in the success of this endeavor. I wish him luck
and success.
To all my friends and colleagues who shared with me beautiful memories and many
experiences.
To all the administrative staff, including the director, department head, and pro-
fessors who taught me throughout my academic journey and provided me with full
support, thank you all.
To everyone who supported me from near or far, whether morally or materially,
thank you all.

Mohammed



����

ڲــــڪــــٌـــۘ

اఈ႙ၽܳم আॻ༟ واܳٺأݠف ۰ਃಸިݿ؇੆اࠍ ل۰ اෂීؤ ዻዧذ ሒᇭ ؇ஓ୾ ا৖৑؇௵௯௫ت، ݆݁ اܳأڎࢴࣖ ሒᇭ ً ఈః۱݁ڍ ً ؇༡؇෠ຶ اܳأ݄٭ݑ اܳٺأ޺޾ ۋگݑ ܳگڎ
݆݁ ᄭᄥ۱؇ف ᆇᅒ٭؇ت ݆݁ اܳٺأ޺޾ আॻ༟ ڢڎرّ۬ ሒᇭ اܳأ݄٭ݑ اܳٺأ޺޾ ڢިة ݆ᆇᅀّو ل۰، ڢި أداة َ۬৙৑ اܳޚٴ٭أ٭۰، اይዧ؞؇ت ۰੊و݁أ؇ࠍ
اܳٺأ޺޾ ஓ஁؇ذج أن มฃلأ ؇ᆙᆘ ๤ཇఇዳዧاف، اࠍ੅؇ݪأ۰ اܳٺأ޺޾ ஓ஁؇ذج ሌᇿإ اܳٷ༶؇ح ۱ڍا ݆݁ ଫଃاܳـܝټ لأُݞى ،ዻዧذ و݁ؕ اܳٴ٭؇َ؇ت.
ًوਐಾޚܹص ఈఃل ޗި وڢٺً؇ ؇ً࿌ࢴࣖو اܳٴ٭؇َ؇ت ّݱྡྷ٭ژ ᆇᅦܹ٭۰ ૭૜ٺ؞ݠق ؇݁ ༚؇ܳٴً؇ اৎ৊ݱٷڰ۰. اܳٴ٭؇َ؇ت আॻ༟ ଫଃ܋ٴ ႟ၽ૰૖ ّأٺ݄ڎ اܳأ݄٭ݑ
اܳٺ༲ڎي ৎ৊ިاۏ۰۳ اࠍ੆ߺࠊل ݆݁ اܳأڎࢴࣖ ّޚިߌߵ ቕቆ وڢڎ اܳأ݄٭ݑ. اܳٺأ޺޾ ༡ߺࠊل ๤๑ฺ ሒᇭ ܋ٴଫଃاً ؇ً࿌ڎොູ ෠ຬأ۳ܹ؇ ؇ᆙᆘ ا௯௫௵؇ل، ሒᇭ ଫଊ༠ة
اࠍ੅؇ݪؕ ނٴ۬ واܳٺأ޺޾ ሒᇆاᄳᄟا ๤ཇఇዳዧاف اࠍ੅؇ݪؕ اܳٺأ޺޾ ݁ټܭ اৎ৊ݱٷڰ۰، ଫଃ༚ اܳٴ٭؇َ؇ت ݆݁ ܋ٴଫଃة ᆇᅒ٭۰ وۏިد ሒᇭ اৎ৊ٺ݄ټܭ
ዛኡھ و۱ި ๤ཇఇዳዧاف، اࠍ੅؇ݪؕ ނٴ۬ اܳٺأ޺ّ޾ ݁ڰ۳ިم وّޚٴ٭ݑ اݿٺܝލ؇ف ሌᇿإ ዛኡڎف اܳأ݄ܭ، ۱ڍا ሒᇭ .؇۱ଫଃ༚و ๤ཇఇዳዧاف
ّݱྡྷ٭ژ لأڎ اఈዳዧݿܹـܝ٭۰. ا৕৑ނ؇رات ّݱྡྷ٭ژ ۰݄ዛᔻ ৙৑داء اৎ৊ݱٷڰ۰، ଫଃ༚و اৎ৊ݱٷڰ۰ اܳٴ٭؇َ؇ت ݆݁ ً ఈ႙၍ ૭૏ٺ༱ڎم ሒᇿآ ّأ޺ّ޾
݆݁ ܋ٴଫଃاً ؇ً݄࿭੗ ਐಱޚܹص وܳـܝٷ۬ اఈዳዧݿܹـܝ٭۰، ا৖৑ّݱ؇৖৑ت ّޚٴ٭گ؇ت ௰௯௫ٺܹژ اᆇᆅ৙৑٭۰ ؐܳ؇ً أਵਦاً اఈዳዧݿܹـܝ٭۰ ا৕৑ނ؇رات
ۋ٭ت ݆݁ ᄭᄟ؇ڣأ ݁ݱٷڰ؇ت إ૰૙؇ء ඔ൹ܝஓ஄ ఈః༠ل ݆݁ ً وا༟ڎا ً ఈః༡ ๤ཇఇዳዧاف اࠍ੅؇ݪؕ ނٴ۬ اܳٺأ޺ّ޾ لگڎم اৎ৊ݱٷڰ۰. اܳٴ٭؇َ؇ت

اৎ৊ݱٷڰ۰. ଫଃ༚ اܳٴ٭؇َ؇ت ݆݁ ଫଊأ܋ ᆇᅒ٭۰ ؕ݁ اৎ৊ݱٷڰ۰ اܳٴ٭؇َ؇ت ݆݁ أݬ؞ݠ ۰༟ިᆇ୞୘ ݆݁ اܳٺأ޺޾ ؇ዛዊܝஓ୷ اܳٴ٭؇َ؇ت
ނٴ۬ اܳٺأ޺޾ (DL), اܳأ݄٭ݑ اܳٺأ޺޾ ݁ݱٷڰ۰, ଫଃ༚ ਃಸ؇َ؇ت (CNN), اܳٺఈఃڣ٭ڰ٭۰ اܳأݱྟ٭۰ اܳލٴႤၽت ڲء׫ոؼמ١: ոஈ࿦྾ت

ل۰. اෂීادلި ا৕৑ނ؇رات ّݱྡྷ٭ژ اܳٺۜިߌߵ, ّݱྡྷ٭ژ ๤ཇఇዳዧاف, اࠍ੅؇ݪؕ



Abstract

Deep learning has been incredibly successful in many areas, including computer
vision, speech recognition, and natural language processing, because it is such a
powerful tool, and the power of deep learning lies in its ability to learn from vast
amounts of data. However, much of this success has been attributed to supervised
learning models, which means that deep learning models rely heavily on labeled
data. The process of labeling data manually is often time-consuming and requires
domain expertise, making it a significant challenge in the deployment of deep learn-
ing solutions. Many solutions have been developed to address the challenge of large
amount of unlabeled data, such as self-supervised learning and semi-supervised
learning and others. In this work, we aim to explore and implement the concept of
semi-supervised learning, a machine learning approach that uses both labeled and
unlabeled data, to perform the task of radio signal classification. Classifying radio
signals is crucial for various wireless communication applications, but it requires a
large volume of labeled data. Semi-supervised learning offers a promising solution
by enabling the creation of data-efficient classifiers that can learn from a smaller
set of labeled data combined with a larger amount of unlabeled data.

Keywords: Convolutional Neural Networks (CNN), unlabeled data, Deep Learning
(DL), Semi-supervised learning, Modulation Classification, Radio Signal classifica-
tion.



Résumé

L’apprentissage profond a connu un succès incroyable dans de nombreux domaines,
notamment la vision artificielle, la reconnaissance vocale et le traitement du langage
naturel, parce qu’il s’agit d’un outil puissant, et que la puissance de l’apprentissage
profond réside dans sa capacité à apprendre à partir de grandes quantités de don-
nées. Cependant, une grande partie de ce succès a été attribuée aux modèles
d’apprentissage supervisé, ce qui signifie que les modèles d’apprentissage profond
reposent fortement sur des données étiquetées. Le processus d’étiquetage manuel
des données prend souvent beaucoup de temps et nécessite une expertise dans
le domaine, ce qui en fait un défi important pour le déploiement de solutions
d’apprentissage profond. De nombreuses solutions ont été développées pour relever
le défi d’une grande quantité de données non étiquetées, telles que l’apprentissage
auto-supervisé et l’apprentissage semi-supervisé, entre autres. Dans ce travail, nous
visons à explorer et à implémenter le concept d’apprentissage semi-supervisé, une
approche d’apprentissage automatique qui utilise à la fois des données étiquetées et
non étiquetées, pour effectuer la tâche de classification des signaux radio. La classi-
fication des signaux radio est cruciale pour diverses applications de communication
sans fil, mais elle nécessite un grand volume de données étiquetées. L’apprentissage
semi-supervisé offre une solution prometteuse en permettant la création de classifi-
cateurs efficaces en termes de données, capables d’apprendre à partir d’un ensemble
plus restreint de données étiquetées combinées à une plus grande quantité de don-
nées non étiquetées.

