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Abstract

One of the main open problems in the theory of ordinary differential equations is the
study of the existence and number of limit cycles, due to their fundamental role in under-
standing the periodic behavior of dynamical systems. A limit cycle is an isolated periodic
orbit of the system and plays a central role in the qualitative analysis of differential equa-
tions. This study falls within the framework of Hilbert’s 16th problem, specifically its
second part, which concerns the existence of a uniform upper bound on the number of
limit cycles in polynomial differential systems of a given degree. In this thesis of master,
we conducted a comprehensive review of the concept of limit cycles, focusing on their
identification within a specific class of polynomial differential systems arising from poly-
nomial perturbations added to the linear center ẋ = y, ẏ = −x, These perturbations,
which involve small parameters ε, generate nonlinear dynamics and give rise to new limit
cycles. We employed first- and second-order averaging theory to determine accurate upper
bounds on the number of limit cycles bifurcating from the periodic orbits of the unper-
turbed system. This work is based on a detailed study of the scientific article authored
by Jaume Llibre and Clàudia Valls, entitled “On the number of limit cycles of a class
of polynomial differential systems” [1], in which we reanalyzed their theoretical results
and applied them to an original example. Our main contribution lies in providing an
original applied example that explicitly satisfies the conditions of the second-order av-
eraging theory, illustrating the practical challenges involved in applying the theory and
complementing the theoretical results established in the referenced article.

Keywords: Polynomial differential systems, integrability, phase portrait, limit cycles,
Hilbert’s 16th problem, averaging theory.



ڲڪٌۘ
ل۰ َޙݠ ሒᇭ ۰༡ިڰٺৎ৊ا اৎ৊ލఈ႙ၽت أߓߵز ඔ൹ً ݆݁ اࠍ੆ڎل۰ اᄴᄟورات و༟ڎد وۏިد دراݿ۰ ّأُڎ
ا਍ಱᄴᄟ؇݁٭ܝ٭۰. ఋዳዧَޙ۰݄ اᄴᄟوري اܳފߺࠊك ڣ۳ܾ ሒᇭ ๴ང؇ݿ৙৑ا ᄴᄟور۱؇ َޙݠاً اܳأ؇دل۰، اܳٺڰ؇ݪܹ٭۰ اৎ৊أ؇د৖৑ت
ሒᇼިاܳٷ اܳٺ༲ܹ٭ܭ ሒᇭ ؇ً࿌ިرො੼ دوراً وّޝدي ይዧٷޙ؇م، ৖ً৑݁أݞو ؇ً࿌دور ݁ڎاراً اࠍ੆ڎل۰ اᄴᄟورة ஓ஄ټܭ
۬༥ިًو ୒ୖ٭ଫଊܹت، ؜๤དྷة اܳފ؇دݿ۰ ᄭᄟ؊ފৎ৊ا إޗ؇ر ݆ᆙᆕ اᄴᄟراݿ۰ ۱ڍه ਍ಾڎرج اܳٺڰ؇ݪܹ٭۰. గጻዧأ؇د৖৑ت
ا৙৑َޙ۰݄ ሒᇭ اࠍ੆ڎل۰ اᄴᄟورات ܳأڎد ༡ި݁ڎّ ༟ߺࠊي ༡ڎّ وۏިد ᄭᄟ؊ފஓ୾ ዛኗࡤࡲ اᄳᄟي ،ሒᇃ؇اܳټ ؇ዛኔඹජص؇༠
اᄴᄟورات ৎ৊ڰ۳ިم ᄭᄥ݁؇ނ ஓ୾ݠاۏأ۰ ᆇᅪٷ؇ اৎ৊ڍாணة، ۱ڍه ሒᇭ ݁أ٭ٷ۰. ۰༥در ݆݁ اࠍ੆ڎود ݁ٺأڎدة اܳٺڰ؇ݪܹ٭۰
۰෠ູ؇اܳٷ اࠍ੆ڎود ݁ٺأڎدة اܳٺڰ؇ݪܹ٭۰ ا৙৑َޙ۰݄ ݆݁ ݁أ٭ٷ۰ ڣ۰٪ ݆ᆙᆕ ොູڎࢴ۱ࣖ؇ আॻ༟ ଩ଃ܋ଫଐܳا ؕ݁ اࠍ੆ڎل۰،
۱ڍه ොڎث ُູ . ẋ = y, ẏ = −x اࠍ੅ޚ޶ ஼ணݠৎ৊ا ሌᇿإ ݁ݯ؇ڣ۰ اࠍ੆ڎود ݁ٺأڎدة اݪޚݠاً؇ت ؜݆
ޖ۳ިر ሌᇿإ وّޝدي ۊޚ٭۰ ଫଃ༚ د਍ಱ؇݁٭൑ശ؇ت ،ε ݬ؞ଫଃة ݁أ؇ఈః݁ت ਐಾݯ݄݆ มฆܳا ا৖৑ݪޚݠاً؇ت،
ොູڎࢴࣖ أ༥ܭ ݆݁ ۰ਃ಻؇واܳټ ሌᇿو৙৑ا ඔ൹ݠོྟٺৎ৊ا ݆݁ اܳٺިݿ٭ޔ ل۰ َޙݠ আॻ༟ ا؜ٺ݄ڎَ؇ ༥ڎࢴࣖة. ༡ڎل۰ دورات
اৎ৊ݯޚݠب. ଫଃ༚ ይዧٷޙ؇م ل۰ اᄴᄟور اৎ৊ڎارات ݆݁ ۰༟ٺڰݠৎ৊ا اࠍ੆ڎل۰ اᄴᄟورات ܳأڎد دڢ٭گ۰ ༟ܹ٭؇ ༡ڎود
ڣ؇ܳݴ وၯ၍ިدل؇ ܳ٭٭ଫଊي ሒᇧو؇༥ أܳڰّ۬ اᄳᄟي اܳأగఒ޶ గጻዧگ؇ل ᄭᄥ݁ڰݱ دراݿ۰ আॻ༟ اܳأ݄ܭ ۱ڍا لأٺ݄ڎ
ۋ٭ت اࠍ੆ڎود''، ݁ٺأڎدة اܳٺڰ؇ݪܹ٭۰ ا৙৑َޙ۰݄ ݆݁ ڣ۰٪ ሒᇭ اࠍ੆ڎل۰ اᄴᄟورات ༟ڎد ''ۋިل ًأٷިان
ቕሹّگڎ ሒᇭ ا྘ཬීෂފ٭۰ ݁ފ؇ᆇᆅٺٷ؇ ݆ᆇᅀّو .ঌॻأݬ ݁ټ؇ل আॻ༟ وޗٴگٷ؇۱؇ ل۰ اܳٷޙݠ ؇݄۳෠ຩ؇ਐ಻ ොູܹ٭ܭ أ༟ڎَ؇
اܳٺ༲ڎل؇ت ༃لިࡵ ؇ᆙᆘ ،۰ਃ಻؇اܳټ ۰ਊಾݠৎ৊ا ݆݁ اܳٺިݿ٭ޔ ل۰ َޙݠ ๤ཇوط ًިݪިح ሒᇭިٺ૭૏ ঌॻأݬ ّޚٴ٭ࠔࠫ ݁ټ؇ل

