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 الملخص

 لضمان متقدمة تقنية ال   لوحيتطلب  مما والنهار، الليل بين الحرارة درجات في الكبير التفاوت أبرزها حادة، مناخية تحديات المحمية الزراعة تتواجه

 مع الحراري، التخزين تقنياتو الفعاّل الهندسي التصميم بينيجمع  متكامل نموذج تطوير إلى الدراسة هذه تهدف .الإنتاجية وتعزيز الدفيئة داخل ملائم مناخ

طناعي الذكاء استخدام  .الداخلية الحرارة بدرجة للتنبؤ الص 

 الطاقات في التطبيقي البحث وحدة ضمن وذلك الشمسية، الطاقة لتخزين شمالي بجدار مدمجة شمسية دفيئة إنشاء تم

، شما °32.36( بغرداية المتجددة  محلية صخور من دمشيّ  مربعاا، ارا مت 1.62 بمساحة جدار على الحراري النظام يعتمد ).غرباا °3.51 ال 

 داخل المناخية الظروف حسينلت الا ليوإطلاقها  النهار خلال الزائدة الحرارة تخزين على الجدار هذا يعمل .الممتازة الحرارية لخصائصها مختارة

 بالهواء مقارنة مئوية درجة 2.7 بحوالي أعلى كانت الشمسي بالجدار المجهزة الدفيئة داخل الهواء حرارة درجة أن التجريبية القياسات أظهرت. الدفيئة

طناعية العصبية شبكاتال نهج على قائم عددي نموذج ور¸ ّّ  ط  . الليلي الحراري الفارق تقليلفي  النظام فعالية على يدل مما الليل، خلال الخارجي  للتنبؤ الص 

 معاملتجاوز  حيث عالياا، اء اأد النموذج نتائج أظهرت وقد .التجربة من والخارجية الداخلية المناخ بيانات إلى استناداا الداخلية، الحرارة بدرجة بدقة

تباط  .القاسية المناخية البيئات في المحمية الزراعة لتحديات مستدام كحل وموثوقيته فعاليته يؤكد مما ،98% الر 

 

طناعية، العصبية الشبكات الحراري، التخزين الدفيئة، :المفتاحية الكلمات  .الحرارة درجة التنبؤ، الص 

 

RESUME 

L’agriculture protégée fait face à des défis climatiques majeurs, notamment une variation 

importante des températures entre le jour et la nuit, ce qui nécessite des solutions 

technologiques avancées pour garantir un climat intérieur adéquat et améliorer la productivité. 

Cette étude vise à développer un système intégré combinant un design efficace, des 

techniques de stockage thermique et l’utilisation de l’intelligence artificielle pour prédire la 

température intérieure. Une serre solaire a été réalisée au sein de l’Unité de Recherche 

Appliquée en Énergies Renouvelables de Ghardaïa (32.36° Nord, 3.51° Ouest), intégrant un 

mur nord destiné au stockage de l’énergie solaire. Ce mur à une superficie de 1,62 m², il est 

constitué de roches locales soigneusement sélectionnées pour leurs excellentes propriétés 

thermiques. Il emmagasine la chaleur excédentaire durant la journée et la restitue pendant la 

nuit, permettant ainsi d’atténuer les écarts thermiques nocturnes. Les mesures expérimentales 

ont montré que la température de l’air à l’intérieur de la serre équipée du mur nord était 

supérieure d’environ 2,7 °C à celle de l’air extérieur durant la nuit, témoignant de l’efficacité 

du système. Une modélisation numérique base sur l'approche de réseaux neurones artificiels a 

été mis au point afin de prédire avec précision la température intérieure, en se basant sur des 

données climatiques internes et externes issues de l’expérimentation. Les résultats du modèle 

ont montré une performance élevée, avec un coefficient de corrélation dépassant 98 %, ce qui 

confirme son efficacité et sa fiabilité en tant que solution durable pour les défis de 

l’agriculture protégée dans des environnements climatiques extrêmes. 

 

Mots clés : Serre, Stockage Thermique, Réseaux de Neurones Artificiels, Prédiction, 

Température. 
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ABSTRACT 

Protected agriculture faces major climatic challenges, particularly the significant temperature 

difference between day and night. This requires advanced technological solutions to ensure a 

suitable indoor climate and enhance productivity. This study aims to develop an integrated 

system combining efficient design, thermal storage techniques, and artificial intelligence to 

predict the internal temperature. A solar greenhouse was constructed at the Applied Research 

Unit for Renewable Energy in Ghardaïa (32.36° North, 3.51° West), incorporating a north 

wall designed to store solar energy. This wall, with an area of 1.62 m², was built using locally 

sourced stones selected for their excellent thermal properties. It stores excess heat during the 

day and releases it at night, thereby reducing nighttime temperature fluctuations. 

Experimental measurements showed that the air temperature inside the greenhouse equipped 

with the thermal wall was about 2.7 °C higher than the outside air temperature at night, 

demonstrating the system’s effectiveness. 

This system was coupled with an artificial intelligence model based on artificial neural 

networks to accurately predict the internal temperature, using indoor and outdoor climatic 

data collected from the experimental setup. The model showed high performance and good 

agreement between predicted and measured values, with a correlation coefficient exceeding 

98%, confirming its efficiency and reliability as a sustainable and effective solution to the 

challenges of protected agriculture in harsh environments. 

 

Keywords: Greenhouse; Thermal Storage, Artificial Neural Networks, Prediction, 

Temperature. 
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GENERAL INTRODUCTION 

 
The world is seeing an increase in population growth, and this is being accompanied by 

a significant consumption of food products and daily necessities in various areas. On the other 

hand, the threats that have become threats to the world, such as environmental pollution and 

the need for food, research has turned to the optimal solution to achieve balance: the use of 

renewable energy, or what we call "unlimited and clean energy," and the exploitation of 

artificial intelligence to serve humanity [1]. One of the most important sustainable energies 

that humans are trying to exploit is solar energy, which has been used in several fields, 

including agriculture, particularly in developing greenhouses to overcome climate fluctuations 

and improve agricultural production, food quality, and availability in various regions of the 

world [2]. 

In general, the effectiveness of greenhouse and crop protection systems remains far 

from the desired results due to the harsh climate and daytime temperature fluctuations in 

semi-arid and arid regions. These pose serious challenges to plant growth, resulting in crop 

damage and consequently reduced yields. Given these challenges, it has become imperative to 

adopt innovative methods and approaches that create local climates favorable to plants. In this 

context, the integration of solar thermal storage systems with greenhouses has become 

imperative. This is coupled with the establishment and implementation of advanced 

technologies by Artificial Neural Network (ANN) to manage and predict internal climatic 

conditions to improve yields, both quantitatively and qualitatively [3]. 

In the context of the global shift towards sustainable and renewable energy sources, 

Algeria enjoys a strategic geographic location within the global solar belt, giving it 

exceptional potential for solar energy. 

This study aims to propose a new greenhouse design featuring a north-facing thermal 

storage wall as an innovative solution to improve agricultural conditions in arid and semi-arid 

climates. The model was implemented in the Ghardaia region of southern Algeria, known for 

its hot and arid environment. Additionally, the objective of this work is to develop a high- 

performance dynamic model of the Matlab software environment for experimental validation. 

The proposed modeling approach considers all parameters affecting the microclimate and 

greenhouse characteristics, using an artificial neural network to predict indoor air temperature 

based on experimental data from a real greenhouse installed in URAER. 
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This thesis is structured in four chapters: 

 

The first chapter highlights Algeria’s significant solar energy potential and its role in 

boosting agriculture. It reviews the national and global distribution of greenhouse areas, types 

of greenhouse structures, and key heat transfer mechanisms. The chapter also examines 

microclimate control factors and thermal storage technologies that enhance energy efficiency 

in greenhouses. 

The second chapter reviews recent studies on sensible and latent thermal storage 

systems, along with AI applications for predicting greenhouse climate. It analyzes system 

performance in improving indoor conditions and supports the development of smart control 

models for optimal plant growth and energy efficiency. 

The third chapter details the construction of a greenhouse model in Ghardaia with a 

thermal storage wall to enhance night-time heat retention. It presents the climate monitoring 

tools used and outlines the development of an AI model for predicting indoor temperature, 

from data processing to model validation. 

The final chapter presents and discusses the results, comparing experimental data with 

predictions from the AI model. This comparison assesses the model’s accuracy in simulating 

greenhouse temperature and its potential for practical use in climate control systems. 

Finally, general conclusions summarize the study’s key findings, along with practical 

suggestions to enhance the model’s performance and accuracy. These recommendations lay 

the groundwork for future research in greenhouse climate prediction and control. 
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I.1. Introduction 

A greenhouse is a controlled agricultural structure designed to optimize plant growth by 

regulating key environmental factors, such as temperature, humidity, and light. These 

controlled conditions promote crop growth while protecting plants from harsh climatic 

conditions. Greenhouses are widely used in modern agriculture as highly efficient systems 

designed to grow plants year-round, regardless of climatic conditions. 

A greenhouse is an engineered agricultural structure specifically designed to create 

controlled environmental conditions that optimize plant growth. By regulating key 

microclimatic parameters such as temperature, humidity, light intensity, and, in some cases, 

carbon dioxide concentration, greenhouses enable consistent and efficient crop production. 

These controlled conditions not only enhance photosynthetic activity and plant development 

but also provide protection against adverse external factors such as extreme temperatures, 

wind, and pests. In modern agriculture, greenhouses play a crucial role in ensuring food 

security and increasing productivity, especially in regions with unfavorable or highly variable 

climates. Their ability to support year-round cultivation makes them indispensable for the 

production of high-value crops, including vegetables, fruits, and ornamental plants. With 

growing interest in sustainable farming practices and resource optimization, greenhouse 

technology continues to evolve incorporating advanced materials, energy-efficient systems, 

and smart control strategies such as artificial intelligence to further enhance performance. 

This chapter introduces the fundamental concepts of greenhouse systems, highlighting 

their global relevance, structural components, and environmental control mechanisms, with a 

particular focus on their thermal behavior and the integration of renewable energy sources 

such as solar power. 

 

I.2. Solar potential 

I.2.1. Solar potential in the world 

The distribution of annual solar radiation across the Earth's surface varies, reflecting the 

availability of solar energy in different regions of the world. Areas near the equator, 

particularly the deserts of North Africa, the Middle East, and parts of Australia and South 

America, have the highest levels of solar radiation, making them ideal for harnessing solar 

energy. In contrast, radiation levels are lower in northern and southern regions far from the 

equator due to fewer hours of sunshine and high cloud cover, limiting the feasibility of solar 
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energy exploitation there [1]. This data is essential for identifying suitable locations for 

developing large-scale solar energy projects and supporting the global transition to clean and 

sustainable energy sources (Figure Ⅰ.1). 

 

 

Figure Ⅰ.1. Global horizontal irradiation [2] 

 

 

I.2.2. Solar potential in Algeria 

Solar radiation is a major source of renewable energy. It can be converted into heat or 

electricity and is used in various applications, including solar heating, solar buildings, and air 

conditioning. Algeria is currently focusing on harnessing solar energy as a free and 

environmentally friendly source and benefits from a high level of solar radiation [3] (Fig I.2). 

 
Table.Ⅰ.1. Solar potential in Algeria [4] 

 

Regions Coastal region Highlands Sahara 

Area (%) 4 10 86 

Average sunshine duration 

(h/year) 
2650 3000 3500 

Daily solar energy density 

(kWh/m²) 
4.66 5.21 7.26 

Average energy received 

(kWh/m²/year) 
1700 1900 2650 
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Figure I.2. The average annual global irradiation incident on a horizontal plane [3] 

 

 

I.3. Greenhouse cultivation 

I.3.1. Global areas of greenhouse cultivation 

Protected agriculture has experienced significant global advancement, driven by ongoing 

technological innovations. According to a recent report by the Food and Agriculture 

Organization (FAO) of the United Nations, the total area under greenhouse cultivation 

worldwide was estimated at approximately 4.9 million hectares in 2019. Figure Ⅰ.3 represent a 

substantial increase compared to earlier estimates 100,000 ha in 1980 and 450,000 ha in 

1998.The majority of greenhouse crops are cultivated in Asia, which accounts for 59% of the 

global total, followed by Europe at 21% and North America at 16%. [5]. 