Mots clés: Réseaux neuronaux convolutifs (CNN), données non étiquetées, ap-
prentissage profond (DL), apprentissage semi-supervisé, classification de la modu-
lation, classification des signaux radio.
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Introduction

Classification of radio signals is fundamental to many applications due to the
tremendous advances in wireless communication technology. Despite its consid-
erable complexity, the process of automatically detecting and classifying wireless
communication signals is of great importance. This is an essential operation for
spectrum learning and sharing, enabling more effective use of the spectrum.

The signal classification is a complex and challenging process, involving the
determination of the modulation type to which it belongs, this is considered a multi-
class classification problem, where the number of classes equals the number of signal
types in the dataset, the factor that has made the field of wireless communications
more complex and challenging is the increasing number and complexity of different
signal types, additionally, accurately configuring the signal modulation mode in
conditions of low Signal-to-Noise Ratio (SNR) has become a challenging issue.

Previously, signal classification relied on traditional methods, primarily through
manual feature extraction. However, it was later evident that these approaches did
not yield precise and accurate classification, leading to the adoption of more efficient
methods.

Over the past decade, the advancement of artificial intelligence and deep learn-
ing techniques has expanded their use in a variety of fields. These include, among
others, image and speech recognition, natural language processing, and wireless
transmission.

Deep learning’s power comes from its capacity to learn from large amounts of
data. Yet, these achievements are largely due to supervised learning, which means
that deep learning is highly dependent upon labeled data.

Manual annotation of data is time-consuming and often requires domain exper-
tise, which makes it a significant challenge for implementing deep learning solutions.

To address the challenge of large amounts of unlabeled data, several solutions
have been developed, including self-supervised learning and semi-supervised learn-
ing.

In the present work, our goal is to explore and implement the concept of semi-
supervised learning, which is a machine learning approach that uses both labeled
and unlabeled data, in order to perform the task of radio signal classification.

Classification of radio signals is crucial for several wireless communication ap-
plications, but requires a large amount of labeled data. Semi-supervised learning
offers a promising solution, allowing the creation of data-efficient classifiers able
to learn from a smaller amount of labeled data combined with a larger amount of

1



List of Tables

unlabeled data.

Our thesis consists of three chapters:

• In the first chapter, We present some generalities and preliminary knowl-
edge about signals, radio, as well as concepts in deep learning and its archi-
tecture.

• In the second chapter, We represent the state of the art semi-supervised
learning.

• In the third and final chapter, We do experiments and discuss the results.

2



Chapter 1

Generalities and preliminary
knowledge

1.1 Introduction to signals

Signals are omnipresent, enveloping us from all directions, constituting a sig-
nificant realm of knowledge applied across nearly every facet of contemporary life.
Digital signals particularly stand as the cornerstone of communication technology
in this era, permeating mobile phones, televisions, and the myriad electronic de-
vices surrounding us. Within communication systems, radio technology enables the
transmission of diverse signal types, thereby streamlining the communication pro-
cess and facilitating information exchange.
The signals are the physical representation of the information it carries from its
source to its destination. It serves as a conduit for information, embodying the
measurable manifestation of a quantity (such as current, voltage, force, tempera-
ture, pressure, etc Cottet (2017). Its physical nature can vary greatly, including
acoustic, electronic, optical, and other forms Jutten (2009).

1.1.1 Electromagnetic spectrum power data transmission

The electromagnetic spectrum refers to a structured arrangement of electro-
magnetic waves based on their wavelength or frequency.

• Radio waves
For instance, are generated by the acceleration of charges in conducting wires
and typically span from a few hertz to 109 hertz in frequency.
They exhibit properties like reflection and diffraction. Radio waves find ap-
plications in various communication systems such as radio, television, and
cellular phones, particularly in transmitting voice signals within the ultra-
high-frequency range.

3



Chapter 1. Generalities and preliminary knowledge

• Microwaves
Microwaves are generated by specialized vacuum tubes like klystrons, mag-
netrons, and Gunn diodes. Their frequency spans from 109 Hz to 1011 Hz.
Microwaves exhibit characteristics such as reflection and polarization. They
find application in radar systems for aircraft navigation and vehicle speed
determination, microwave ovens for cooking, and long-range wireless commu-
nication via satellites.Weinstein (1988)
Figure 1.1 representing the electromagnetic spectrum

Figure 1.1: Electromagnetic spectrum AYAD & MESSLEM (2022)

1.1.2 Transmitting Signal (Electromagnetic )

Electromagnetic in nature, it likely includes turn around attractive field lines.
Concurring to Maxwell, the active vitality of this development accurately compares
to electromagnetic vitality, the presence and esteem of which tests have freely un-
covered, and which hypothesis disseminates in a decided way over diverse parts of
space.Lorentz (1892)
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1.1.3 Frequency of signal

Frequency refers to the quantity of cycles executed by a wave within a single
second, and its Unit is Hz (Hertz). The frequency signal is given by:

F =
1
T

Carlson (2002) (1.1)

Where F called the frequency of the signal and T called period of the signal.Carlson
(2002)
The figure 1.2 represents the frequency and its period for the signal

Figure 1.2: Sinusoidal waveform V(t) = A cos(ωt + ϕ) Carlson (2002)

1.1.4 Amplitude of signal

The amplitude is represented by the (A) symbol shown in Figure 1.2. It is
called discrete frequency spectrum or line spectrum.Hsu (2011). Is defined as the
difference between the maximum (+ amplitude) and minimum (– amplitude) values,
Therefore, for a symmetrical signal, this peak-to-peak amplitude equals twice the
amplitude, Giovanni et al. (2021).

1.1.5 Phase of signal

The phase of the signal is represented by the (ϕ) symbol shown in Figure 1.2 , is
derived by calculating the arctangent of the ratio of the imaginary signal component
to the real signal component, performed voxel by voxel. The resulting values of f
range between −π and π. Vegh et al. (2016)
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1.1.6 Signal power to noise

Noise, in its most basic definition in electronics, refers to an undesirable dis-
turbance in an electrical signal Kogan (1996). In signal processing, noise typically
signifies unwanted (and often unknown) alterations that a signal may undergo dur-
ing capture, storage, transmission, processing, or conversion.Tuzlukov (2010)
The signal-to-noise ratio is the ratio between the powers of the signal, PS, and the
noise, PB Jutten (2009) :

SNR =
PS

PB
(1.2)

or , in dB
SNRdB = 10 log

(
Ps

PB

)
(1.3)

(SNR) measures the quality of the signal. It’s an objective measure. However, in
many cases, especially those involving human intervention in the processing chain,
this measure may not be very meaningful.

1.1.7 Signal Processing

The tools of signal theory and signal processing apply to numerous domains
whenever a sensor measures a physical quantity carrying information, which is often
disturbed (by noise or the measurement system) and needs to be processed to extract
useful information from it. Signal processing methods enable the development of
safer, more reliable, and faster approaches to analyze and transmit signals. In
the field of communications, spread spectrum, GSM, etc., serve as representative
examples. Jutten (2009),we mention some of the operations on the electrical signal:

1.1.7.1 Analog digital converters ADC

Analog to digital conversion consists of transformers Analog signals are trans-
mitted according to time and amplitude to form discrete time signals (sampling) and
en amplitude (quantification). Distribution will generally be carried out in three
stages differences: sampling , the blocking and the quantification.Traoré (2006)
Convert analog messages to digital messages. Therefore he led a Sampling and
quantizing signals carrying analog messages. This is not ADC of course, this is of
no use if the message is already in digital form.ADDOU & ALLAM (2022)
The figure 1.3 shows how a ADC converter works

1.1.7.2 Periodic signal sampling

Sampling a continuous signal involves taking samples of the signal to obtain
a discrete signal, which is a sequence of numbers representing the original signal.
This process is carried out to store, transmit, or process the signal. Sampling plays
a crucial role in analog-to-digital conversion operations, such as in sound or image
digitization devices.Legrand & Commons (n.d.)
The sambling process is shown in the following figure 1.4
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Figure 1.3: Functional diagram of an Analog-to-Digital Converter.Traoré (2006)