إܳ٭۬. اৎ৊ލ؇ر اৎ৊گ؇ل ሒᇭ اܳިاردة ل۰ اܳٷޙݠ ༇຀؇اܳٷٺ კّაჂل و ل۰، اܳٷޙݠ ਐಸޚٴ٭ݑ اৎ৊ݠਊಾޚ۰ اܳأ݄ܹ٭۰

ل۰، اܳޚިر اܳݱިرة اܳٺႤၽ݁ܭ، ڢ؇ًܹ٭۰ اࠍ੆ڎود، ݁ٺأڎدة اܳٺڰ؇ݪܹ٭۰ اिऻء׫ոؼמ١:ا৙৑َޙ۰݄ اڤոஈ࿦࿮ت
اܳٺިݿ٭ޔ. ل۰ َޙݠ ୒ୖ٭ଫଊܹت، ؜๤དྷة اܳފ؇دݿ۰ ᄭᄟ؊ފৎ৊ا اࠍ੆ڎل۰، اᄴᄟورات



Résumé

L’un des principaux problèmes ouverts dans la théorie des équations différentielles ordi-
naires est l’étude de l’existence et du nombre de cycles limites, en raison de leur rôle fon-
damental dans la compréhension du comportement périodique des systèmes dynamiques.
Un cycle limite est une orbite périodique isolée du système et joue un rôle central dans
l’analyse qualitative des équations différentielles. Cette étude s’inscrit dans le cadre du
16e problème de Hilbert, plus précisément sa deuxième partie, qui concerne l’existence
d’une borne supérieure uniforme pour le nombre de cycles limites dans les systèmes dif-
férentiels polynomiaux d’un certain degré. Dans ce mémoire, nous avons mené une revue
complète du concept de cycle limite, en nous concentrant sur leur identification dans une
classe spécifique de systèmes différentiels polynomiaux issus de perturbations polynomi-
ales ajoutées au centre linéaire ẋ = y, ẏ = −x, Ces perturbations, qui impliquent de
petits paramètres ε, engendrent une dynamique non linéaire et donnent naissance à de
nouveaux cycles limites. Nous avons utilisé la théorie de l’approximation (ou moyenne)
d’ordre un et deux afin de déterminer des bornes supérieures précises pour le nombre de
cycles limites bifurquant à partir des orbites périodiques du système non perturbé. Ce
travail repose sur une étude détaillée de l’article scientifique rédigé par Jaume Llibre et
Clàudia Valls, intitulé « On the number of limit cycles of a class of polynomial differential
systems » [1], dans lequel nous avons réanalysé leurs résultats théoriques et les avons
appliqués à un exemple original. Notre contribution principale réside dans la présentation
d’un exemple appliqué original satisfaisant explicitement les conditions de la théorie de
l’approximation du second ordre, illustrant les défis pratiques liés à l’application de cette
théorie et complétant les résultats théoriques établis dans l’article de référence.