 

 

Figure Ⅰ.3. Global inventory of greenhouse cultivation [6] 
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I.3.2. Algerian areas for greenhouse cultivation 

Greenhouse agriculture has seen substantial growth across the Mediterranean region, with 

an estimated 220,000 (ha) dedicated to this practice. The vast majority about 90% utilizes 

plastic coverings due to their cost-effectiveness, ease of installation, and flexibility, 

particularly in countries like Algeria [7]. The province’s agricultural development has 

accelerated notably since 2010, marked by a steady expansion in both greenhouse area and 

productivity [5]. Figure I.4 represents a view of agricultural greenhouses in different regions 

of Biskra and Tipaza. 

 

 

Figure Ⅰ.4. View of agricultural greenhouses in the regions Biskra and Tipaza respectively 
 

 

I.4. Greenhouse system 

I.4.1. Thermal behavior 

 

a. Heat Transfer 

Heat exchange within greenhouses typically occurs through three primary modes of heat 

transfer: conduction, convection, and radiation. These thermal processes usually take place 

simultaneously and interactively [8]. 

b. Mass transfer 

Mass transfer in greenhouses is closely linked to plant processes such as 

evapotranspiration, where moisture released by plants affects the internal temperature and 

humidity. Additionally, thermal mass such as the soil or water tanks inside the greenhouse 

plays a role in regulating temperature by storing heat during the day and releasing it at night 

[9]. 
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Figure Ⅰ.5. Thermal transfer processes in a greenhouse [8] 
 

 

I.4.2. Type of greenhouse 

Greenhouses come in various types and can be classified based on shape, structure, and 

environmental control systems [10]. Common types include lean-to, even-span, ridge-and- 

furrow, quonset, and gothic arch structures (see Figure Ⅰ.6). 

 

Figure Ⅰ.6. Greenhouse type [11] 
 

I.4.3. Cover material 

The choice of cover material plays a crucial role in greenhouse efficiency; common 

materials include glass, polyethylene film, polycarbonate sheets, and acrylic panels. Glass 

offers excellent light transmission and durability, while plastics like polyethylene are 

lightweight and cost-effective, making them suitable for a variety of climates and growing 

needs [10]. 
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Table Ⅰ.2. Comparison of different cover materials [10] 
 

Material Advantages Disadvantages 

 

 

 

Glass 

- High Light Transmission: Offers excellent transparency 

and allows the full spectrum of sunlight, crucial for 

photosynthesis. 

- Durability: Resistant to UV degradation and maintains 

clarity over time. 

- Aesthetic Appeal: Provides a clear and polished 

appearance, enhancing visual appeal 

- High Cost: Expensive in both material and installation. 

- Fragility: Prone to breakage under hail, high winds, or impact. 

- Heavy Weight: Requires a strong supporting structure. 

- Poor Insulation (single-pane): Leads to heat loss and higher 

energy costs. 

- Overheating Risk: Can trap excessive heat without proper 

ventilation. 
- Maintenance: Requires regular cleaning; more labor-intensive. 

 

 

 

Polycarbonate 

- Transparency: High visible light transmission, suitable for 

plant growth. 

- Impact Resistance: Extremely durable and shatter- 

resistant. 

- Lightweight: Easier handling and installation. 
- Thermal Insulation: Superior insulating properties, 

especially in multi-wall panels. 

- UV Protection: Can be coated to block harmful UV rays 

and extend lifespan 

- Higher Initial Cost: More expensive than plastic films. 

- Yellowing: May degrade and discolor over time without proper 

UV coating. 

- Scratching: Surface is prone to scratches, affecting light 

diffusion. 

- Condensation: Multi-wall panels may trap moisture, promoting 
fungal growth 

 

Plastic 

(Polyethylene 

Film) 

- Good Light Transmission: Adequate for plant needs, 

especially when new. 

- Temperature Regulation: Traps heat effectively, 
maintaining a stable environment. 

- Protective Barrier: Shields against pests, wind, and other 

external threats. 

- Cost-Effective: Lower cost and easy to replace. 

- Poor Insulation (single layer): Rapid heat loss in cold weather; 

not suitable for heat-sensitive crops. 

- UV Sensitivity: Requires UV-stabilized variants to avoid rapid 
degradation. 

- Low Durability: Prone to tearing and damage under harsh 

weather. 

- Maintenance Difficulty: Can be difficult to clean and maintain 
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I.4.4. Key climatic parameters 

The microclimate inside greenhouses represents the dynamic interaction of energy 

transfer, including radiation and heat, and mass transfer, such as water vapor flux and carbon 

dioxide concentration, within the plant canopy. This interaction involves exchanges between 

air, plant elements, and surrounding surfaces [12], making precise control of environmental 

factors essential for achieving optimal growth conditions. By regulating key factors such as 

solar radiation, air temperature (T), relative humidity (RH), and carbon dioxide (CO₂) 

concentration, growers can optimize environmental conditions, enhance plant adaptation, 

improve energy efficiency, and optimize water consumption [13]. 

 

 

Figure Ⅰ.7. Greenhouse microclimate parameters 

 

 

 

I.4.5. Greenhouses systems classification 

Greenhouses are typically classified as low-tech, medium-tech, or high-tech depending on 

their level of automation and climate control features. Low-tech greenhouses often rely on 

natural ventilation, while high-tech greenhouses incorporate advanced systems like automated 

irrigation, heating, cooling, and artificial lighting [14]. 

I.4.5.1. Cooling Systems 

Maintaining optimal temperatures in greenhouses is essential for healthy plant growth and 

high productivity. Excessive heat or cold can negatively affect plant development. The three 

primary methods used for cooling greenhouses include: 
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 Natural Ventilation: 

Passive ventilation is the most common cooling method in greenhouses. It relies on 

strategically placed openings that allow fresh air to enter and circulate naturally. Among the 

different designs, roof vents are five times more effective than side vents in promoting air 

exchange. 

 Forced Ventilation: 

Active ventilation involves the use of mechanical equipment, such as exhaust fans, to 

drive air movement within the greenhouse. It is important to conduct airflow studies across 

the length of the greenhouse to prevent localized overheating. Circulation fans are often used 

even in greenhouses with natural openings to ensure even air distribution throughout the 

structure. 

 Shading: 

During periods of intense sunlight and high temperatures, shade curtains can be deployed 

to reduce solar radiation by 30% to 50%, helping to maintain optimal internal conditions. 

I.4.5.2. Heating Systems 

An efficient and uniform heating system is one of the most critical factors in achieving 

successful agricultural production in greenhouses. Any heating system that maintains 

consistent temperature control without emitting harmful substances to the plants is considered 

acceptable. The choice of energy source depends on factors such as availability and cost in a 

given region. 

I.4.5.3. Dehumidification 

Warm air inside the greenhouse has a higher capacity to hold water vapor, which is 

beneficial for plants that thrive in humid conditions. However, excessive humidity can disrupt 

nutrient uptake particularly calcium leading to physiological disorders. On the other hand, 

insufficient humidity may also hinder plant development. Ventilation, both natural and forced, 

is a key strategy for regulating humidity levels, especially when they become too high. 

Figure I.8 illustrates a comprehensive classification of greenhouse (GH) systems based on 

their functional purposes, including crop production, crop drying, and energy management. 

For crop production, greenhouses utilize heating and cooling systems. Heating strategies can 

involve natural or forced ventilation, while cooling methods include both natural and forced 

ventilation, along with evaporative cooling techniques such as pad-fan systems and fogging. 
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In the context of crop drying, the use of active solar greenhouse driers is emphasized, 

which may also incorporate evaporative cooling. For thermal management, systems may 

utilize space heating and solar energy collectors, with ventilation categorized as either natural 

or forced. To support efficient energy use and climate control, various thermal energy storage 

and insulation solutions are integrated, including buried pipes, movable insulation, north 

walls, ground air collectors, and water tanks. This classification highlights the diversity and 

complexity of greenhouse climate control systems and underscores the importance of tailored 

design based on specific agricultural and climatic needs. 

 

 

 
Figure Ⅰ.8. Greenhouse systems classification 
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I.5. Conclusion 

This chapter provided a detailed overview of the fundamental aspects relevant to 

greenhouse cultivation with a particular focus on solar potential, greenhouse systems, and 

their thermal behavior. The global and Algerian contexts of solar energy availability were 

examined, confirming the high solar potential in regions like Algeria, which offers promising 

conditions for solar-driven greenhouse agriculture. 

A comprehensive review of greenhouse cultivation areas worldwide and within Algeria 

highlighted the growing importance of protected agriculture as a solution to climatic 

variability and the demand for year-round crop production. In this context, understanding the 

types of greenhouses, the selection of appropriate cover materials, and the classification of 

greenhouse systems is critical for optimizing crop yield and resource use. 

The chapter also addressed the thermal dynamics of greenhouse environments, including 

heat and mass transfer processes and their interaction with key climatic parameters such as 

temperature, humidity, and solar radiation. These parameters are central to maintaining 

optimal conditions for plant growth and energy efficiency. 

By integrating knowledge of regional solar potential with technical aspects of greenhouse 

systems, this chapter lays the groundwork for advancing sustainable and climate-resilient 

agricultural practices, particularly in sun-rich countries like Algeria. These insights will serve 

as a foundation for the following chapters, which explore advanced control strategies and the 

application of artificial intelligence in greenhouse climate management. 
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II.1. Introduction 

Effective management of the indoor climate in greenhouses is essential for minimizing 

energy consumption, enhancing agricultural productivity, and promoting sustainability. To 

achieve these objectives, two key technologies have emerged as critical: thermal energy 

storage systems and advanced climate prediction models. Thermal energy storage systems 

regulate internal temperatures within greenhouses, thereby reducing dependency on 

conventional energy sources. On the other hand, Artificial Neural Networks (ANNs) serve as 

powerful tools for modeling and predicting the complex, nonlinear interactions between 

various environmental parameters within the greenhouse, such as temperature, humidity, solar 

radiation, and CO₂ concentration. Integrating these two technologies holds significant 

potential for creating a more intelligent and energy-efficient agricultural environment, which 

can adapt to changing climate conditions and support long-term sustainability goals. 

In this literature review, we will delve into existing research and studies focused on 

various storage methods used in greenhouse systems. We will explore the properties, 

advantages, and limitations of these phenomena, highlighting their potential to improve 

greenhouse heating efficiency. By examining the results and methodologies of previous 

studies, we aim to gain a comprehensive understanding of the various natural materials used 

in thermal storage for heating and/or cooling. This knowledge will help identify the most 

promising greenhouse design and materials and inform future research directions. 

Furthermore, this literature review will provide a solid foundation for our own research, 

allowing us to propose numerical approaches using artificial intelligence methods and 

innovative strategies to optimize thermal storage performance in greenhouses using natural 

materials. Overall, this literature review will be a valuable resource for researchers, 

practitioners and stakeholders in the field of greenhouse technology, providing a 

comprehensive overview of the current state of knowledge regarding natural thermal storage 

materials for improving the internal climate of greenhouses. 

 

 

II.2. Thermal energy storage systems 

Greenhouse growers strive to maximize yields while minimizing operational costs, with 

heating representing the most significant expense, primarily reliant on fossil fuels. However, 

the environmental impact of fossil fuel consumption and concerns over energy security 
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underscore the urgent need for renewable energy sources and enhanced efficiency. Since the 

1970s, Thermal Energy Storage (TES) systems have emerged as a highly effective solution 

for improving energy efficiency compared to conventional methods, while also providing 

alternative heating and cooling strategies [1]. The primary function of TES systems is to 

reduce heat loss by storing excess thermal energy for later use [2]. TES technologies are 

broadly classified into three main categories: Sensible thermal energy storage (STES), Latent 

thermal energy storage (LTES), and Thermo-chemical energy storage (TCES) [3]. 