1.1.7.3 Signal Quantization

Quantification involves approximating each value of the signal ax(t) by an in-
teger multiple of a specified quantity denoted as q, known as the ”quantization
step.” If q remains constant regardless of the signal’s amplitude, the quantization is
referred to as uniform. The quantized signal qx(t) differs from the original signal
ax(t) by an error term e(t), which can be expressed as:

ax(t) = qx(t) + e(t) Dumartin (2004) (1.4)
This error term is denoted as e(t). is referred to as quantization noise. Dumartin
(2004)

The quantification process is shown in the following figure 1.5

1.1.7.4 The Fourier transform

We are interested in a function x of the variable t. This function can take
complex values and depends on a variable t, which could potentially be a vector
variable, we will mainly focus on the case of a scalar variable, and it will often be
convenient to consider t as time, with the function then representing the temporal
evolution of a signal.
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Figure 1.4: Principle of sampling.Traoré (2006)

Figure 1.5: Explanatory diagram on quantification.Meziane & Zahir (2018)

However, note that t does not necessarily represent time, and we can study the
behavior of signals with respect to spatial variables, concentration, etc.
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Any non-periodic function x(t) can be decomposed into a Fourier integral form
as follows:

x(t) =
∫ ∞

−∞
X( f )ej2π f t d f Baudoin &Bercher (1998) (1.5)

or
X( f ) =

∫ ∞

−∞
x(t)e−j2π f t dt Baudoin &Bercher (1998) (1.6)

We say that x(t) and its Fourier transform X(f) form a Fourier transform pair,
denoted by:

x(t)←→ X( f ) Baudoin &Bercher (1998) (1.7)
Baudoin & Bercher (1998)

1.1.7.5 In-phase and quadrature components (IQ)

In digital communications, modulation is often expressed in terms of I/Q com-
ponents (Inphase/Quadrature). The I/Q formulation is written as:

x(t) = I(t) cos[ωct] + Q(t) sin[ωct] Janicot (2002) (1.8)

The I/Q diagram is a rectangular representation of the graph in polar coordinates.
On a polar diagram, the I axis aligns with the 0 phase line, and the Q axis is
perpendicular to it. The projection of the signal vector onto the I axis gives the I
component, and the projection onto the Q axis gives the Q component.
A trajectory diagram represents the variations of the Q component of the signal
against its I component over time. The constellation diagram depicts the coordi-
nates of points. Janicot (2002)
The figure 1.6 IQ modulator and de-modulator block diagram.

Figure 1.6: IQ modulator and de-modulator block diagram..B. Wang et al. (2018)
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1.1.8 Modulation of signal

Modulation involves converting a known signal into the signal intended for
transmission. The signal intended for transmission is referred to as the information
signal. When we modulate a signal, it is called:

• Carrier : the known signal

• Modulating signal :the information signal

• Modulated signal : he resulting signal from transforming the carrier by the
modulating signal

Refers to a procedure that alters the frequency range within a signal.
Signals sharing identical frequency ranges can be distinguished.
Modulation aids in managing noise and attenuation, which are contingent on the
physical medium Agbo & Sadiku (2017),Modulation stands as a fundamental signal-
processing technique essential for transmitting an information-carrying signal across
a communication channel, whether in digital or analog communication settings. It
involves altering a parameter of a carrier wave in alignment with the information-
containing (message) signal.Haykin & Moher (1989)
There are two types of modulation as shown in the figure 1.7

Figure 1.7: Classification of Modulation Phuntsho & Bhooshan (2015)

1.1.8.1 Analog modulation

An analog signal changes continuously over time. It can be either periodic or
non-periodic. When an analog signal is regular, it’s termed periodic. This means
the signal showcases a fundamental pattern: a segment of the curve repeats at
consistent time intervals.

• Period (T) Represent the duration of a change in seconds (s). The period
can be understood as the duration between two ”peaks” of the curve.
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• The frequency (F) of a periodic signal corresponds to the number of rep-
etitions of the fundamental pattern of that signal within one second. The
frequency f is the inverse of the period T.Ambardar et al. (1995)

We mention two types of this modulation

• AM Modulation
The signal undergoes modulation through a carrier signal denoted as:

C(t) = A cos(2π f t) Agbo &Sadiku (2017) (1.9)

Where the carrier frequency is represented by f. This process involves mul-
tiplying the source signal by the carrier signal, resulting in the transmitted
modulation signal, denoted as S(t) according to equation (1.2).

S(t) = X(t)A cos(2π f t) Agbo &Sadiku (2017) (1.10)
X(t) : the source signal is analogue.Agbo & Sadiku (2017)
Types: M-SSB, AM-DSB...
The figure 1.8 shows AM modulation process

Figure 1.8: AM modulation.Krioui et al. (2019)

• FM Modulation
Frequency modulation is a technique used to convey information through radio
waves or wired channels. It finds application in UHF/VHF radio transmission
(FM radio) and radio transmission via microwave links. Nowadays, it’s pro-
gressively being replaced by digital transmission methods.KHALFALLAOUI
(2021)
Types: WBFM...
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• The figure 1.9 shows FM modulation process

Figure 1.9: FM modulation process.Swiston (n.d.)

1.1.8.2 Digital modulation

Digital modulation refers to the method of imprinting a digital symbol onto a
signal that’s suitable for transmission. When it comes to short-distance transmis-
sions, baseband modulation, often referred to as line coding, is typically employed.
This involves using a series of digital symbols to generate a square pulse waveform
with specific characteristics. These features are designed to represent each symbol
distinctly, using variations in pulse amplitude, pulse width, and pulse position, en-
suring their clear recovery upon reception.Xiong (2006)
Modulation stands as the means of transmitting information through a medium.
In the context of digital communication, digital modulation signifies the movement
of a digital bit stream from the transmitter to the receiver(s) through the analog
information channel, which serves as the medium. In the process of modulation,
the informational signal alters one or multiple aspects of a carrier signal. Typically,
this carrier signal is a sine wave characterized by its amplitude, frequency, and
phase. The modulation techniques vary based on which specific carrier parameter
is being adjustedTarniceriu et al. (2007), resulting in three fundamental types of
modulation:

• Amplitude Shift Keying (ASK)
ASK stands out as the most basic modulation technique, involving the mod-
ulation of digital information by varying the amplitude of the carrier,In ASK,
the amplitude of the carrier signal is adjusted to one of two values, corre-
sponding to the logical level in the message signal at a particular moment. A
high amplitude signifies logical level 1, while a low amplitude signifies logical
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level 0.CHACHOUA & BENSAHA (2021)

s(t) = A · cos
(

2π fct + 2π∆ f
∫ t

0
u(τ)dτ

)
CHACHOUA &BENSAHA (2021)

(1.11)

Types: PAM4...

• Frequency Shift Keying (FSK)
Frequency-shift keying (FSK) is a frequency modulation technique where dig-
ital information is transmitted through distinct changes in the carrier signal’s
frequencyKennedy & Davis (1992). In this method, binary digital informa-
tion (0 and 1) is represented by a signal with constant amplitude, with the
frequency altering for each state. In its simplest form, FSK assigns one fre-
quency to represent a 1 (a mark) and another frequency to represent a 0 (a
space). These frequencies fall within the transmission channel’s bandwidth
William Buchanan BSc (Hons) (2000).
Types: GFSK, CPFSK...

• Phase Shift Keying (PSK)
Is a digital communication scheme that transmits data through modification
or modulation. The phase of the reference signal (carrier). Each digital mod-
ulation scheme uses a limited number of different signals to represent digital
data. phase shift keying A limited number of stages are used, each assigned a
unique binary number pattern. Usually each stage Encode the same number
of bits. Each bit pattern is represented by a corresponding phase.Phuntsho
& Bhooshan (2015)
Types: PSK, QPSK, 8PSK,...
The figure 1.10 shows how the three basic modulatation work

• Quadrature Amplitude Modulation (QAM)
ASK is also combined with PSK to create hybrid systems such as Quadrature
Amplitude modulation (QAM), where both amplitude and phase are present
change at the same time.Jahagirdar & Ukey (2010)
Types: QAM16, QAM64...