Mots-clés : Systèmes différentiels polynomiaux, intégrabilité, portrait de phase, cycles
limites, 16e problème de Hilbert, théorie de l’approximation.
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Introduction

Dynamical systems form a fundamental framework for modeling a wide array of phe-
nomena encountered in disciplines such as biology, physics, engineering, and economics.
They serve as essential mathematical tools for describing the temporal evolution of states
within various processes. Since the early days of differential equations, these systems have
attracted extensive interest from mathematicians aiming to understand their qualitative
and quantitative behaviors (see [3–6]).
Many realistic models are nonlinear by nature, which makes finding explicit analytic solu-
tions extremely difficult or often impossible. Therefore, numerical methods have become
indispensable for approximating solutions. However, these approaches usually provide
insight only over finite time intervals and may fail to reveal the global dynamics of the
system.
At the end of the nineteenth century, the French mathematician Henri Poincaré profoundly
transformed the field through his pioneering work “Mémoire sur les courbes définies par
une équation différentielle” (see [7]). He introduced a qualitative approach to differential
equations based on geometric and topological concepts, enabling the study of solutions’ be-
havior without relying on explicit formulas. Fundamental notions such as phase portraits
and return maps, introduced by Poincaré, laid the foundation of the modern qualitative
theory of dynamical systems.
A central challenge in this theory is the investigation of integrability and the existence
of periodic solutions, especially limit cycles, which are isolated closed trajectories. The
concept of limit cycles first appeared in Poincaré’s seminal works (see [8]), and since then,
numerous models in physics, engineering, chemistry, biology, and economics have been
formulated as planar autonomous polynomial systems exhibiting such cycles (see [9–14]).
In 1900, David Hilbert presented a list of 23 unsolved problems at the International
Congress of Mathematicians (see [15]). Among them, the second part of the sixteenth
problem asks about the maximum number H(n) of limit cycles and their possible config-
urations in planar polynomial differential systems of degree n, described by{

ẋ = P (x, y),

ẏ = Q(x, y),

where P and Q are real polynomials in two variables. This problem remains open and
stands as one of the most profound challenges in the theory of dynamical systems.

Given the complexity and nonlinear nature of many real-world systems, especially
those lacking explicit solutions, modern research increasingly relies on analytical approxi-
mation techniques. Among these, the averaging theory plays a pivotal role in studying
nonlinear dynamical systems subjected to small perturbations. Averaging theory facili-
tates the detection and approximation of periodic solutions, particularly limit cycles, by
analyzing averaged functions over time (see [1], [16–20]).

10



This thesis of master is organized into three main chapters, each building upon the
previous to provide a comprehensive study of limit cycles in planar differential systems:

• Chapter 1 presents the fundamental theoretical background necessary for the study
of polynomial differential systems. It introduces key concepts such as vector fields,
critical point analysis, and integrability via invariant curves. Several original ex-
amples are included to illustrate the theoretical notions and their application in
analyzing the system’s behavior.

• Chapter 2 focuses on limit cycles, beginning with their definition and basic proper-
ties. It discusses the Poincaré–Bendixson theorem and analytical techniques used to
study the existence and number of limit cycles. This chapter also lays the ground-
work for understanding the first- and second-order averaging theory by presenting
and discussing original examples illustrating how limit cycles appear in differential
systems.

• Chapter 3 is devoted to a detailed re-study and analysis of a research article fo-
cusing on a specific type of planar polynomial differential systems [1]. This chapter
centers on systems exhibiting a center at the origin and explores the application
of first- and second-order averaging theories to these systems. Two families of per-
turbed systems will be studied{

ẋ = y − ε (g11(x) + f11(x)y) ,

ẏ = −x− ε (g21(x) + f21(x)y) .

and {
ẋ = y − ε (g11(x) + f11(x)y)− ε2 (g12(x) + f12(x)y) ,

ẏ = −x− ε (g21(x) + f21(x)y)− ε2 (g22(x) + f22(x)y) .

where ε > 0 is a small parameter and the functions fij, gij are polynomials.