Efficient thermal storage plays a crucial role in improving greenhouse microclimates, 

reducing energy consumption, and enhancing sustainability. Figure ⅠI.1explores Development 

of research on the use of thermal storage in greenhouses. 

 

 
Figure ⅠⅠ.1. Development of research on the use of thermal storage in greenhouses 

(Source : The authors, 2025) 

 

 

II.2.1 Water tank storage system 

Utilizing water tanks as Thermal Energy Storage (TES) systems in greenhouses presents a 

practical and energy-efficient solution, particularly in cold regions with harsh winter 

conditions. Water functions effectively as a thermal mass, capable of absorbing and storing 

substantial amounts of heat during the day and releasing it at night or during periods of low 

ambient temperatures. This thermal buffering helps maintain a stable and optimal 

microclimate within the greenhouse, reducing temperature fluctuations and enhancing plant 

growth conditions by protecting crops from extreme cold stress [4]. 

Water's widespread use in active thermal energy systems is largely attributed to its dual 

role as both a heat transfer fluid (HTF) and a storage medium. This versatility is supported by 
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several advantageous thermo-physical properties, including a high specific heat capacity 

(4.184 kJ.kg⁻¹.K⁻¹), non-toxicity, low cost, and abundant availability. Additionally, water can 

exist in multiple physical states solid, liquid, and vapor making it adaptable to a wide range of 

thermal applications. While ice is predominantly used in cold storage systems, the liquid 

phase is most suitable for low-temperature thermal energy storage, especially below 100 °C. 

In its liquid form, water enables the formation of thermocline storage systems due to the 

natural stratification caused by temperature-induced density differences. This stratification, 

driven by buoyancy forces, facilitates the efficient separation of thermal layers hot water 

remaining at the top and cold water settling at the bottom thus enhancing the thermal 

performance and energy efficiency of the storage system. One of the most prominent 

applications of water-based TES in greenhouses is through Tank Thermal Energy Storage 

(TTES) systems [5]. These are typically constructed from durable materials such as reinforced 

concrete, steel, or fiber-reinforced plastics, with internal linings to ensure water-tightness and 

thermal insulation. TTES tanks are often buried partially or fully underground to minimize 

heat loss due to ambient temperature fluctuations, thereby reducing the need for additional 

insulation. 

S. Bezari et al., (2007) is based on the study of the thermal balance of a solar greenhouse, 

equipped with a thermal storage device in the water (Figure II.2). The function of the 

greenhouse - storage device system is established as a simplified mathematical model in 

transient mode. The mathematical model is solved by the numerical method of Runge Kutta 

to order 4. The results were compared with the measurements obtained in an experimental 

greenhouse carried out at the station of the National Institute of Agronomic Research [5]. 

 

 

Figure II.2. Water thermal storage system in greenhouses [5] 
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P. Lorenzo et al., (2024) studied a hybrid system combining passive cooling 

(evaporative screens) and heating (water-filled sleeves) with a shading/thermal screen in a 

sweet pepper greenhouse at IFAPA La Mojonera (Figure ⅠⅠ.3). Compared to a standard 

greenhouse, the system improved climate control by reducing the vapor pressure deficit in 

warm periods and increasing nighttime air and substrate temperatures in cold periods. It also 

boosted early plant growth and increased marketable yield by 25%, while reducing irrigation 

water use by 8% and improving water use efficiency by 20%. [6]. 

 

 

Figure ⅠⅠ.3. Schematic of the concept of the water-tube greenhouse [6] 
 
 

 

G.K. Ntinas et al., (2015) evaluated a hybrid solar energy-saving system (HSESS) in a 

heated greenhouse for hydroponic tomato cultivation. The system, using water-filled solar 

sleeves and air tubes, improved air temperature and root growth conditions. It increased total 

yield by 7.1% and marketable yield by 10.8%, despite a 2.9% decrease in total fruit count. 

Marketable fruits rose by 6.8%, and antioxidant capacity improved by 18.4%, enhancing fruit 

quality [7]. 

 

 

II.2.2 Rock bed storage system 

Rock bed storage, composed of materials such as pebbles, gravel, and bricks, is a cost- 

effective and widely used medium for sensible heat storage. When integrated with an air- 

based heat transport system, underground rock bed storage provides a large and economical 

heat transfer surface. These storage units are commonly installed at depths of 40 to 50 cm, 

either beneath or outside greenhouses, often enclosed within insulated concrete structures to 

enhance thermal retention. During the day, excess heat from the greenhouse is transferred to 
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the rock bed using a ventilator. At night, the process is reversed, where cool air circulates 

through the storage unit, absorbing heat from the rocks before returning to the greenhouse to 

regulate temperature [8]. 

S. Bezari et al., (2020) designed and tested a thermal storage system based on a rock bed 

with an H-shaped channel integrated into a greenhouse in southern Algeria (Figure ⅠⅠ.4). A 

comparison was made between two greenhouses: one traditional and the other equipped with 

the thermal storage system. The results showed an improvement in temperature, with an 

increase of 0.9°C at night and a decrease of 1.6°C during the day, along with a reduction in 

relative humidity by 3.4%, leading to an improved plant growth environment. However, the 

airflow was insufficient to achieve optimal heat distribution, necessitating system 

development by adding active ventilation [9]. 

 

 

 

Figure ⅠⅠ.4. Storage system based on a rock bed [9] 
 

 

 

L. Gourdo et al., (2019) studied a rock-bed heating system in a Canarian-type 

greenhouse in Agadir (figure II.5). Two identical greenhouses were tested, one with the 

heating system and one without. Results showed that the heated greenhouse had a 3°C higher 

nighttime temperature than the unheated one and 4.7°C higher than the outside, while daytime 

temperatures were 1.9°C lower inside and 3°C lower than outside. The system also improved 

crop yield by 22% [10]. 



Chapter II A Comprehensive Review: Heating Systems and ANN-application for greenhouse 

32 

 

 

 

 

 

Figure II.5. Greenhouse with rock-bed [10] 
 

 

 

A. Bazgaou et al., (2020) evaluated a hybrid heating system for a canarian-type 

greenhouse in southern Morocco, combining rock bed thermal storage with passive solar 

energy in water (figure II.6). Compared to an unheated greenhouse, the system increased 

nighttime air temperature by 3–5°C on clear days and 2–3°C on cloudy days, reduced thermal 

fluctuations by 24–25%, and lowered nighttime humidity by 10–15%. It also raised soil 

temperature by 3–4°C, boosting tomato yield by 49% and reducing Tutaabsoluta spread by 

64%. Economically, it proved cost-effective, generating an additional profit of 1.02 USD/m². 

However, further research is needed to enhance its performance in extreme cold [11]. 

 

 

Figure ⅠⅠ.6. Description of active heating system and passive heating system [11] 



Chapter II A Comprehensive Review: Heating Systems and ANN-application for greenhouse 

33 

 

 

 

II.2.3 Phase change materials storage system 

Phase Change Materials (PCMs) represent an efficient solution for thermal energy 

storage, offering a higher storage density compared to conventional methods while 

maintaining temperature stability during heat absorption and release. These materials operate 

by absorbing a significant amount of heat during their phase transition from solid to liquid 

and subsequently releasing this stored energy when they solidify [8]. 

The performance of PCMs is influenced by key factors, including melting temperature, 

thermal conductivity, and energy storage density. Various enhancements have been 

introduced to improve their efficiency, such as the incorporation of fins and heat pipes for 

better heat exchange, micro- and macro-encapsulation techniques for enhanced thermal 

distribution, and the integration of highly conductive nanoparticles into PCMs, known as 

nano-enhanced PCMs. Continuous advancements have established PCMs as a promising 

solution to enhance energy efficiency and sustainability in buildings [12]. 

S.M. Thaler et al., (2024) studied phase change materials (PCMs) to improve greenhouse 

heating. Paraffin proved the most effective for stable heat storage. Two protection units were 

developed for greenhouse roots and fruit trees. Tests showed the PLA unit maintained stable 

temperatures for 326 minutes, with slight improvement using metal. CFD simulations 

confirmed the findings, supporting PCMs as a cost-effective, sustainable solution. Further 

testing and design refinements were recommended [13]. 

C. Maraveas et al., (2023) analyzed sustainable greenhouse coverings using 

nanomaterials like nanosilica and zinc oxide to minimize heat loss while allowing light to 

pass through. They tested polymer films with thermal additives (PLA/ZnO, LDPE/ZnO) for 

improved insulation and incorporated phase-change materials (PCMs) to stabilize 

temperatures by storing heat during the day and releasing it at night. Additionally, they 

explored solar-active materials like graphene to enhance energy efficiency. The study found 

that these innovations reduce energy consumption, lower carbon emissions, and cut 

operational costs, making them essential for sustainable agriculture and increased productivity 

[14]. 

H. Ling et al., (2014) conducted an experiment to evaluate the thermal storage 

performance of the Active–Passive Triple Phase Change Material Wall (APTPCMW) in solar 

greenhouses, aiming to enhance thermal energy efficiency. The study involved a practical 
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experiment to measure heat storage performance in the middle layer of the wall, considering 

several factors such as the distance between air tunnels, the direction of heated airflow, and 

the temperature and speed of the supplied air. The results indicated that the system effectively 

increased heat storage capacity and trapped more heat inside the wall during the day. The 

optimal operating parameters for maximum efficiency were found to be an air tunnel spacing 

of 0.4m, a downward direction of heated airflow, a supply air velocity of 0.26 m/s, and a 

supply air temperature of 60°C [15]. 

 

 

II.2.4. North wall storage system 

Greenhouses with a north wall exhibit superior thermal performance compared to other 

structural components, such as the north and south roofs and the ground, due to the wall’s 

ability to store and release heat consistently. The internal surface structure (ISS) of the north 

wall enhances solar radiation capture and heat dissemination, improving nighttime thermal 

performance. For maximum thermal efficiency, the north wall should combine high thermal 

storage capacity, effective insulation, and structural load-bearing strength [16, 17]. China is a 

global leader in the implementation of north-wall greenhouses, particularly in cold climates. 

The advanced design of the north wall increases thermal autonomy and reduces energy 

consumption, making it a crucial element in modern greenhouse design. The figure ⅠI.7 

explores development of research on the use of north wall storage in greenhouses. 

 

 

 

 
Figure II.7. Development of research on the use of north wall storage in greenhouses 

(Source : The authors, 2025) 
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X. Liu et al., (2019) studied the impact of wall materials on the thermal environment in 

Chinese solar greenhouses (Figure II.8). They tested three types, all with an outer north wall 

layer of polystyrene boards but different inner layers: perforated brick, fine coal ash brick, 

and common clay brick. The fine coal ash brick wall was the most efficient, storing 34.5– 

130.6 W/m² and releasing -24.15 to -45 W/m² daily, with a heat storage duration of 5–8 hours. 

It also maintained nighttime temperatures 3–4°C higher, keeping indoor temperatures 

between 16.7–31.1°C and relative humidity at 29.75%–45% [18]. 

 

 

Figure ⅠⅠ.8. Structure of the Chinese solar greenhouse [18] 
 

 

 

Studies by F. Berroug et al., (2011) explored the integration of phase change materials 

(PCMs) into greenhouse structures to enhance thermal regulation. One notable approach 

involves the use of CaCl₂·6H₂O as a PCM within a north wall storage system in east–west 

oriented greenhouses. Numerical thermal models, accounting for key greenhouse components 

and local climatic data, indicate significant night-time temperature gains of 6–12 °C and 

reduced humidity levels. The results demonstrate that the north wall PCM system effectively 

moderates internal conditions. These findings highlight the potential of PCM-based storage 

systems to improve greenhouse microclimates during the winter period [19] 

L. Zhao et al., (2024) studied the effect of north wall design on heat storage and humidity 

in solar greenhouses using Multiphysics modeling. Comparing flat (FW), striped (SW), and 

Alveolate (AW) walls (Figure II.9), they found solar radiation to be the main factor affecting 

indoor temperature changes. The honeycombed wall (AW) provided the best heat retention, 

efficient temperature control, and the lowest humidity on sunny days. On cloudy days, SW 
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and AW performed similarly in heat regulation, but AW maintained more stable humidity. 