13



Chapter 1. Generalities and preliminary knowledge

Figure 1.10: Three basic bandpass modulation schemes.Xiong (2006)

1.1.9 Communication process

The primary goal of a communication system is to facilitate the exchange of
information between two entities. Put differently, its purpose is to transmit infor-
mation from one location to another. The essential elements of this system include
the source of information, transmitter, channel, receiver, and user of information,
as shown in figure 1.11

• Source of information
Audio/voice communication : involves information presented in the form
of audible sound waves, such as what we typically hear on the radio. Voice
communication is widely prevalent globally. However, due to the recent emer-
gence of mobile applications, data transmission has surpassed voice commu-
nication.
Data : This form of information is generated by computers and exists in
digital format, typically represented in binary as 0s and 1s. This type of in-
formation exhibits burstiness, where it is transmitted in bursts with intervals
of silence. Data lacks inherent meaning until it is interpreted. For instance,
1234.56 is considered data, whereas the statement ”Joe owes me ”1234.56”
represents information derived from interpreting that data.
Video : refers to the electronic depiction of still or dynamic images. In a
televised broadcast, the video constitutes the visual content, while the audio
corresponds to the audible component. Agbo & Sadiku (2017)
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Figure 1.11: Components of a communication system.Agbo & Sadiku (2017)

• Transmitter(Modulation) : Modulation involves converting a known sig-
nal into the signal intended for transmission. The signal intended for trans-
mission is referred to as the information signal. Agbo & Sadiku (2017)

• Noise : (return 1.1.6 Signal power to noise, page6).

• The user of information : That is the final destination of the signal. Once
the signal has been transmitted, received, and processed, it is up to the user to
interpret and use it. Communication engineers have a high degree of control
over the design and operation of the transmitter and receiver, but they have
less influence over the source of the information, the transmission channel, or
the user’s actions.Agbo & Sadiku (2017)

• Channel : A channel serves as the route for the flow of an electrical signal,
A channel can be seen as the medium through which information propagates.
Channels can be categorized based on the medium that they utilize, such as
wire or wireless. Examples of wire channels include twisted pairs employed in
telephone lines, coaxial cables in computer networks, waveguides, and optical
fibers. Wireless channels encompass mediums like vacuum, atmosphere/air,
and sea.
Channels can also be characterized by their transmission mode, with three
types highlighted in Figure 1.2: simplex, half duplex, and full duplex.
Simplex : Communication flows in one direction only, One can transmit but
not receive or receive but not transmit. like a radio broadcast or a TV signal.
Half-duplex : Communication can go in both directions, but not at the same
time. Think of a walkie-talkie; you have to press a button to talk, and then
release it to listen.
Full-duplex : Communication can occur in both directions simultaneously,
like a phone call or a computer network. You can talk and listen at the same
time.Agbo & Sadiku (2017)
The channel operation methods are shown in the figure 1.12
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Figure 1.12: Modes of channel operation.Agbo & Sadiku (2017)

1.2 Automatic modulation classification

Serves as the transitional phase within a radio monitoring system or cognitive
radio, occurring between signal detection and demodulation, there are two main
categories of AMC algorithms: those based on likelihood (LB) and those based on
features (FB).
Both categories evaluate the received signal against a selection of potential modu-
lation options.Weber et al. (2015).
The process preceding signal demodulation in the physical layer is presently drawing
increased interest from signal processing and communication communities. Essen-
tially, AMC is focused on identifying the modulation type of an incoming signal at
the receiver, often presenting itself as a multi-class decision-making challenge within
the realm of artificial intelligence (AI). Huynh-The et al. (2021).
The figure 1.13 shows the architecture of feature-based AMC method.

Figure 1.13: The architecture of feature-based AMC method.Y. Wang et al. (2020)
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1.3 General definitions of artificial intelligence

• Introduction
Artificial Intelligence is a field within computer science that focuses on cre-
ating systems capable of learning, adapting, reasoning, and interacting with
their environment in ways that resemble human capabilities. It’s considered
one of the most advanced fields in the modern era, finding applications in var-
ious areas such as robotics, image recognition, speech recognition, machine
learning, deep learning, and many others.

• Artificial Intelligence
In 1956, artificial intelligence (AI) was defined as ’the science and engineering
of creating intelligent machines’McCarthy (2007). AI involves the develop-
ment of intelligent machines capable of solving various problems using natural
language processing, neural networks, and machine learning Mondal (2020).
It is revolutionizing numerous fields, including medicine, psychology, science,
and public policy Y. Xu et al. (2021).Su et al. (2023)

• Machine Learning
Scientists often try to build mathematical models that connect observable
data (inputs) to other related variables (outputs). These models allow us to
predict outputs based on measured inputs. However, many real-world phe-
nomena are too complex for simple models. Machine learning comes to the
rescue by automatically building complex models that analyze data and max-
imize performance. This process of automatically building models is called
”training,” and the data used for training is called ”training data.” Trained
models can provide insights into how inputs are related to outputs and can
be used to make predictions for new, unseen data. Baştanlar & Özuysal (2014)

The diagram 1.14 represents Machine learning algorithms learning concepts
and classes

Figure 1.14: diagram of machine Machine learning algorithms learning concepts and
classe.Janiesch et al. (2021)
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There are many methods in machine learning, including:

– Supervised Learning.
– Unsupervised Learning.
– Semi-Supervised Learning.
– Self-Supervised Learning.
– Reinforcement Learning. Baştanlar & Özuysal (2014)

• Deep Learning
An integral component of the larger machine learning family, distinguished
by the unique arrangement of neural networks structured in numerous layers,
mimicking the human learning process and enhancing the capacity to tackle
intricate problems. Iterative in nature, deep learning networks disseminate
information, autonomously refining their features using gradient-based opti-
mization techniques and backpropagation.Chassagnon et al. (2020)

– Neural Networks
Neural networks are a group of algorithms designed to achieve this goal
Discover potential relationships in your data set A process that mimics
the functions of the human brain. exist In this sense, a neural network
refers to a system of neurons, Organic or man-made in nature. Neural
networks can Adapt to changing inputs; so that the network produces the
best Get possible results without redesigning the output standard. The
concept of neural networks has its roots Artificial intelligence is rapidly
spreading around the world Development of trading systems. Mahesh
(2020).
The figure 1.15 shows a Perceptron which is the elementary unit of a
neural network.

Figure 1.15: Perceptron : the basic unit of a neural network. Mahesh (2020)

– Deep Learning Models
Since their inception, numerous deep learning models have emerged, with
notable ones like Deep Belief Network (DBN), Autoencoder (AE), Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN)
Du et al. (2016), Attention models and Transformers. Vaswani et al.
(2017).
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1.3.1 CNN architecture

Convolutional neural networks are currently the most effective models for clas-
sifying images, Referred to by the acronym CNN. They consist of two distinct parts.
At the input, an image is provided in the form of a pixel matrix. For a grayscale
image, it has two dimensions. Color is represented by a third dimension, with a
depth of 3 to capture the fundamental colors [Red, Green, Blue].Boughaba et al.
(2017)
Convolutive part aims to extract unique features from each image by compressing
them to reduce their initial size. In essence, the input image undergoes a sequence of
filters, thereby generating new images known as convolutional feature maps. Even-
tually, these obtained convolutional maps are concatenated into a feature vector
called the CNN code.Boughaba et al. (2017)
The other part, for classification, takes the CNN code from the convolutive section
as input. It consists of fully connected layers known as a multilayer perceptron
(MLP). This section’s role is to amalgamate the CNN code’s features in order to
classify the image. Boughaba et al. (2017). CNN has layers similar to convolutional
layers, Pooling layers (max, min and average), ReLU layers and fully connected
layers. Convolutional layers have kernels (filters) Each core has width, depth and
height. This layer Generate feature maps as a result of computing scalars Product
between kernel and local image area.Akhtar & Feng (2022). A CNN architecture is
formed by a set of independent processing layers:

• Convolution Layer
The convolutional layer is the most important unit CNN,convolves the input
using convolution kernels. It acts as a filter and is then activated by a non-
linear filter The activation function is as follows:

ai,j = f

(
M

∑
m=1

N

∑
n=1

wm,n · xi+m,j+n + b

)
Xia etal. (2020) (1.12)

where ai,j is the corresponding activation, wm,n represents m×n weight ma-
trix of convolution kernel, represented by xi+m,j+n Activation of upper layer
neurons connected to neurons (i,j), b is the bias value, f is the nonlinear
function.Xia et al. (2020)

• Pooling Layer
After obtaining the feature map, pooling (subsampling) needs to be added.
A layer in a CNN that is immediately adjacent to a convolutional layer. The
role of the pooling layer is to shrink the data The spatial dimensions of the
collapsed feature. Due to dimensionality reduction, computers The power
consumption required to process data is reduced.
There are two forms of pooling: maximum pooling and average pooling.Bhatt
et al. (2021) The figure 1.16 shows pooling layer how it work.

• Normalization layer
is also called The Rectified Linear Unit (ReLU) process sets all negatives of
the filtered image The value is 0. When applied to all filtered images. The
equation 1.13 shows the ReLU activation function:

f (x) = max(0, x) Gupta etal. (2022) (1.13)
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Figure 1.16: Pooling layer of a CNN.Süßle (2021)

• Fully Connected Layer
Often called a classifier, it is the final layer of a CNN design. All values at
this level play a role in determining classification. Each middle layer votes
On dummy ”hidden” classes, causing multiple fully connected layers to be
overwritten on top of each other. Additionally, each new layer of the neural
network improves decision-making This enables the network to learn increas-
ingly complex feature combinations.Gupta et al. (2022)
The figure 1.17 shows how the CNN model works.

Figure 1.17: Convolutional neural networks.Boughaba et al. (2017)

1.3.2 Long Short Term Memory LSTM

Long short-term memory (LSTM) is a recurring phenomenon Recently popu-
lar neural networks The field of machine learning. LSTM, originally proposed by
Hochreiter and Schmidhuber (1997), Subsequent variants developed since Contri-
butions from many other researchers. Turkoglu et al. (2022);
LSTM-based method, Integrating information from pedestrian neighborhoods In-
corporate into the training process and use scene context Attempts have been made
to improve trajectories.
In the basic LSTM network architecture, given an input The sequence is repre-
sented by (x1, . . . , xT), and the output sequence yt can be obtained by iteratively
calculating the equation. 1.14 and 1.15 For t = 1,…,T:

ht = LSTM(ht−1, xt; W) Xue etal. (2018) (1.14)

yt = Whyht + by Xue etal. (2018) (1.15)
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Where W terms represents different weight matrices, through by represents the
bias vector of the output yt, h represents Hidden state. In the cellular function
LSTM(·), the hidden state Determined by the entrance door i, the forgetting door
f and the exit door o and cell state c via the following equation:

ot = (Wxoxt + Whoht−1 + Wcoct + bo) Xue etal. (2018) (1.16)

ht = ot tanh(ct) Xue etal. (2018) (1.17)
where Wab is the weight matrix from layer a to layer b; σ(·) represents a Sigmoid
activation function; each b term is preceded by a. The index is the deviation vector
of the corresponding level.Xue et al. (2018).
Conventional RNNs face difficulty in maintaining connections over increasing inter-
vals, akin to memory decay in the human brain. This issue, known as vanishing
gradient, is remedied by LSTM, which employs gate mechanisms to enhance infor-
mation flow between memory cells. These structures encompass input, output, and
forget gates.D. Zhang et al. (2018)
The figure 1.18 represents a structure of LSTM :

Figure 1.18: lustration of LSTM structure.Y. Ding et al. (2019)

1.3.3 Supervised Learning

In supervised learning, a collection of examples or training instances is supplied
along with their corresponding correct outputs. The algorithm improves its accuracy
by learning from these training sets and evaluating its output against the provided
inputs. Supervised learning is alternatively referred to as learning from examples
or learning from exemplars. Supervised learning tasks are classified into two main
types: classification tasks, where output labels are distinct, and regression tasks,
where output values are continuous. Such algorithms: Decision Tree, Naïve Bayes,
Support Vector Machines, Regression Analysis,..Alzubi et al. (2018)
example: Supervised learning is applied in predicting outcomes based on past data.
For instance:

• it can predict the Iris species by analyzing flower measurements

• or identify celestial objects such as galaxies, quasars

• or stars in a colored telescope image
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1.3.4 Unsupervised Learning

The unsupervised learning method focuses on identifying inherent patterns
within data to extract rules from them. This approach is suitable when the data’s
categories are unknown, and the training data lacks labels. Unsupervised learning is
considered a statistical approach, addressing the challenge of uncovering concealed
structures within unlabeled data.Alzubi et al. (2018)
Such algorithms: K-Means Clustering...
example:
Imagine a machine (or living organism) that receives a series of inputs x1,x2, x3,...,
which xt represents the sensory input at time t. This input, commonly referred
to as the data, may include information like an image on the retina, pixels from a
camera, or a sound waveform. It could also encompass less evident sensory data,
such as the words in a news story or the items listed in a supermarket shopping
basket.Ghahramani (2003)
We show a representation of image Supervised Learning vs Unsupervised Learning
in figure 1.19

Figure 1.19: Supervised Learning vs Unsupervised Learning.ARK (n.d.)

1.3.5 Semi-Supervised Learning

Semi-supervised learning is a type of machine learning that falls somewhere
between unsupervised and supervised learning. It involves extending either un-
supervised or supervised learning to include additional information typical of the
other learning paradigm. Semi-supervised learning includes two main settings, semi-
supervised classification, and constrained clustering.Zhu & Goldberg (2022)
Semi-supervised classification, also known as classification with labeled and unla-
beled data, extends the supervised classification problem, where the training data
consists of both labeled and unlabeled instances. The goal here is to train a classifier
from both the labeled and unlabeled data, such that it is better than the supervised
classifier trained on the labeled data alone.Zhu & Goldberg (2022)
Constrained clustering, on the other hand, extends unsupervised clustering and in-
volves training data consisting of unlabeled instances, as well as some ”supervised
information” about the clusters. This may include constraints such as ”must-link”
and cannot-link” constraints, as well as size constraints. The goal of constrained
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clustering is to obtain better clustering than the clustering from unlabeled data
alone.Zhu & Goldberg (2022)
In a supervised learning framework, we are provided with a set of (l):
x1, . . . , xl ∈ X
with corresponding labels
y1, . . . , yl ∈ Y
Additionally, we are given (u):
independently identically distributed examples
Unlabeled examples.
xl + 1, . . . , xl + u ∈ X Learning (2006)

Such algorithms:

• Self-training.

• Mixture models.

• Semi-supervised SVM.

• Generative adversarial networks( Audio and video ‘manipulation, Data cre-
ation.

• Self-trained Naive Bayes classifier(Natural language processing).

Example:

• Using in Tracking visual objects in the field of computer vision(In order to
handle rapid appearance changes). Zeisl et al. (2010)

• Processing documents and contemporary genetic studies. Bair (2013)

The figure 1.20 shows how Semi-supervised Learning

Figure 1.20: Semi-supervised Learning how it work. Dubey (n.d.)
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1.3.6 Reinforcement learning

Reinforcement learning is a field of machine learning Handle how software
agents should act an environment in which an idea can be maximized Cumulative
rewards. Reinforcement learning is one of the three Basic paradigms of machine
learning and supervised learning and unsupervised learning. The figure 1.21 shows
Reinforcement learning, and how it works.Mahesh (2020)

Figure 1.21: Reinforcement learning.Mahesh (2020)

1.3.7 Self-Supervised Learning

The effectiveness of deep learning often demands substantial volumes of expen-
sive annotated data. To address this constraint, self-supervised learning (SSL) has
emerged, seeking to mitigate the reliance on labeled data by formulating domain-
specific pretext tasks using unlabeled data. Jin et al. (2020)
Self-supervised learning techniques have incorporated a combination of generative
and contrastive approaches, effectively harnessing unlabeled data to acquire mean-
ingful representations. Jaiswal et al. (2020). While modern self-supervised methods
are recognized as cutting-edge technology in semi-supervised learning.Hendrycks et
al. (2019).

We show an example of image recognition in the figure 1.22.

Figure 1.22: Self Supervised Learning how it work. Jain (n.d.).

Self-supervised learning, a technique for learning features without manual an-
notations, has been successfully applied to semi-supervised learning in time series
classification.Jawed et al. (2020) The self-training algorithm, a classic approach in
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semi-supervised learning, has been theoretically analyzed and shown to benefit from
sample rejection, regularization, and class margin.Oymak & Gulcu (2020)presents
a simple yet effective semi-supervised algorithm based on self-supervised learning
for image classification. Lastly, Triguero et al. (2015) provides a comprehensive
survey of self-labeled techniques for semi-supervised classification, with a focus on
their performance in transductive and inductive classification.

1.3.8 Comparison between Semi-Supervised Learning and
some machine learning methods

We review the most important differences between Semi-Supervised Learning
and Supervised, Unsupervised Learning in table 1.1 :

Table 1.1: Comparison of machine learning types.H. Ding et al. (2023)
Items Supervised

learning
Semi-
supervised
learning

Unsupervised
learning

Input type Labelled data A mixture of
labelled and
unlabelled
data

Unlabelled
data

Accuracy High Mid Low
Complexity of the algorithm Low Mid High
Types of algorithm Regression and

classification
Regression,
classification,
clustering, and
association

Clustering and
association

1.4 Conclusion

The chapter mentioned the main concepts in the field of signals and the electro-
magnetic spectrum, as well as the basics and concepts related to artificial intelligence
and machine learning, with deep learning that proves its choice in solving the radio
signal classification problem.
The next chapter will be devoted to the state of the art in the field of classification
of radio signals.
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Related Work

2.1 Modulation Classification

In the domain of Modulation classification, a series of studies have investigated
the application of deep learning for radio signal classification. These studies have
collectively demonstrated the potential of deep learning, particularly in real-time
and embedded systems.