Power spectral density (PSD) analysis confirmed AW’s superior heat storage and release, 

making it the most effective design for greenhouse efficiency [20]. 

 

 

Figure II.9. Illustration of the different internal surface structures of the north wall [20] 
 

(a) Flat wall; b) Striped wall; (c) Alveolate wall 

 

 

 

M. Takiet al., (2016) conducted modeling and experimental evaluation of heat and mass 

transfer processes in a solar greenhouse equipped with a thermal screen and a modified north 

wall. A semi-solar greenhouse was designed and constructed in the northwest region of Iran. 

A dynamic heat and mass transfer model was developed to estimate temperatures at six 

different locations within the greenhouse.The results from using a thermal screen during 

night-time hours (12 hours) in autumn demonstrated a reduction in fossil fuel consumption of 

up to 58%, leading to lower operating costs and decreased air pollution. The use of this 

movable insulation created a temperature difference of approximately 15 °C between the 

interior and exterior environments, and about 6 °C between the air temperature near the plants 

and the average air temperature [21]. 

X. Gao et al., (2017) examined the effect of north wall length on the indoor thermal 

environment in Lanzhou. They found that the highest shadow rate on the east and west walls 

occurs at 10:00 AM on the winter solstice, with shadow reduction slowing as the wall 

approaches 90 meters. On sunny days, heat storage and release are balanced, but when the 

wall exceeds 90 meters, heat release surpasses storage, leading to lower indoor temperatures 

the next morning, especially on cloudy days. Based on ventilation and insulation needs, the 

optimal north wall length is around 90 meters [22]. 
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Other Research has focused on optimizing the indoor thermal environment of solar 

greenhouses by leveraging the solar thermal storage and release characteristics of the north 

wall. In a study conducted by F. Han et al., (2024) a mathematical model was developed 

incorporating simplified calculations of the greenhouse’s spatial parameters. The model also 

included a design method for an active–passive ventilation wall with latent heat storage, 

previously proposed, to evaluate the impact of the north wall's thermal behavior on indoor 

climate conditions. Experimental results demonstrated that applying active–passive solar heat 

storage systems to the north wall significantly improved the indoor thermal environment 

during night-time and increased winter cucumber yields by over 10%. This study provides a 

valuable reference for optimizing active–passive solar energy utilization in greenhouse design 

[23]. 

 

 
Table ⅠI.1. Comparison of different types of thermal energy storage systems 

 

Facture North Wall Rock Bed Water Tank PCM Storage 

Storage 

Efficiency 
Moderate Moderate High 

Very High (~80– 

90%) 

Space 

Requirements 

Integrated into 

wall 

Ground space 

needed 

Large volume 

tanks 

Compact, low 

volume required 

Cost 
Moderate to 

High 
Low to Moderate Moderate High 

 

 

Heat Capacity 

 

Low to Moderate 

(depends on 

material mass) 

Medium (~800– 

1000 J/kg·K 

depending on 

rock type) 

 

Very high 

(~4186 J/kg·K) 

 

Very high (100– 
150 kWh/m³ or 

more) 

Maintenance Low Low 
Moderate 

(leakage/algae) 

Moderate (PCM 

stability) 

Thermal 

Storage 

Mechanism 

Passive 

insulation / solar 

mass wall 

Sensible heat 

(air-to-solid 

medium) 

 

Sensible heat 
Latent heat 

(phase change) 

 

(Source : The authors, 2025) 
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II.3. Application of ANN to the Prediction of Greenhouse Microclimate 

Accurate prediction of the microclimate within greenhouses is crucial for optimizing 

energy efficiency, enhancing crop yields, and maintaining stable growing conditions. 

Artificial Neural Networks (ANNs) have emerged as effective tools for modeling the 

complex, nonlinear interactions between environmental variables such as temperature, 

humidity, solar radiation, and CO₂ concentration [24, 25]. This review examines the 

application of ANNs in greenhouse climate prediction, focusing on various network 

architectures, training algorithms, and input variables. 

Artificial intelligence techniques such as artificial neural networks (ANN) have been 

widely used in the field of greenhouse microclimate control (Figure II.10). ANNs provide 

reliable models that can reflect nonlinear greenhouse characteristics that are difficult to 

resolve using traditional techniques. They do not require any prior knowledge of the system 

and are well-suited for modeling real-time dynamic systems [26, 27]. 

 

 
Figure .ⅠⅠ.10. Development of research on the use of ANN in greenhouses 

(Source : The authors, 2025) 

 

 

P.M. Ferreira et al., (2002) developed a model to predict indoor temperature in a 

hydroponic greenhouse, considering factors like relative humidity, outdoor temperature, and 

solar radiation. They evaluated training methods for a radial basis function neural network, 

which is simpler to design and train than multilayer perceptrons. The study compared off-line 

and on-line training, finding that the levenberg-marquardt method provided the best results 

for on-line training, significantly improving prediction accuracy [28]. 
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A. Dariouchy et al., (2009) employed an Artificial Neural Network (ANN) model to 

predict greenhouse internal parameters over a 7-day period using real climatic data from a 

tomato greenhouse in Agadir, Morocco. The model considered key inputs, including external 

moisture (Mext), total radiation (Rt), wind direction (Dw), wind velocity (Vw), and external 

temperature (Text). A comparison between the predicted and experimental results confirmed 

that the ANN model accurately forecasts greenhouse climate conditions, making it a reliable 

tool for climate prediction in controlled agriculture [29]. 

E.C. Lachouri et al., (2015) described an Adaptive Neuro-Fuzzy Inference System 

(ANFIS) to model and predict greenhouse climate conditions for tomato seedlings. The 

system estimates air temperature, humidity, CO₂ concentration, and internal radiation using  

ten key meteorological and control parameters. The model was trained over 48 days with a 

neural network optimized through backpropagation and least squares algorithms (500 

iterations). Simulation results demonstrated the efficiency and accuracy of ANFIS, making it 

a reliable tool for greenhouse climate control in agriculture [30]. 

H. Yue et al., (2016) utilized an Artificial Neural Network with a radial basis function 

model to predict air temperature and humidity in Chinese solar greenhouses. Accurate 

temperature forecasting is essential to prevent crop losses due to extreme weather conditions. 

This study introduced a novel prediction model using a Least Squares Support Vector 

Machine optimized by Improved Particle Swarm Optimization (IPSO) with mutation 

probability. The IPSO method effectively enhanced the selection of LSSVM hyperparameters, 

improving prediction accuracy. A comparative analysis with traditional models, including 

standard Support Vector Machines (SVM) and Backpropagation Neural Networks (BPNN), 

demonstrated that the IPSO-LSSVM model outperformed existing methods, providing more 

precise temperature predictions. The prediction of maximum and minimum temperatures 

makes it a reliable and effective tool for forecasting greenhouse temperatures [31]. 

M. Taki et al., (2016) compared different mathematical models, including Multiple 

Linear Regression (MLR) and Artificial Neural Networks (ANN), to predict inside air 

temperature (Ta), roof temperature (Tri), and energy loss in a semi-solar greenhouse in Iran. 

The study found that MLR was inaccurate, while the Multilayer Perceptron (MLP) neural 

network model performed best, achieving lower RMSE and MAPE values and higher EF 

indices. No significant differences were observed between predicted and actual values, 
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confirming the effectiveness of MLP in estimating energy loss. This makes MLP a valuable 

tool for reducing sensor costs and enhancing greenhouse efficiency [21]. 

V.K. Singh et al., (2017) developed an Artificial Neural Network model to predict mean 

air temperature and relative humidity one day in advance for a greenhouse in India's sub- 

humid subtropical region. The study utilized a Backpropagation neural network, with 

temperature, humidity, wind speed, and solar radiation as input variables. The network was 

trained using a hyperbolic tangent activation function in the hidden layer and a linear function 

in the output layer. Performance was assessed using Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and Correlation Coefficient. The BP neural network (6-4-2 model) 

demonstrated the highest accuracy, with temperature RMSE and MAE of 0.711°C and 

0.558°C, and humidity RMSE and MAE of 2.514% and 1.976%, making it a reliable tool for 

greenhouse climate control [32]. 

S. Özden et al., (2018) applied an artificial neural network (ANN) model to predict 

energy consumption for greenhouse temperature control. The model was designed based on 

key temperature parameters, including indoor temperature, outdoor temperature, and soil 

temperature. The ANN output represents the energy demand, which is entirely dependent on 

temperature data, providing an effective approach for optimizing energy use in greenhouse 

climate management [33]. 

M.H. Shojaei et al., (2019) used an ANN with a Multiple Linear Regression (MLR) 

model to predict air temperature. The study tested two models to forecast the air temperature 

inside a single-sided glass greenhouse one without ventilation and one with an evaporative 

cooling system. Data analysis was performed using both ANN and regression methods. The 

results indicated that the ANN model provided more accurate temperature predictions. 

Moreover, in the absence of ventilation, a 1°C increase in ambient air temperature and a 100 

W/m² increase in solar radiation led to a 3°C rise in greenhouse temperature [34]. 

M.A. Tawfeek et al., (2022) established a research on integrating Adaptive Particle 

Swarm Optimization (PSO) with Artificial Neural Networks (ANNs) to enhance agricultural 

decision-making while minimizing costs. The adaptive PSO-ANN model dynamically updates 

datasets by filtering out irrelevant records and retaining essential ones for classification. A 

comparative study demonstrated that this approach outperformed existing methods, achieving 

a high accuracy of 94.8%. A case study on smart olive cultivation using Internet of Things 
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(IoT) tools validated the model, demonstrating improved crop yield and optimized resource 

utilization [35]. 

N. Choab, et al., (2022) carried out a study on the application of an Artificial Neural 

Network (ANN) model to predict internal temperature and humidity in a greenhouse using 

external climatic data in a real tomato cultivation scenario in the semi-arid region of Agadir, 

Morocco. The optimal model featured one hidden layer with six neurons and achieved high 

prediction accuracy, with Mean Relative Errors (MRE) of 4.23% for internal temperature 

(Tint) and 3.85% for internal moisture (Mint). A comparison with experimental results 

showed that the ANN method outperformed traditional regression models in forecasting 

greenhouse climate, highlighting its effectiveness in addressing complex agricultural 

challenges [36]. 

A. Daliran et al., (2023) developed a model to predict temperature and mass of dried 

mint in a Greenhouse Solar Dryer (GSD) using Artificial Neural Networks (ANN) and 

Gaussian Process Regression (GPR). Among the tested models, Radial Basis Function (RBF) 

performed best, achieving high accuracy with minimal error (MAPE: 1.4% and 1.82%). 

Statistical tests confirmed no significant difference between actual and predicted values, 

proving the RBF model's reliability for drying process prediction [37]. 

According to F. Cletus et al., (2024), the effectiveness of Bi-LSTM, ANN, GBM, and RF 

models in predicting microclimatic factors such as temperature, humidity, and CO₂ levels is 

evaluated. The study also discusses the limitations of applying machine learning models to 

greenhouse microclimate prediction and suggests directions for future research. The results 

demonstrate that both ensemble methods (Gradient Boosting Machine and Random Forest) 

and deep learning architectures (ANN and Bi-LSTM) performed well in the evaluation. These 

findings support the view that machine learning algorithms are effective predictive tools, 

offering valuable insights for optimizing greenhouse operations [38]. 

H. EinGhaderi et al., (2025) explored the design of a system for predicting greenhouse 

environmental conditions using deep learning techniques. The proposed method was 

implemented to maintain optimal conditions for tomato crop production in a glass 

greenhouse. The deep learning-based model accurately predicted key parameters, including 

temperature, relative humidity, and carbon dioxide concentration. Its performance was 

notably superior to that of traditional dynamic modeling approaches. These findings suggest 
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that intelligent artificial intelligence methods offer effective solutions for optimal greenhouse 

control, improving performance and addressing existing limitations [39]. 