A work by Tandia, M. F., & Hutomo, I. S. (2020) titled :”Enhanced Low SNR
Radio Signal Classification using Deep Learning”, made a significant contribution
to the field of radio signal classification. Their research focused on the application
of deep learning for signal classification, particularly in conditions of low Signal-to-
Noise Ratio (SNR). The authors noted that traditional signal classification methods
required the decomposition of the signal using techniques such as Fourier Transform
(FT), Scale-Invariant Feature Transform (SIFT), Mel Frequency Cepstral Coeffi-
cients (MFCC), or other handcrafting methods using statistical modulation fea-
tures. However, they observed that deep learning methods could be applied to the
same problem of signal classification and showed excellent results while completely
avoiding the need for difficult handcrafted feature selection. In their work, Tan-
dia and Hutomo highlighted that while ResNet, a state- of-the-art computer vision
model, was used in 2018 to classify radio communication signals, it failed to distin-
guish signals with low SNR conditions. They noted that ResNet only worked well on
signals with high SNR conditions. In response to the limitations of existing meth-
ods, Tandia and Hutomo proposed a new state-of-the-art method to better classify
radio-signal networks that works on both signals with low noise (High SNR) and
signals with high noise (Low SNR) 2.1. Their method even works using only RAW
signals without the need for preprocessing or denoising the noisy signal. Tandia &
Hutomo (2020).

An in-depth study was conducted by O’Shea, Roy, and Clancy (2018) on the
performance of deep learning-based radio signal classification for radio communi-
cations signals. Their work makes a significant contribution to the field of radio
signal classification using deep learning. The authors considered a rigorous baseline
method using higher order moments and strong boosted gradient tree classification.
They compared the performance between these two approaches across a range of
configurations and channel impairments. They also considered the effects of car-
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Figure 2.1: Classifier Network of Signals with High and Low SNR

rier frequency offset, symbol rate, and multi-path fading in simulation. Besides
their theoretical work, the authors conducted over-the-air measurements of radio
classification performance in the lab using software radios. They compared the per-
formance and training strategies for both the deep learning method and the baseline
method. Finally, the authors discuss the remaining problems and design consider-
ations for using these methods, providing useful suggestions for future research in
the area O’Shea et al. (2018).

Xu and Darwaze (2020) conducted a comprehensive study on non-cooperative
communications, where a receiver can automatically distinguish and classify trans-
mitted signal formats prior to detection. Their work is a significant contribution
to the field of low-cost and low-latency systems. The authors focused on the deep
learning enabled blind classification of multi-carrier signals covering their orthogo-
nal and non-orthogonal varieties. They defined two signal groups, in which Type-I
includes signals with large feature diversity while Type-II has strong feature sim-
ilarity. They evaluated time-domain and frequency-domain convolutional neural
network (CNN) models in simulation with wireless channel/hardware impairments.
Simulation results revealed that the time-domain neural network training is more
efficient than its frequency-domain counterpart in terms of classification accuracy
and computational complexity. In addition, the time-domain CNN models can clas-
sify Type-I signals with high accuracy but reduced performance in Type-II signals
because of their high signal feature similarity. Experimental systems were designed
and tested, using software defined radio (SDR) devices, operated for different signal
formats to form full wireless communication links with line-of- sight and non-line-of-
sight scenarios. Testing, using four different time-domain CNN models, showed the
pre-trained CNN models to have limited efficiency and utility due to the mismatch
between the analytical/simulation and practical/real-world environments. Trans-
fer learning, which is an approach to fine-tune learnt signal features, was applied
based on measured over-the-air time-domain signal samples. Experimental results
indicated that transfer learning based CNN can efficiently distinguish different sig-
nal formats in both line-of-sight and non-line-of-sight scenarios with great accuracy
improvement relative to the non-transfer-learning approaches T. Xu & Darwazeh
(2020).

27



Chapter 2. Related Work

2.2 Semi-Supervised Learning

X. Zhu and Goldberg’s (2009) work, “Introduction to Semi-Supervised Learn-
ing”, provides a comprehensive overview of semi-supervised learning, a learning
paradigm that deals with both labeled and unlabeled data. This paradigm is of
great interest in machine learning and data mining due to its potential to use readily
available unlabeled data to improve supervised learning tasks when labeled data is
scarce or expensive. The authors present popular semi-supervised learning models,
including self-training, mixture models, co-training and multiview learning, graph-
based methods, and semi-supervised support vector machines. For each model, they
discuss its basic mathematical formulation. They emphasize the assumptions made
by each model and provide counterexamples when appropriate to demonstrate the
limitations of the different models. The authors compare semi-supervised learning
with traditional learning paradigms, namely unsupervised learning (e.g., cluster-
ing, outlier detection) where all the data is unlabeled, and supervised learning (e.g.,
classification, regression) where all the data is labeled. They discuss how combining
labeled and unlabeled data may change the learning behavior and how algorithms
can be designed to take advantage of such a combination. Semi- supervised learning
also shows potential as a quantitative tool to understand human category learning,
where most of the input is self-evidently unlabeled. This aspect of their work could
be particularly relevant if a research involves understanding or mimicking human
learning processes. The authors conclude the book with a computational learning
theoretic perspective on semi-supervised learning and a brief discussion of open
questions in the field. This provides valuable insights for future research in this
area Zhu & Goldberg (2022).

A paper of Zeisl et al. (2010) introduces an online semi-supervised learn-
ing algorithm that integrates both approaches into a unified framework, aiming
to achieve more robust results compared to their applications. Furthermore, a
unified loss function is introduced, leveraging both labeled and unlabeled samples
concurrently, enhancing the tracker’s adaptability in contrast to earlier online semi-
supervised methods. Experimental results demonstrate that by incorporating the
semi-supervised multiple-instance approach and employing robust learning tech-
niques, the proposed method surpasses state-of-the-art approaches across various
benchmark tracking videos Zeisl et al. (2010).

The work by Thomas N. Kipf and Max Welling titled “Semi-Supervised Clas-
sification With Graph Convolutional Networks”, presented a scalable approach for
semi-supervised learning on graph-structured data. This work is based on an ef-
ficient variant of convolutional neural networks which operate directly on graphs,
making a significant contribution to the field of semi-supervised learning. The au-
thors motivated the choice of their convolutional architecture via a localized first-
order approximation of spectral graph convolutions. Their model scales linearly in
the number of graph edges and learns hidden layer representations that encode both
local graph structure and features of nodes. In a number of experiments on citation
networks and on a knowledge graph dataset, Kipf and Welling demonstrated that
their approach outperforms related methods by a significant margin. This indicates
the effectiveness of their approach in practical applications Kipf & Welling (2016).

Augustus Odena in (2016) in his work, presented a novel approach for semi-
supervised learning using Generative Adversarial Networks (SGANs). That work
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is a significant contribution to the field of semi-supervised learning and generative
models. The author extended GANs to the semi-supervised context by forcing
the discriminator network to output class labels. A generative model G and a
discriminator D were trained on a dataset with inputs belonging to one of N classes.
At training time, D was made to predict which of N+1 classes the input belongs to,
where an extra class was added to correspond to the outputs of G. The experiments
conducted by the authors on the MNIST dataset to compare the performance of
SGANs and regular GANs. They trained an SGAN using the actual labels of MNIST
dataset and with only the labels REAL and FAKE, and found that the results from
the SGAN were much clearer than those from the regular GAN. This observation
has held true across a variety of initializations and network architectures. It was
demonstrated that this method can be used to create a more data efficient classifier
and that it allows to generate higher quality samples than a regular GAN, which
illustrates the effectiveness of the approach in practical applications Odena (2016).

Another interesting paper of “Sohn, K., Berthelot, D., Carlini, N., Zhang, Z.,
Zhang, H., Raffel” (2020) titled “FixMatch: Simplifying Semi-Supervised Learning
with Consistency and Confidence”. The authors presented a new algorithm, Fix-
Match, that simplifies semi-supervised learning by combining two common methods:
consistency regularization and pseudo-labeling. Their work represents a significant
addition to the semi-supervised learning field. FixMatch first generates pseudo-
labels using the model’s predictions on weakly-augmented unlabeled images. For
a given image, the pseudo-label is only retained if the model produces a high-
confidence prediction. The model is then trained to predict the pseudo-label when
fed a strongly augmented version of the same image 2.2. Despite its simplicity,
FixMatch achieves state-of-the-art performance across a variety of standard semi-
supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250
labels and 88.61% accuracy with 40 – just 4 labels per class. The authors also
carried out an extensive ablation study to tease apart the experimental factors that
are most important to FixMatch’s success Sohn et al. (2020).

Figure 2.2: Diagram of FixMatch, the proposed semi-supervised learning algorithm.

In the work presented by Ya Tu, Yun Lin, Jin Wang, and Jeong-Uk Kim, titled
“Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal
Modulation Classification”, a results of an exploratory study on the potential of
Deep Learning to solve signal modulation recognition problems, especially in the
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context of automatic modulation classification in cognitive radio networks. The
work is a significant contribution to the field of semi-supervised learning and signal
modulation classification. The authors acknowledged the complexity of DL models
and their propensity for overfitting, especially given the need for large amounts of
high-quality labeled training data, which may not always be readily available or
affordable. The authors suggested using semi-supervised learning as a technique to
efficiently use unlabeled data to reduce overfitting as a solution to this issue. More
precisely, they proved that Generative Adversarial Networks are useful in creating
a classifier that is more data-efficient by extending them to the semi-supervised
learning setting Tu et al. (2018).

The work of Min Ma, Shanrong Liu, Shufei Wang, and Shengnan Shi (2024)
titled “Refined Semi-Supervised Modulation Classification: Integrating Consistency
Regularization and Pseudo-Labeling Techniques” presented a novel semi- supervised
approach for Automatic Modulation Classification, a crucial aspect of wireless com-
munication that involves identifying the modulation scheme of received signals 2.3.
Their work is a significant contribution to the field of semi-supervised learning and
signal processing. Recognizing the challenge of performing accurate signal process-
ing without prior information and the dependency of deep learning’s effectiveness on
the availability of labeled samples, the authors introduced a method that combines
consistency regularization and pseudo-labeling. This method leverages the inherent
data distribution of unlabeled data to supplement the limited labeled data. Their
approach involves a dual- component objective function for model training: one part
focuses on the loss from labeled data, while the other addresses the regularized loss
for unlabeled data, enhanced through two distinct levels of data augmentation. The
authors demonstrated that their method outperforms established benchmark algo-
rithms such as decision trees (DTs), support vector machines (SVMs), pi-models,
and virtual adversarial training (VAT). It exhibits a marked improvement in the
recognition accuracy, particularly when the proportion of labeled samples is as low
as 1–4 M. Ma et al. (2024).

Figure 2.3: A semi-supervised learning framework for signal recognition.

The paper ”Self-Contrastive Learning based Semi-Supervised Radio Modula-
tion Classification” by Dongxin Liu, Peng Wang, Tianshi Wang, and T. Abdelzaher
(2021) makes progress in the fields of semi-supervised learning and signal processing
by presenting a novel semi-supervised learning framework specifically designed for
automatic modulation classification. The framework strategically utilizes unlabeled
signal data and incorporates a self-supervised contrastive learning pre-training step.
This approach allows the framework to achieve improved performance with smaller
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amounts of labeled data, effectively reducing the labeling workload associated with
deep learning. The performance of this semi- supervised framework was assessed on
a publicly available dataset. The evaluation results revealed that the semi- super-
vised approach surpasses the performance of supervised frameworks. It significantly
enhances its capacity to train deep neural networks for automatic modulation clas-
sification by leveraging unlabeled data D. Liu et al. (2021).

The paper : “Augmented Semi-supervised Learning for CNN Based Automatic
Modulation Classification” by Hu Liu, Zhechen Zhu, proposes a semi-supervised
learning strategy for a modulation classifier based on convolutional neural networks
(CNNs), with the goal of reducing the number of labeled signals needed while pre-
serving good classification performance. The traditional semi-supervised learning
framework has been modified by a number of approaches, which has increased mod-
ulation classification performance. The results show that the suggested approach
performs much better than a similarly labeled signal-limited classifier, reaching ac-
curacy values that are comparable to a fully supervised classifier with a large number
of labeled signals H. Liu & Zhu (2022).

2.3 Conclusion

This chapter is dedicated to the state-of-the-art in Semi-Supervised Automatic
Modulation Classification, where we delved into a selection of research papers that
highlight Automatic Modulation Classification, Semi-Supervised Learning, and the
intersection of the two. A lot of work has been done in this domain, but we have
selected some of it to present in this chapter to find out what's going on in the
field and to keep up with the latest developments. The next chapter is devoted to
practical implementations.
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Experiment/ Implementation

3.1 Introduction

The role of automatic modulation classification (AMC) is crucial in modern
wireless communication systems, as it enables efficient spectrum utilization, sig-
nal detection, and interference mitigation. While traditional supervised learning
approaches for AMC have achieved significant success by training classifiers on la-
beled datasets to accurately identify modulation schemes across various operating
conditions, the reliance on annotated data poses challenges especially in scenarios
where obtaining large labeled datasets is impractical or cost-prohibitive.

In response to these challenges, semi-supervised learning (SSL) techniques have
emerged as promising alternatives. SSL leverages both labeled and unlabeled data
during model training. By utilizing the abundant unlabeled data available in real-
world scenarios, SSL aims to enhance the generalization, adaptability, and robust-
ness of modulation classifiers. This chapter delves into the application of SSL
methods for AMC, with a specific focus on using the RML2016.10a1 dataset as
a benchmark for evaluation.

3.2 Datasets details

A dataset produced through the utilization of GNU Radio for synthetic gen-
eration, This dataset was initially unveiled during the 6th Annual GNU Radio
Conference O’shea & West (2016).

The input data dimension of 2 × 128, 2 × 128 and 2 × 1024, respectively.
The RML2016.10a dataset comprises 220,000 modulated signals, representing 11
frequently employed modulation schemes. We split the datasets into labeled, unla-
beled, and test sets using a 0.2:0.5:0.3 ratio per class, randomly selecting samples.
The loss function employed is categorical cross-entropy F. Zhang et al. (2021).

1https://www.deepsig.ai/datasets/
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This dataset comprises 220,000 signals across signal-to-noise ratios ranging
from -20 to 18 decibels, encompassing 11 modulation categories including 8 dig-
ital and 3 analog types H. Ma et al. (2020) :

• 8 digital modulations: BPSK, QPSK, 8PSK, QAM16, QAM64, GFSK, CPFSK,
PAM4.

• 3 analog modulations: AM-SSB, AM-DSB, WBFM.

We present some examples of signals in the form of graphical images, and on
the opposite side in the form of spectral images, and the figure 3.1 represents these
signals.

Figure 3.1: Some examples of representations of signals

3.3 Environment

• Python
Python is merely one of numerous programming languages available. Similar
to the diversity found in human languages, the realm of computer languages
encompasses various options, including Java, it’s a robust and graceful pro-
gramming language, characterized by its simplicity in readability and compre-
hension. It encompasses many features shared by numerous other languages,
making it valuable for practical applications. Additionally, it’s freely avail-
able software Python (2021),it was created in 1991 by Guido van Rossumt
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and is used for: web development,software development, gui mathematics
Van Rossum & Drake (2009).

• PyTorch PyTorch, an open-source machine learning framework, derives its
foundation from the Torch library and is chiefly advanced by Facebook’s AI
Research lab. It furnishes a versatile, effective, and user-friendly environment
tailored for constructing and refining AI models, with a special focus on ma-
chine learning and deep learning domains. Embraced across academia and
industry, PyTorch stands out for its user-friendly syntax, dynamic computa-
tion graph, and robust framework for constructing neural networks Jalolov
(2023).

• keras
Keras represents a Python-based, high-level neural network interface capa-
ble of operating atop TensorFlow and various underlying frameworks, Keras
is capable of processing diverse neural network elements, including dense lay-
ers, convolutional layers, recurrent layers, dropout layers, and their respective
modifications, the code dynamically manages resources like the Central Pro-
cessing Unit (CPU) and Graphics Processing Unit (GPU), optimizing their
utilization Chicho & Sallow (2021).

• Matplotlib Matplotlib is widely recognized as a leading Python library for
data visualization. Spearheaded by John Hunter and a collaborative team, it
has become indispensable for researchers and scholars globally. This graphics
library is an essential part of the Python data science ecosystem, seamlessly
compatible with NumPy, Pandas, and other related libraries Sial et al. (2021).