Table II.2 summarizes a significant number of works related to the use of ANNs for 

Greenhouse Microclimate Prediction. We provide details on the input and output variables 

and the network architecture in the training process. 
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Table ⅠⅠ.2. Application of artificial neural network models for greenhouse microclimate prediction 
 

 

Reference Input Output  Architecture   Commentary  

 
 ventilation 

 

 

 Internal temperature 

 Internal humidity 

 

 CO2concentration 

 

 Internal radiation 

  

1
0
-4

0
-4 

 

 

 

The ANFIS model accurately 

predicted greenhouse climate 

during seedling growth, showing 

strong agreement with 

experimental data. Training with 

backpropagation and least- 

squares methods achieved a 2% 

error rate 

  heating 

  shading 

  artificial light, 

Eddine, C.et al  CO2 injection 

[29]  fogging/cooling 

  external temperature 

  external humidity 

  global radiation 

  wind speed 

 

Morteza et al 

[21] 

 Outdoor temperature 

 external humidity 

 wind speed 

 global radiation 

 

 Internal temperature 

 Internal humidity 

  

3
-2

1
-9

-9
-3 

 

13 types of learning algorithms 

were tested. It was found that 

RFBRANN had the lowest 

errors among the models. 
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Singh, V. K.et 

al 

[31] 

 maximum temperature 

 minimum temperature 

 relative humidity 

 outside average wind 

speed 

 solar radiation 

 

 

 

 meantemperature 

 mean relative humidity 

  

6
- 4

 -2 

 

 

ANN based modeling approach 

in predicating the greenhouse 

mean temperature and relative 

humidity. 

 

 

Özden et al 

[32] 

 Inner Temperature 

 Outdoor temperature 

 Soil temperature 

 target temperature 

 

 

 energyconsumption 

  

4
-1

0
-1

0
 -1 

ANN to predict energy 

consumption based on inner, 

outer, and soil temperatures. The 

data was collected to aid in 

temperature control within a 

greenhouse environmen 

 

A. Daliran et 

al 

[36] 

 Outdoor 

Temperature 

 Outdoor Humidity 

 Global Illuminance 

 The mass of dried 

mint 

 Temperature of 

dried mint 

  

3
 –

 1
8
 -1 

The study showed that the RBF 

model was the mostccurate in 

predicting the temperature and 

mass of dried mint. 
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II.4. Conclusion 

This chapter presented a comprehensive review of solar greenhouses, with a particular 

focus on their thermal performance under local climatic conditions. It explored various 

thermal energy storage methods—including water, rock beds, north walls, and phase change 

materials—as well as the application of artificial intelligence, particularly artificial neural 

networks (ANNs), for predicting key microclimatic parameters such as temperature, solar 

radiation, and relative humidity. 

Despite the technological advancements reported in the literature, significant gaps remain. 

Most studies are based on simulations or small-scale experiments, with a notable lack of 

large-scale experimental validation. Furthermore, comparative analyses of different thermal 

storage methods under uniform climatic conditions are scarce, limiting the ability to 

generalize findings. 

The integration of ANNs with optimization algorithms has emerged as a promising 

approach to enhance greenhouse control efficiency. However, challenges persist, including 

the need for real-time adaptability, high-quality datasets, and the development of generalized 

models applicable across various climatic zones. Additionally, the application of AI 

techniques to greenhouses equipped with thermal energy storage systems remains 

underexplored. 

Addressing these challenges presents a critical opportunity to advance the automation and 

efficiency of solar greenhouses. Doing so will not only reduce energy consumption but also 

contribute to more sustainable and resilient agricultural practices. 



Chapter II State-of-the-Art : Heating Systems and ANN-application for greenhouse 

46 

 

 

 

REFERENCES 

[1] Paksoy, H. Ö., &Beyhan, B. (2015). Thermal energy storage systems for greenhouse 

technology. In Advances in thermal energy storage systems (pp. 533-548). Woodhead 

Publishing. 

[2] Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage 

systems. Energy, 144, 341-378. 

[3] Gorjian, S., Ebadi, H., Najafi, G., Chandel, S. S., &Yildizhan, H. (2021). Recent 

advances in net-zero energy greenhouses and adapted thermal energy storage 

systems. Sustainable Energy Technologies and Assessments, 43, 100940. 

[4] Xu, W., Guo, H., & Ma, C. (2022). An active solar water wall for passive solar 

greenhouse heating. Appliedenergy, 308, 118270. 

[5] Bezari, S., A. Bouhdjar,A., Ait-Messaoudenne, N., Etude du microclimat d’une serre 

tunnel équipée d’un dispositif de stockage thermique dans l’eau, In International 

Congress on RenewableEnergy and SustainableDevelopment; Tlemcen (2007) 307– 

113. 

[6] Lorenzo, P., Reyes, R., Medrano, E., Granados, R., Bonachela, S., Hernández, J., & 

Sánchez-Guerrero, M. C. (2024). Hybrid passive cooling and heating system for 

Mediterranean greenhouses. Microclimate and sweet pepper crop response. Agricultural 

WaterManagement, 301,108937. 

[7] Ntinas, G. K., Koukounaras, A., &Kotsopoulos, T. (2015). Effect of energy saving solar 

sleeves on characteristics of hydroponic tomatoes grown in a greenhouse. 

ScientiaHorticulturae, 194, 126-133. 

[8] Sethi, V. P., & Sharma, S. K. (2008). Survey and evaluation of heating technologies for 

worldwide agricultural greenhouse applications. Solar energy, 82(9), 832-859. 

[9] Bezari, S., Amine Bekkouche, S. M. E., Benchatti, A., Adda, A., &Boutelhig, A. 

(2020). Effects of the Rock-Bed Heat Storage System on the Solar Greenhouse 

Microclimate. Instrumentation, Mesures, Métrologies, 19(6). 

[10] Gourdo, L., Fatnassi, H., Tiskatine, R., Wifaya, A., Demrati, H., Aharoune, A., 

&Bouirden, L. (2019). Solar energy storing rock-bed to heat an agricultural greenhouse. 

Energy, 169, 206-212. 



Chapter II State-of-the-Art : Heating Systems and ANN-application for greenhouse 

47 

 

 

 

[11] Bazgaou, A., Fatnassi, H., Bouharroud, R., Elame, F., Ezzaeri, K., Gourdo, L., ... 

&Bouirden, L. (2020). Performance assessment of combining rock-bed thermal energy 

storage and water filled passive solar sleeves for heating Canarian greenhouse. Solar 

Energy, 198, 8-24 

[12] Kasaeian, A., Pourfayaz, F., Khodabandeh, E., & Yan, W. M. (2017). Experimental 

studies on the applications of PCMs and nano-PCMs in buildings: A critical 

review. Energy and Buildings, 154, 96-112. 

[13] Thaler, S. M., Zwatz, J., Nicolay, P., Hauser, R., &Lackner, R. (2024). An Innovative 

Heating Solution for Sustainable Agriculture: A Feasibility Study on the Integration of 

Phase Change Materials as Passive Heating Elements. Applied Sciences, 14(16), 7419. 

[14] Maraveas, C., Kotzabasaki, M. I., Bayer, I. S., &Bartzanas, T. (2023). Sustainable 

greenhouse covering materials with nano-and micro-particle additives for enhanced 

radiometric and thermal properties and performance. AgriEngineering, 5(3), 1347-1377 

[15] Ling, H., Chen, C., Guan, Y., Wei, S., Chen, Z., & Li, N. (2014). Active heat storage 

characteristics of active–passive triple wall with phase change material. Solar energy, 

110, 276-285. 

[16] Liu, X., Li, Y., Liu, A., Yue, X., & Li, T. (2019). Effect of north wall materials on the 

thermal environment in Chinese solar greenhouse (Part A: Experimental 

Researches). Open Physics, 17(1), 752-767. 

[17] Cao, K., Xu, H., Zhang, R., Xu, D., Yan, L., Sun, Y., ...&Bao, E. (2019). Renewable 

and sustainable strategies for improving the thermal environment of Chinese solar 

greenhouses. Energy and Buildings, 202, 109414. 

[18] Liu, X., Li, Y., Liu, A., Yue, X., & Li, T. (2019). Effect of north wall materials on the 

thermal environment in Chinese solar greenhouse (Part A: Experimental Researches). 

Open Physics, 17(1), 752-767. 

[19] Berroug, F., Lakhal, E. K., El Omari, M., Faraji, M., & El Qarnia, H. (2011). Thermal 

performance of a greenhouse with a phase change material north wall. Energy and 

Buildings, 43(11), 3027-3035. 



Chapter II State-of-the-Art : Heating Systems and ANN-application for greenhouse 

48 

 

 

 

[20] Zhao, L., Shui, Z., Liu, X., Yang, T., & Duan, G. (2024). Computer-aiding evaluation of 

north wall effects of a solar greenhouse: Multiphysicsmodelling of the indoor 

environment. Case Studies in Thermal Engineering, 64, 105361. 

[21] Morteza,T., Ajabshirchi, Y.; Ranjbar, S.F.; Rohani, A.; Matloobi, M. Heat transfer and 

MLP neural network models to predict inside environment variables and energy lost in a 

semi-solar greenhouse. Energy Build. 2016, 110, 314–329. 

[22] Gao, X., Yang, H., Guan, Y., Bai, J., Zhang, R., & Hu, W. (2017). Length determination 

of the solar greenhouse north wall in Lanzhou. Procedia Engineering, 205, 1230-1236. 

[23] Han, F., Chen, C., Chen, H., Duan, S., Lu, B., Jiao, Y., & Li, G. (2024). Research on 

creating the indoor thermal environment of the solar greenhouse based on the solar 

thermal storage and release characteristics of its north wall. Applied Thermal 

Engineering, 241, 122348. 

[24] Chen, S., Liu, A., Tang, F., Hou, P., Lu, Y., & Yuan, P. (2025). A Review of 

Environmental Control Strategies and Models for Modern Agricultural Greenhouses. 

Sensors, 25(5), 1388. 

[25] Michailidis, P., Michailidis, I., Gkelios, S., &Kosmatopoulos, E. (2024). Artificial 

neural network applications for energy management in buildings: Current trends and 

future directions. Energies, 17(3), 570. 

[26] Bezari, S., Adda, A., Kherrour, S., Zarrit, R., (2023) Artificial Neural Network 

Application for the Prediction of Global Solar Radiation Inside a Greenhouse. (2024). 

(Ed.). Renewable Energy Resources and Conservation. Springer Nature. Chapter Book. 

pp 3-9. 

[27] Tung, Y. C., Syahputri, N. W., &Diputra, I. G. N. A. S. (2025). Greenhouse 

Environment Sentinel with Hybrid LSTM-SVM for Proactive Climate Management. 

AgriEngineering, 7(4), 96. 

[28] Ferreira, P.M.; Faria, E.A.; Ruano, A.E. Neural Network Models in Greenhouse Air 

Temperature Prediction. Neurocomputing 2002, 43, 51–75 

[29] Dariouchy, A., Aassif, E., Lekouch, K., Bouirden, L., & Maze, G. (2009). Prediction of 

the intern parameters tomato greenhouse in a semi-arid area using a time-series model 

of artificial neural networks. Measurement, 42(3), 456-463. 



Chapter II State-of-the-Art : Heating Systems and ANN-application for greenhouse 

49 

 

 

 

[30] Lachouri, E. C., Mansouri, K., mouradLafifi, M., &Belmeguenai, A. (2015). Adaptive 

neuro-fuzzy inference systems for modeling greenhouse climate. International Journal 

of Advanced Computer Science and Applications, 1-6 

[31] Yu, H.; Chen, Y.; Hassan, S.G.; Li, D. Prediction of the temperature in a Chinese solar 

greenhouse based on LSSVM optimized by improved PSO. Comput. Electron. Agric. 

2016, 122, 94–102 

[32] Singh, V. K., &Tiwari, K. N. (2017). Prediction of greenhouse micro-climate using 

artificial neural network. Appl. Ecol. Environ. Res, 15(1), 767-778. 

[33] Özden, S.; Dursun, M.; Aksöz, A.; Saygın, A. Prediction and Modelling of Energy 

Consumption on Temperature Control for Greenhouses. J. Polytech. 2018, 76, 129–148 

[34] Shojaei, M. H.; Mortezapour, H.; JafariNaeimi, K.; Maharlooei, M.M. Temperature 

Prediction of a Greenhouse Equipped with Evaporative Cooling System Using 

Regression Models and Artificial Neural Network (Case Study in Kerman City). Iran. J. 

Biosyst. Eng. 2019, 49, 567–576 

[35] Tawfeek, M. A., Alanazi, S., & El-Aziz, A. A. (2022). Smart greenhouse based on ANN 

and iot. Processes, 10(11), 2402. 

[36] Choab, Noureddine, et al. "Multi-layer Perceptron Neural Network to Assess the 

Thermal Behaviour of a Moroccan Agriculture Greenhouse." (2022). 

[37] Daliran, A., Taki, M., Marzban, A., Rahnama, M., &Farhadi, R. (2023). Experimental 

evaluation and modeling the mass and temperature of dried mint in greenhouse solar 

dryer; Application of machine learning method. Case Studies in Thermal Engineering, 

47, 103048 

[38] Cletus, F., & John, A. E. (2024). Comparative Analysis Of Machine Learning Models 

For Greenhouse Microclimate Prediction. Brilliance: Research of Artificial Intelligence. 

162-175. 

[39] EinGhaderi, H., Alimardani, R., Mohtasebi, S. S., Hosseinpour-Zarnaq, M. (2025). 

Predicting greenhouse microclimatic parameters using a deep learning algorithm. 

Iranian Journal of Biosystems Engineering, 55(4), 63-79. 



 

 

 

CHAPTER III. 

 
Experimental Study and 

Predictive Modeling 



Chapter III Experimental Study and Predictive Modeling 

51 

 

 

III.1 Introduction 

The semi-arid climate of the Ghardaïa region is characterized by a temperature difference 

between day and night during the winter season. This characteristic requires the use of 

greenhouses equipped with thermal storage systems to create a microclimate favorable to 

plant growth. 

This chapter presents the methodology used to investigate the thermal behavior of a 

greenhouse prototype incorporating a thermal storage wall. The study combines experimental 

observations with predictive modeling to evaluate how various structural components 

particularly the north wall and the cover material affect the internal thermal environment of 

the greenhouse. It begins with a description of the study site and its climatic conditions, which 

are essential for understanding the context of the heat transfer processes. The experimental 

setup is then outlined, detailing the configuration of the greenhouse system, the construction 

of the north wall using locally sourced stones, and the properties of the transparent cover. The 

instrumentation used for measuring environmental and structural parameters is also described, 

along with the procedure for experimentally determining the density of the stones employed. 

In the modeling phase, an Artificial Neural Network (ANN) is developed to predict the 

indoor temperature of the greenhouse based on environmental inputs and system 

characteristics. This approach helps evaluate the influence of design elements on thermal 

performance. 

 

 

III.2. Description of site and climate 

The work presented in this thesis was carried out at the Applied Research Unit for 

Renewable Energies (URAER), located approximately 20 km east of Ghardaïa, Algeria 

(32°38' N latitude, 3°81' E longitude), with an altitude of 469 meters above sea level. The site 

is situated in a semi-arid region in southern Algeria, about 600 km from the capital city, 

Algiers. 

Ghardaïa is characterized by exceptional solar conditions, with an average annual 

sunshine duration of around 3000 hours and a mean annual global solar radiation exceeding 

6000 Wh/m² on a horizontal surface. These favorable conditions support the development and 

utilization of solar energy and renewable energy technologies across various sectors. 
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The region also experiences harsh winter conditions due to cold winds blowing from the 

snowy highlands. In addition, sandstorms originating from the southwest during late winter 

can be particularly disruptive. 

 

 

Figure III.1. Experimental study site (Ghardaia) 

(Source : The authors, 2025) 

 

 

In the following section, the annual evolution of solar radiation, temperature, and relative 

humidity at the Ghardaïa site is illustrated; based on data reported by Bezari et al. [1]. 

Figure III.2 illustrates the daily average global solar radiation for the entire year of 2017. 

High solar radiation levels were observed between March 2nd and September 17th, 2017; with 

the highest daily average of 9080 Wh/m² recorded on June 6th. The annual average daily solar 

energy input was approximately 21.83 MJ/m²/day, consistent with the values reported in the 

global solar radiation map [2]. 

Figure III.3 shows the variation in ambient temperature throughout the 365-day period, 

reflecting seasonal trends. The maximum temperatures exceeded 40 °C in summer season, 

while minimum temperatures remained around 25 °C. In contrast, during winter, the average 

minimum and maximum temperatures were approximately 5 °C and 15 °C, respectively. 

Figure III.4 presents the average relative humidity evolution over the year. The relative 

humidity ranged from 10% to 30% during the summer months (June, July and August). 

However, maximum relative humidity values reached around 85% in winter. 
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Figure III.2. Variation of global solar radiation 
 

Figure III.3. Variation of air temperature 
 

Figure III.4. Variation of the relative humidity 
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III.3. Experimental setup 

III.3.1. Greenhouse system 

The greenhouse, initially conceived as a basic shelter to protect plants from unfavorable 

environmental conditions, has developed into an engineered agro-environmental system 

designed to optimize plant productivity and quality through precise control of the immediate 

growing environment. These structures primarily harness solar radiation while aiming to 

isolate the cultivated crops from external climatic influences, native soil conditions, and 

seasonal variability. Within this framework, the study and modeling of the greenhouse 

microclimate key variables such as temperature, humidity, evaporation, condensation, thermal 

and radiative exchanges, and ventilation are essential for achieving accurate environmental 

regulation. 

 

 Greenhouse structure design 

A comprehensive understanding of greenhouse structural designs and their interaction 

with external climatic factors is essential for analyzing operational performance and 

improving efficiency especially in sunny regions with arid or semi-arid climates. After 

reviewing various greenhouse configurations, this study selects a modern and innovative 

design, the uneven span, for construction due to its potential advantages under such 

environmental conditions. 

Figure III.5 illustrates a variety of commonly used greenhouse structural designs, 

including traditional models such as the even span, vinery, semi-solar, arch, and Quonset 

types, as well as a newly proposed configuration the uneven span design. These structures 

differ in geometry, which significantly influences their thermal behavior, light distribution, 

and adaptability to external climatic conditions. The innovative uneven span design, 

highlighted in this study, was selected for its potential to optimize solar gain and internal 

climate control, particularly in regions with high solar radiation and arid or semi-arid 

climates. 
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Figure III.5. Common types of greenhouses and innovative structures in the study 

(SW= South Wall, SR= South Roof, NR= North Roof, NW= North Wall) 

 

 Realization of structure 

The figure III 6 illustrates the experimental prototype of the greenhouse under study, 

designed with a bioclimatic approach to optimize thermal management. This small-scale 

greenhouse 1.8 m in length and 1.45 m in maximum height) features a north wall made of 

local stone, functioning as a passive thermal mass. Its compact and functional design is 

particularly well suited for experiments in arid climates, such as that of the Ghardaïa region, 

and enables the evaluation of the energy performance of this passive thermal configuration. 
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Figure III.6. Design of experimental greenhouse 

 

 

After completing the design of the greenhouse structure and precisely determining the 

required dimensions, appropriate steel materials were selected based on their strength and 

resistance to environmental conditions. The fabrication process began with cutting the steel 

components according to the engineering specifications, followed by welding the main 

structural elements to form modular units. Bolts and fasteners were used to ensure mechanical 

stability, ease of assembly, and potential disassembly. These initial construction activities 

were carried out in the workshop under controlled conditions to ensure precision and high- 

quality joints (Figure III. 7). Upon completion of the prefabrication phase, the structure was 
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transported to the installation site, where it was reassembled according to the approved design 

plans, with careful attention to anchoring and mechanical stability to ensure the structural 

integrity and operational safety of the greenhouse in its intended environment (Figure III. 8). 

 

 

Figure III. 7. Greenhouse structure realization in atelier URAER 
 

 

Figure III.8. Implementation of structure in site experiments 

 

 

III.3.2. North wall element 

The construction process began with the collection of stones directly from the building 

site. These stones were then subjected to a preparatory phase that included thorough cleaning, 

washing to remove dust and debris, and air drying to ensure proper adhesion during masonry 

work. Once dried, the stones were weighed and sorted according to size and mass to facilitate 

uniform wall construction and load distribution (Figure III.9). The wall was then built by 

carefully positioning the stones and securing them in place using a cement-based mortar, 

ensuring structural stability, proper bonding (Figure III.10). The resulting wall serves both 

structural and thermal functions in the experimental setup. 
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Figure III.9. Collected and stones preparation :: Cleaning;Drying andWeighing 
 

 

Figure III.10. On-site construction of the wall for the experimental greenhouse 

 

 

III.3.3. Cover element 

The greenhouse covering process takes into account the areas to be fitted with a 

transparent cover and those requiring a dark insulating cover. Prior to this, a protective 

coating was applied to the metal frame to shield it from harmful environmental factors and 

reduce corrosion caused by humidity and weather conditions. 

In the step, sandwich panels were installed as part of the structural insulation (Figure III. 

11). They represent a cutting-edge solution for greenhouse envelopes due to their excellent 

thermal and mechanical properties, which effectively reduce heat loss. This type of envelope 

significantly enhances durability, impact resistance, and protection against moisture and UV 

radiation, making it well-suited for long-term outdoor exposure. Their lightweight 

construction allows for easy installation while maintaining structural stability. 
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To ensure adequate natural lighting inside the structure, transparent polycarbonate panels 

known for their high light transmittance and excellent impact resistance were strategically 

placed (Figure III.12). These properties make them particularly suitable for greenhouse 

applications. 

To achieve airtightness and prevent the infiltration of air or moisture, insulating 

polyurethane foam was applied to seal the gaps and joints between structural elements. This 

ensures a stable internal environment, essential for efficient and sustainable protected 

cultivation. 

 

 

 

 

Figure III 11. Sandwich panel installation 
 

 

Figure III.12. Polycarbonate sheet installation 
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III.3.4. Measurement instrumentation 

After the greenhouse was completed and its structural components were assembled, a 

comprehensive monitoring system was installed to assess the local climatic conditions inside 

and outside. Thermocouples were strategically placed to measure key temperature variables, 

including the ambient outdoor temperature, indoor air temperature, north-facing wall surface 

temperature, and incident solar radiation (Figure III.13). The soil temperature inside the 

greenhouse was also monitored to assess the thermal behavior of the growing medium. These 

measurements were conducted to analyze the dynamics of heat transfer and storage within the 

greenhouse environment. 

 

 

Figure III. 13. Installation of measuring instruments 
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Table III.1. Sensor accuracy and measurement ranges 
 

 

 

Description 

 

Sensors 

 

Measurement range 

 

Accuracy 

 
Global solar radiation 

 
Pyranometer 

EPPLEY 

(model 8-48 serial N° 

27037 

 
0-2000 W/m² 

−50 to 80 °C 
0–100% RH 

 
Uncertainty Daily 

Average approx. 1% 

Level accuracy 0.2° 

 

Station 

radiometric Solys2 

 

 

 

Pyranometer 
Kipp&zonen 

CMP11 

 

 

 

0-4000 W/m² 

-40 to 80 °C 
0–100% RH 

 

 

 

Expected daily 
accuracy < 2% 

Level accuracy 0.1° 

 
Air temperature 

 

 

 

PT-100 

 

 

 

-50 to 200 °C 

 

 

 

+/ - 0.3°C 

 

 
Data Acquisition 

 
 

 

Consort T8710 

 

Range , Type J 
Range , Type K 

Range , Type T 

Range , Type E 

J: -200°C to 900 °C 
K : -200°C to 1370 °C 

T : -200°C to 600°C 

E : 0°C to 1000°C 
<1000°C: +/- 0.1°C 

>999.9°C: +/- 1°C 

0.05% +/- 0.5°C 

 

Weather station 

 

 

 

Temperature 
Relative humidity 

Wind 

 

T (outside): 

- 29.9°C to + 79.9°C 

T (inside): 
0°C to + 60°C 

RH : 1-99% 

U : 0 to 200 km/h 

 

 

+/- 0.8°C 

+/- 0.8°C 
+/- 5% 

Resolution : 0.1 km/h 
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The table III.2 shows the thermo-physical properties four materials air, soil, stone, and 

polycarbonate used in experimental study, each of which plays a unique role in thermal 

processes. 