• Numpy Numpy, an abbreviation for Numerical Python, has been funda-
mental in Python’s numerical computing landscape for quite some time. It
offers essential data structures, algorithms, and library integration crucial
for a wide array of scientific tasks involving numerical data within Python
McKinney (2012). This Python package is pivotal for scientific computing,
introducing features such as N-dimensional array handling, element-wise op-
erations (broadcasting), essential mathematical functions like linear algebra,
and the capability to integrate C/C++/Fortran code Bressert (2012).

• Pandas Pandas stands as a Python module employed in handling datasets,
equipped with tools for data analysis, refinement, investigation, and modifi-
cation. Originating in 2008 from the efforts of Wes McKinney, it serves as a
cornerstone for data analysis endeavors within the Python ecosystem H. Singh
& Dhir (2019).

• Seabron Seaborn, a graphic visualization tool, is constructed upon Mat-
plotlib’s fundamental settings. It offers users easy access to widely used
data visualization techniques, including mapping colors to variables and im-
plementing faceting, globally. Additionally, Seaborn is well-integrated with
Pandas DataFrames for streamlined data manipulation Sial et al. (2021).

• OS Python’s OS library offers valuable tools for engaging with one’s operating
system, constituting part of Python’s standard utility modules. It furnishes a
platform-independent method for accessing operating system-specific features.
Within this module, both ’os’ and ’os.path’ incorporate a range of functions
tailored for interacting with the file system A. Singh & Singh (2020).
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• GPU GPU acceleration is derived from extensive data parallelism, wherein
numerous independent operations are executed simultaneously on multiple
data elements. For instance, in graphics, a typical data-parallel operation
involves applying a rotation matrix across coordinates representing object
positions during view rotations. Likewise, in molecular simulations, data par-
allelism can be employed for the independent computation of atomic potential
energies. Similarly, deep learning model training entails forward and back-
ward passes, typically expressed as matrix transformations that lend them-
selves well to parallelization Pandey et al. (2022).

3.4 Network architecture

3.4.1 CNN Architecture Approach

For implement the signal modulation classification model,in our work, we uti-
lized the entire dataset.
The Convolutional neural networks model is considered more significant in this
work, as we design a CNN structure for signal modulation recognition,the table
3.4.1 illustrates the proposed CNN architecture.

Table 3.1: CNN Architecture
Layer(type) Output Shape Param #
Conv2d-1 [-1, 256, 2, 128] 1024

BatchNorm2d-2 [-1, 256, 2, 128] 512
Dropout-3 [-1, 256, 2, 128] 0
Conv2d-4 [-1, 128, 2, 128] 98,432

BatchNorm2d-5 [-1,128, 2, 128] 256
Dropout-6 [-1,128, 2, 128] 0
Conv2d-7 [-1,64,2,128] 24,640

BatchNorm2d-8 [-1,64,2,128] 128
Dropout-9 [-1,64,2,128] 0
Conv2d-4 [-1, 32, 2, 128] 6,176

BatchNorm2d-8 [-1,32,2,128] 64
Dropout-9 [-1,32,2,128] 0
Linear-10 [-1,256] 2,097,408

Dropout-11 [-1,256] 0
Linear-12 [-1,128] 32,896
Linear-13 [-1,64] 8,256
Linear-14 [-1,11] 715

Total params 2,270,507
Trainable params 2,270,507

Non-trainable params 0
Forward/backward pass size (MB) 2.82

Params size (MB) 8.66
Estimated Total Size (MB) 11.48
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3.4.2 The main steps used for the SSL algorithm

• Step 1 In the beginning, we train the labeled data with the CNN architect -
training is only on the labeled data - to come up with a primary model.

(repeat next steps until arrival condition)

• Step 2 We defined 4 successive confidence coefficients [0.9, 0.8, 0.7, 0.6], with
a loop for 4-step.

• Step 3 In each step, we project the remaining examples of unlabeled data onto
the model extracted from the previous step, And We calculate its(unlabeled
data) confidence coefficient.

• Step 4 Then we take from the unlabeled data the examples above the specified
confidence coefficient and concatenate them into the labeled data.

• Step 5 Then we retrain on the updated labeled data.

• Step 6 Finally, we calculate the accuracy and loss for the last model.
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3.5 Results

The following figures show the learning curve (Accuracy, Loss) for zero-confidence
and the 4 confidence levels ([0.9, 0.8, 0.7, 0.6]) of the semi-supervised model after
train 40 epochs.

Figure 3.2: shows the learning curve of a zero-confidence semi-supervised model
trained on 20% of a labeled dataset.
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Figure 3.3: shows the learning curve of a 0.9 confidence semi-supervised model
trained on the 1st update of the labeled dataset.
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Figure 3.4: shows the learning curve of a 0.8 confidence semi-supervised model
trained on the 2nd update of the labeled dataset.
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Figure 3.5: shows the learning curve of a 0.7 confidence semi-supervised model
trained on the 3rd update of labeled dataset..
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Figure 3.6: shows the learning curve of a 0.6 confidence semi-supervised model
trained on the 4th update of the labeled dataset.
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Figure 3.7: Shows the learning curve of a CNN model trained on 20% of a labeled
dataset
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3.5.1 Analysis of the results

In the beginning, the model’s performance was weak, since it had not been
trained on the entire data set, then began to improve after each training on labeled
data, whose size increased each time. However, the results were still poor due to
several factors:

• Initial training data (20%) were randomly divided between training and test.

• The architecture of the CNN model was not well designed.

• The model wasn’t trained enough, it was trained over 40 epochs, and according
to what we see on the learning curves, it’s clear that the accuracy curve is
still increasing, but it’s interrupted at 40 epochs.

3.5.2 Comparison between the steps of the SSL and CNN

The table 3.2 is a summary of the best results (accuracy/loss) from the previous
training phases. It shows a comparison between the different confidence levels of
the semi-supervised models and the CNN model.

The table shows different accuracy and loss values for different training sizes,
corresponding to different confidence levels.

Table 3.2: Comparison between acc and loss values using SSAMC and CNN
Confidence Val_acc Val_loss Train Added cell

0 0.2357 1.9737 44000 0
0.9 0.2564 2.0434 44646 646
0.8 0.2437 2.0210 45007 361
0.7 0.2695 1.9151 47938 2931
0.6 0.2361 1.8768 50335 2397

CNN 0.2116 2.0480 44000 /

The following figure (3.8) better interprets the data in the table (3.2) and shows
the evolution of the accuracy and the loss according to the confidence level.

We can clearly see that the accuracy of the model is at its best at a confidence
level equal to 0.7, which corresponds to an unlabeled training data size equal to
2931, after which it deteriorates a bit. This performance of this semi-supervised
model is clearly better than the CNN model.
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Figure 3.8: Comparison graph between the accuracies of the semi-supervised mod-
els according to the confidence levels and also with the CNN model. .

3.6 Conclusion

In this chapter, we have implemented a semi-supervised learning model. This
model is designed to initially train on a small amount of labeled data. As it learns,
it gradually improves its performance by incorporating additional unlabeled data.
This approach uses a large amount of unlabeled data compared to labeled data.

We have also conducted a comparative study of this semi-supervised model
with a traditional supervised CNN model. The comparison focuses on different
confidence levels to provide a comprehensive understanding of the strengths and
weaknesses of both models.
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Conclusion

In this thesis we explore the implementation of semi-supervised learning to
train a classifier. This classifier, designed for the task of classifying radio signals,
is capable of learning from a combination of a small amount of labeled data and a
larger amount of unlabeled data.

Despite the shortcomings mentioned in Section 3.5.1, the results show that
the performance of this semi-supervised model significantly outperforms that of the
supervised (CNN) model.

Furthermore, the goal is to study the efficiency of a semi-supervised learning
model and its ability to use both labeled and unlabeled data, and we come to
the conclusion that for smaller labeled datasets we prefer to use semi-supervised
learning, while for larger labeled datasets we opt for supervised learning. This
highlights the versatility of semi-supervised models, which are particularly useful in
areas where labels are scarce and difficult to obtain.

There are many factors still need improvement. The architecture of the super-
vised model need to be well designed, training labeled data must be balanced, give
the model enough number of epoch to get trained sufficiently and finally choose a
good semi-supervised algorithm like: “semi-supervised generative Adversarial net-
work (SGAN)” Odena (2016) or “FixMatch: Simplifying Semi-Supervised Learning
with Consistency and Confidence”, Sohn et al. (2020).
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