Table III.2. Thermo-physical properties of the various elements [3] 

 

 

Elements 
Specific heat 

[J/kg.C°] 

Thermal conductivity 

[W/m.C°] 

Density 

[Kg/m3] 

Air 1003 0.024 1.127 

Soil 2100 1.15 1700 

Stone (Rocks) 683 2 2166 

Polycarbonate 1.2 – 1.3 0.19 – 0.22 1150 

 

 

 

Experimental calculation of the density of used stones 

To determine the density of the stone samples used in the northern wall of the 

greenhouse, an electronic balance with an accuracy of 0.01g was used to determine the mass 

of the samples, and a Beaker 100 ml with accuracy of 0.05 ml was used to measure the 

volume of water (Figure III.14). The measurements were carried out at the Applied Research 

Unit for Renewable Energy. A total of 24 samples were prepared. 

 

 

Figure III.14. Tools used: digital scale, beaker and samples 
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The volume of water was consistently maintained at 1500 ml in each case, and the stone's 

volume was determined through the water Archimedes method. Each measurement was 

repeated three times to ensure accuracy and reliability of the results (Figure III.15). 

 

 

Figure III.15. Density measurement stages 
 

 

Subsequently, the Excel application was employed to process the recorded data and 

compute the average mass and volume for each sample. The density (ρ) of each stone sample 

was calculated using the following relation: 

ρ = m / V (1) 

Where: 

ρ is the density (kg/m³), 

m is the mass (kg), 

V is the volume (m³). 
 

 

Finally, the average density value for all samples was obtained, which resulted in an overall 

value of : 

ρ =505.384375 \ 233.347222 

ρ = 2.1658 g/cm3 ρ = 2165.8 kg/m³ 

 

 

Uncertainty calcul 

 The uncertainty in mass (Δm) is 0.01 g, because the balance has a precision of 0.01 g. 

 The uncertainty in volume (ΔV) is 0.05 ml= 0.05 cm3 

 The following general formula for a function f(x,y) where x and y are the variables 

with uncertainties: 
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∆𝑓 = √(
𝛛𝑓 
∆𝑥)2 + (

𝛛𝑓 
∆𝑦)2 (2) 

𝛛𝑥 𝛛𝑥 

 

 

Uncertainties ∆𝜌: ∆𝜌 = √(
∆𝑚

)2 + (
𝑚∆𝑉

)2 (3) 
𝑉 𝑉2 

 
 

Application: mmoy = 387,4465278g Vmoy = 165,0555556m3 
 

 

∆𝜌 = √(
 0.01 

)2 + (
387,4465278 .0.05 

)2 
165.0555556 

∆𝜌 = 0.0071 g/cm3 

174.33333332 

 

 
ρ =2 .1658 g/cm3 ρ =2165.8 ± 7.1 kg/m3 

 

 

(a) Variation of density as a function of mass 
 

 

(b) Variation of density as a function of volume 

 

 

Figure III.16. Experimental values for stone density 
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Table III.3 displays the uncertainty values associated with each of the 24 samples. The 

results show a variation in uncertainty, with some samples (e.g., 10 and 24) exhibiting 

significantly higher uncertainty, indicating potential measurement or consistency issues in 

those specific cases. 

Table III.3. Measurement Uncertainty of density parameter 
 

Sample M (g) V (cm3) ρ (g/cm3) Uncertainty 

1 411,683333 174,333 2,361 ± 0,014 

2 470,933333 242 1,946 ± 0,016 

3 344,463333 160 2,152 ± 0,011 

4 408,686667 201 2,033 ± 0,0127 

5 116,4 45,333 2,567 ± 0,029 

6 1080,82333 419 2,579 ± 0,013 

7 323,13 129,667 2,492 ± 0,075 

8 916,62 346,333 2,646 ± 0,013 

9 115,4 48,333 2,387 ± 0,047 

10 150,286667 55,333 2,716 ± 0,136 

11 219,786667 114,333 1,922 ± 0,0856 

12 91,145 45 2,025 ± 0,101 

13 1113,56333 560,333 1,987 ± 0,0099 

14 582,666667 293,667 1,984 ± 0,099 

15 435,393333 216 2,015 ± 0,097 

16 712,136667 344 2,070 ± 0,103 

17 171,61 78,667 2,181 ± 0,109 

18 804,243333 425 1,892 ± 0,095 

19 553,613333 267,667 2,068 ± 0,103 

20 620,596667 302 2,054 ± 0,103 

21 1213,67333 565,333 2,146 ± 0,107 

22 661,3 307 2,154 ±0,107 

23 429,143333 195,667 2,193 ±0,11 

24 181,926667 64,333 2,827 ±0,141 
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III.4 Artificial neural network for modeling 

Artificial Neural Networks (ANNs) also referred to as neuro-computers, parallel 

processors, or connectionist systems are computational models composed of a collection of 

interconnected processing units, often called artificial neurons or simply neurons. These 

networks are designed to emulate certain functions of the human brain, making them 

biologically inspired systems. Although typically implemented using electronic components, 

ANNs can also be simulated in software on conventional digital microcomputers. 

 

 

III.4.1. Artificial Neural Networks application 

ANNs process information by receiving inputs, transforming them through weighted 

connections, and producing outputs. The strength of these connections, known as synaptic 

weights, serves as a form of local memory (Figure III.17). These weights determine how input 

signals are combined and passed through the network, effectively controlling the behavior of 

the ANN. 

Artificial neural networks mirror the human brain in two key ways [4]: 

Learning through experience: ANNs acquire knowledge via a learning process governed 

by specific learning algorithms. These algorithms adjust the synaptic weights systematically 

to minimize error and achieve the desired performance on a given task. 

Memory through connection strength: Information is stored in the network through the 

values of the synaptic weights. These weights encode the knowledge gained during training, 

similar to how the brain is believed to store information through the strength of synaptic 

connections between neurons. 

 

Figure III.17. Biological Neurons(left) and Artificial Neurons(right) 
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 Operating principle 

A neural network consists of a layered architecture that includes three main types of 

layers: the input layer, which receives the initial data; one or more hidden layers, which 

process the information; and the output layer, which provides the final results. These layers 

are interconnected through signal channels that are continuously adjusted and refined by 

training algorithms. 

A neuron is the fundamental processing unit within the neural network and serves as the 

building block of the entire network. The connections between neurons are associated with 

numerical weights, which represent the "long-term memory" of the network and play a crucial 

role in its operation. Additionally, a bias is applied to each neuron, influencing the inputs to 

the activation function. This bias is an essential component of the mathematical operations 

occurring within each neuron [5]. 

In artificial neural networks (ANNs), artificial neurons mimic the behavior of biological 

neurons by receiving input signals in the form of pulses. Neural activity is typically 

characterized by the rate at which these pulses are generated over time, as well as the average 

peak generation rate across multiple trials. Each neuron connects to neurons in the previous 

layer through adaptive synaptic weights, which serve as the primary means of representing 

knowledge within the network. Initially, these weights are random and carry no meaningful 

information; however, through the training process, they are systematically modified and 

become carriers of the acquired knowledge. Information processing within a neuron begins 

with receiving a set of inputs; each multiplied by its corresponding weight and summed to 

produce a net input Equation (4). This summed value is then passed through an activation 

function to determine the neuron's output, which is subsequently propagated to the next layer 

after being scaled with additional connection weights. In the case of a linear activation 

function, the output can be represented by Equation (5). 

ξ =∑ 𝑋𝑖. 𝑊𝑖 (4) 

y = 𝛼(𝑤𝑥 + 𝑏) (5) 

Where: 

Learning in artificial neural networks involves presenting input-output pairs to the 

network and adjusting the connection weights using appropriate learning algorithms, such as 

backpropagation, to reduce the output error and improve predictive performance [6]. 
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 Activation Function of an Artificial Neural Network 

The activation function in artificial neural networks is a mathematical function that 

determines the output of a neuron based on its input. Specifically, it processes the aggregated 

input signal and generates an output only when the total input exceeds a predefined threshold. 

The threshold thus plays a critical role in controlling the flow of information through the 

network, effectively determining whether a neuron should be activated or remain inactive [7]. 

The most commonly used transfer functions are presented in Table III.4. 

 
Table III.4. Activation functions for layers in artificial neural networks [6] 
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III.4.2. Prediction of indoor air temperature in greenhouse by ANN 

The simulation of microclimatic conditions in an experimental greenhouse using 

Artificial Neural Networks (ANNs) represents a powerful application of artificial intelligence 

in agriculture. This approach enables accurate prediction of internal climate variables based 

on environmental data collected from in-situ sensors within the greenhouse. 

The modeling process begins with the collection of comprehensive data related to the 

system under investigation, in order to design an optimal predictive model. Once the data are 

gathered, the neural network architecture is constructed and subsequently trained using a 

labeled dataset. This dataset integrates both current and historical environmental conditions 

along with the corresponding expected outputs. 

As training progresses, the ANN iteratively adjusts its weights and biases to minimize 

prediction error. Upon successful training, the model becomes capable of reliably forecasting 

future climatic conditions inside the greenhouse, thereby enhancing environmental control 

and optimizing crop production. Figure III.18 illustrates the steps to follow to predict the 

greenhouse microclimate. 

 

 

 Data Collection

Following the setup of the greenhouse and the installation of appropriate measurement 

instruments, the process of collecting experimental data was initiated to support the 

development of an accurate predictive model. Specialized sensors were employed to monitor 

key environmental parameters within the greenhouse, including internal air temperature, wind 

speed, and solar radiation intensity. Additionally, internal temperature was recorded as the 

primary output variable for use in the modeling phase. 

The monitoring campaign was conducted over two consecutive days, specifically on 

March 21 and 22. Measurements were taken at regular intervals of 10 minutes, resulting in a 

total of 439 valid data points. This structured data acquisition process enabled the 

construction of a rich and comprehensive dataset (Figure III.19), serving as a foundational 

resource for designing and training predictive models based on artificial intelligence 

techniques. The ultimate goal is to enhance environmental control strategies and operational 

efficiency within solar greenhouses. 
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Figure III.18. Flowchart of prediction system 
 

 

Figure III.19. Data collection 

Design ANN 

Training 

Testing for least error 

Output elements 
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 Neural network architecture

After processing the data and entering it into the model, a multi-layered neural network 

(MLN) was chosen, with three input parameters and one target output the indoor temperature 

of the greenhouse. Determining the appropriate architecture for the ANN (Figure III.20), 

particularly the number of neurons in the hidden layer, requires careful consideration, as there 

is no general rule in previous studies. Therefore, we adopted an empirical approach by 

varying the number of neurons in the hidden layer and evaluating the model's performance 

using the regression coefficient (R). 

After multiple iterations to determine the optimal configuration, we found that the hidden 

layer with 23 neurons achieved the highest regression coefficient, indicating the best 

predictive performance. 

 

 

 
 

 

 

Temperature (℃) 

Input 

layer 

Hidden 

layer 

Output 

layer 

 

 Radiation (𝑊⁄𝑚 

 

2) 
Indoor 

Temperature 

(℃) 

Wind speed (𝑚⁄𝑠) 

 

 
Figure III.20. Schematic of the greenhouse ANN model architecture 

 

 

The model was trained using a dataset collected from the experimental setup. In this 

work, the Levenberg-Marquardt learning algorithm was used due to its high convergence 

speed and ability to produce regression values with steep slopes, typically close to 1, 

reflecting high predictive accuracy (Figure III.21). 

The splitting of the dataset into subsets for training, testing, and validation were 

optimized through practical experiments. Several splitting ratios were tested, and the one that 

gave the highest regression performance was finally chosen as the most suitable for our 

problem (Figure III.22). 

X1 
H1 

X2 H2 Y1 

X3 

H23 
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Figure III.21. ANN model structure in MATLAB 
 

 

Figure III.22. Data base division 
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III.5. Conclusion 

In this chapter, we begin by describing the geographic and climatic context of the 

Ghardaia region, including its coordinates and prevailing environmental conditions. We then 

proceed to the design and construction of the greenhouse, followed by the implementation of 

the northern thermal storage wall. Finally, we present The RNA structure used to predict the 

greenhouse's internal temperature, with the goal of improving climate control and energy 

efficiency. 
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IV.1 Introduction 

The design and construction of the experimental greenhouse equipped with a north wall 

serving as a sensible heat storage system, was described in the previous chapter, this step 

focuses on determining the input parameters and the optimal architecture of the artificial 

neural network (ANN). We present the experimental results concerning the temperature of 

key greenhouse components: the soil, the north wall, and the indoor air. These data allow us 

to analyze and interpret the complex physical phenomena that define the greenhouse 

microclimate. Additionally, we introduce the simulation and prediction results of indoor 

temperature using ANN, followed by a discussion and interpretation of the findings. 

 

 

IV.2. Analysis of experimental results 

In this experiment, solar irradiance was measured over two consecutive days March 21 

and 22 to analyze variations in light transmittance due to weather conditions (Figure IV.1). 

The collected data showed a distinct daily pattern in solar irradiance, with irradiance values 

increasing in the morning, peaking at midday, and then declining with sunset. On March 21, 

the maximum recorded irradiance was approximately 862.76 W/m² at 1:30 p.m., indicating 

partial cloud cover that limited solar energy reaching the surface. In contrast, on March 22, 

the maximum irradiance was much higher, at 954.35 W/m², and occurred earlier, at 1:00 p.m., 

indicating clearer weather conditions. Nevertheless, the values still indicate a region with 

significant solar radiation. 

 

Figure IV.1. Variation of solar radiation: direct; diffuse and global 
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In an experiment designed to evaluate the thermal performance of the greenhouse 

structure, temperature sensors were installed inside and outside the greenhouse to monitor 

nighttime conditions (Figure IV.2). The goal was to evaluate the effectiveness of the north 

wall in storing and retaining heat. Over a series of nights, the data showed a difference 

between indoor and outdoor temperatures that reached a maximum of 20°C during the 

afternoon, while decreasing significantly during the night. This temperature difference 

indicates that the north wall plays a critical role in thermal storage, absorbing solar energy 

during the day and gradually releasing it at night to maintain a warmer indoor environment. 

These results demonstrate the wall's effectiveness in enhancing the greenhouse's passive 

heating capabilities, reducing the need for external heating sources during cold periods. 

 

 
Figure IV.2. Variation in the internal and external temperature of the greenhouse 

 

 

In this study, temperature fluctuations on the north-facing wall were monitored over two 

consecutive days to analyze its thermal behavior in response to environmental conditions 

(Figure IV.3). On the first day, the peak temperature was recorded at 1:00 PM, reaching 

38.1°C, while on the second day, the peak occurred later, at 4:20 PM, with a much higher 

value of 47.3°C. The lowest temperatures were recorded at 7:50 AM, reaching 17.1°C on the 

first day and 19.6°C on the second day. These variations reflect the wall's ability to store heat, 

specifically its ability to absorb and retain heat throughout the day. This is essential during 

cold periods, as the retained heat can contribute to maintaining indoor thermal comfort range 

(18–24°C), thereby reducing heating requirements. 
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Figure IV.3. Temperature evolution of the north wall over time 

 

 

 

Thermal monitoring of soil temperatures inside the greenhouse over two consecutive days 

revealed significant variation between the daily minimum and maximum temperatures (see 

Figure IV.4). 

On the first day, the peak soil temperature was recorded at 2:22 p.m., reaching 45.1°C. 

On the second day, the maximum temperature was significantly higher, reaching 54.4°C at 

3:50 p.m. In contrast, the minimum temperatures on both days were recorded at 7:40 a.m., 

reaching 21.0°C on the first day and 21.6°C on the second day. 

We note that these soil temperature fluctuations are closely related to the intensity of solar 

radiation throughout the day. As solar radiation increases, especially during the afternoon 

hours, heat builds up inside the greenhouse, leading to higher soil temperatures. The later 

timing of the daily maximum on the second day may reflect a longer duration or greater 

intensity of sun exposure. Conversely, constant minimum readings in the early morning 

coincide with the period of minimum solar input, following heat loss during the night. 
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Figure IV.4. Temporal variation of the soil temperature 
 

 

 

IV.3. Analysis of the modeling results 

In this study, an MLP neural network was used to predict the temperature inside a 

greenhouse. To find the best architecture, specifically the number of nodes in the hidden 

layer, the model was trained and tested for the corresponding periods mentioned in Chapter 

III (Section III.4.2). After running the process for a different number of nodes each time (from 

10 to 25), and based on the statistical indices MAE, RMSE, R2, and maximum error, the best 

neural network architecture was found to be 3-23-1, which provided the most reliable results 

for the test period. Based on the specific neural network architecture, the following graphs 

were drawn to compare the predicted and predicted values of the two variables. 

The model training process was completed after 42 epochs (Figure IV.5), where the 

validation mean square error (MSE) increased 6 times in a row. The number of epochs was 

selected to be 36 where the validation error presented its minimum value, which was equal to 

approximately 3,6163. This value was obtained through the normalized input and output 

variables and presents the best performance of the model. 
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Figure IV.5. Mean squared error value vs epochs 

 

 

 

Figure IV.6 presents the coefficient of determination (R²) obtained from the comparison 

between observed and simulated data in the substrate across the four key evaluation phases: 

(a) training, (b) validation, (c) testing, and (d) overall (global).The R² values serve as a 

measure of how well the predictive model replicates the actual data. A value closer to 1 

indicates a stronger correlation and better model performance. Training Phase (a): The model 

demonstrates excellent performance during training, with an R² value exceeding 0.99. This 

indicates that the model successfully learned the underlying patterns in the training dataset. 

Validation Phase (b): The validation results show a high R² value above 0.97, confirming the 

model's strong generalization ability to unseen data and indicating minimal overfitting. Test 

Phase (c): Similarly, the R² value during the test phase remains high (>0.99), validating the 

model’s reliability and accuracy when applied to independent data. Global Evaluation (d): 

The overall performance, combining all data sets, also yields a coefficient above 0.99, 

confirming the model’s robustness and consistency across different phases. 
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(a) 
 

 

 

 

 

(b) 
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(c) 
 

 

 

(d) 

Figure IV.6. Results of the coefficient of determination 

(a) Training,(b) Validation, (c) Test and (d) Global 
 

 

 

Figure IV.7 shows a comparison between the measured and calculated temperature 

curves, and Figure IV.8 illustrates the relationship between the measured and calculated 

values. From the results observed in the two previous figures, we see that the predicted values 

are in good agreement with the measured values. 
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Figure IV.7. Comparison of actual and predicted results 
 

 

 

Analyzing the graph (Figure IV.8), a comparison of the time series of measured and 

predicted global warming temperatures reveals high model accuracy. The predicted values 

closely follow the experimental data, with the largest deviations occurring during daylight 

hours, when temperature changes are most rapid and pronounced. These discrepancies are 

likely a result of limited training data under harsh conditions. Nevertheless, the overall 

agreement confirms the robustness and reliability of the model. Enhancing the training dataset 

and incorporating advanced modeling techniques may reduce prediction errors and improve 

performance in dynamic environments. 

 

 
Figure IV.8. Relationship between measured and estimated values 
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The mean absolute error (MAE), root mean square error (RMSE), and coefficient of 

determination (R²) were calculated by Equations (1), (2) and (3). The maximum error is a 

critical value for a decision support system, which will activate various system management 

devices based on the model results. 

 

 

MAE= 1 ∑𝑁 |𝑦 − 𝑦 | (1) 
𝑁 𝑖=1 𝑝𝑟𝑒𝑑. 𝑜𝑏𝑠. 

 
 

√∑𝑁 (𝑦𝑝𝑟𝑒𝑑.−𝑦𝑜𝑏𝑠.)
2 

RMSE= 
𝑖=1 [ 𝑁 

] (2) 

 

∑𝑁 [(𝑦 2 −𝑦 

𝑅2 = 1 − 
𝑖=1 𝑜𝑏𝑠. 𝑝𝑟𝑒𝑑.) ] 

∑𝑁 [(𝑦𝑜𝑏𝑠.−𝑦  𝑜 𝑏  𝑠  .)2] (3) 
𝑖=1 

 

 
TableIV.1 : Performance indicators 

 

 

Hidden 

neurons 

 

Structure 

ANN 

RMSE 

(°C) 

MAE 

(°C) 

 

R² 

Indoor temperature 

23 3-23-1 2.59 1.64 0.976 

 

 

 

IV.4. Conclusion 

The results obtained from the experimental campaigns confirm the effectiveness of the 

solar greenhouse design incorporating a north-facing thermal storage wall in enhancing 

thermal stability under semi-arid climate conditions such as those in Ghardaïa. The 

integration of a thermal energy storage system successfully reduced the temperature 

fluctuations between day and night, thereby supporting improved greenhouse microclimate. 

Additionally, the developed Artificial Neural Network (ANN) model demonstrated a high 

accuracy in predicting indoor temperature, validating its potential as a reliable tool for 

enhancing smart climate control strategies. 



 

 

 

GENERAL CONCLUSION 
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General Conclusion 

 
As part of our master's project, we presented a contribution to the study of the 

microclimate in greenhouse equipped with thermal storage north wall. Study investigates the 

thermal performance and climate optimization of a chapel-type greenhouse specifically 

designed to withstand the extreme diurnal temperature fluctuations typical of the Ghardaia 

region in southern Algeria. 

An experimental study has been conducted on a new type of greenhouse equipped with 

a solar thermal storage system through a north-facing wall using local pebbles. A compact 

greenhouse structure, covered with a polyethylene film, was constructed and integrated with a 

passive solar thermal energy storage system. The thermal mass, embedded within a north wall 

made of locally sourced stones, absorbs solar energy during the day and gradually releases it 

at night, mitigating temperature fluctuations. Field experiments were conducted to monitor 

key climatic parameters, including indoor and outdoor air temperatures and solar radiation. 

The results demonstrated the system's effectiveness in improving the indoor 

environment of the greenhouse. It should be noted that the nighttime temperature difference 

between the indoor and outdoor environments was approximately 2.7 °C. In the second phase 

of the research, an artificial neural network (ANN)-based predictive model was developed to 

estimate indoor greenhouse temperatures. The model demonstrated high predictive accuracy 

and strong correlation with observed data with a correlation coefficient of 0.98, confirming its 

reliability as a tool to support smart environmental control strategies in protected agriculture. 

This study highlights the potential of integrating passive thermal storage systems with 

advanced data-driven modeling approaches to improve the performance and sustainability of 

greenhouse operations in arid and semi-arid climates. 

Finally, this project will enable the implementation of innovative, large-scale and more 

efficient processes for agriculture, meeting quality and yield requirements, being more 

energy-efficient and more acceptable from the point of view of environmental preservation. 

Future work should focus on expanding the dataset to include extreme weather 

conditions and assessing the impact of different crop types on greenhouse thermal dynamics. 
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To build upon the current findings, future research could focus on the following aspects: 

 

 Long-term Monitoring: Extend the monitoring period to cover different seasons and 

climatic conditions to better assess the year-round performance of the system. 

 Integration with Renewable Energy: Investigate the integration of renewable energy 

sources, such as photovoltaic panels or solar thermal collectors, to enhance the energy 

efficiency and sustainability of the greenhouse system. 

 Control Strategies: Develop and test advanced control algorithms for ventilation, 

heating, and cooling systems to optimize the indoor environment based on real-time 

data. 
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