The chapter explains the theoretical conditions required for applying the averag-
ing method, outlines the computational approach, and discusses the main results
regarding the number and distribution of limit cycles for these systems. Original ex-
amples constructed for this work illustrate the theoretical concepts and demonstrate
the practical application of averaging theory in analyzing limit cycles.

11



1 Preliminary concepts

1.1 Introduction

This chapter is devoted to introducing some preliminary concepts essential for the qual-
itative study of planar differential systems. We begin by discussing the general form of
polynomial differential equations in the plane, and then we define fundamental notions
such as vector fields, solutions (including periodic ones), and phase portraits, which visu-
ally represent the behavior of the system. We also give attention to equilibrium points.
At the end of the chapter, we discuss the concept of invariant curves and present some
approaches to studying the integrability of differential systems, such as first integrals and
integrating factors. These concepts will be frequently used and further developed in the
following chapters.

1.2 Planar polynomial differential systems

Definition 1.1. [21] A planar polynomial differential system is defined by two differential
equations of the form {

ẋ = P (x(t), y(t)),

ẏ = Q(x(t), y(t)).
(1.1)

where P (x(t), y(t)) and Q(x(t), y(t)) are polynomial functions of the variables x and y.
The system (1.1) is of degree n where n = max(deg(P ), deg(Q)).
As usual the dot denotes derivative with respect to the independent variable t.

Definition 1.2. [22] A differential system is given by

dx

dt
= f(t, x),

where x ∈ Rn and f : Rn+1 → Rn. if the function f does not depend explicitly on the time
variable t (that is f(t, x) = f(x)), the system is called autonomous and can be written as

ẋ = f(x).

otherwise, if f depends on both t and x, the system is referred to as non-autonomous.

Definition 1.3. [2] A polynomial differential system in the plane is called homogeneous

12



of degree n if it can be written in the form
ẋ = P (x(t), y(t)) =

i+j=n∑
i+j=0

αij x
iyn−j,

ẏ = Q(x(t), y(t)) =

i+j=n∑
i+j=0

βij x
iyn−j.

1.2.1 Vector field

Drawing the vector field before beginning a deep analysis of a differential system is
quite practical and can give us important information about the many types of potential
solutions. It is the vector that corresponds to each point in the space shown graphically.
This vector will really be tangent to the differential system’s trajectory as it passes through
that location. As a result, we may get a reasonably accurate sense of the potential
solutions and their asymptotic behavior from the vector field.

Definition 1.4. [23] A vector field X is a region of the plane in which there exists at
every point A ∈ ∆ ⊂ R2 a vector

−→
V (A, t), i.e an application:

X : ∆ ⊂ R2 → R2,

A(x, y) 7→ −→
V (A) =

(
P (x, y)

Q(x, y)

)
.

where P and Q are of class C1 on ∆ ⊂ R2. The vector field associated with system (1.1)
can be represented by the following differential operator

X = P
∂

∂x
+Q

∂

∂y
,

Then for the following we consider the vector field X associated with the planar polynomial
differential system (1.1)

−→
dA

dt
=

−→
V (A) ⇐⇒


dx

dt
= P (x(t), y(t)),

dy

dt
= Q(x(t), y(t)).

Remark 1.1. 1. In this mémoire, we assume that the functions P and Q are of class
C1. This assumption ensures that the Cauchy–Lipschitz conditions are satisfied for
the system (1.1), so that for every initial condition (x0, y0) , there exists a unique
solution.

2. The plane formed by the variables x and y is called the phase plane.

3. On the curve P (x, y) = 0, known as the vertical isocline, the vector field is parallel
to the y-axis; whereas on the curve Q(x, y) = 0, called the horizontal isocline, the
vector field is parallel to the x-axis.
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Example 1.1. Consider the system{
ẋ = 1

5
y2 + x− 1,

ẏ = x3 − y.
(1.2)

The vector field associated with system (1.2) is shown in Figure (1.1).

Figure 1.1: Vector Field for the system (1.2).

1.2.2 Solution and periodic solution

This section provides clear definitions of the basic terms solution and periodic solution
in differential systems : solution refers to any function that, for specified initial conditions,
satisfies the system’s equations, whereas periodic solution refers to a function that repeats
its values after a predetermined amount of time.

Definition 1.5. [2] A mapping φ : I ⊆ R → R2 given by φ(t) = (x(t), y(t)) is called a
solution of system (1.1) if

φ̇(t) = X (φ(t)), ∀t ∈ I,

where X = (P,Q) is the associated vector field. if φ1(t) = (x1(t), y1(t)) and φ2(t) =
(x2(t), y2(t)) are two solutions on I1 and I2 respectively, we say that φ2(t) is an extension
of φ1(t) if I1 ⊂ I2 and φ1(t) = φ2(t) for all t ∈ I1. A solution is called maximal if it has
no further extension.

Definition 1.6. [2] A solution φ(t) = (x(t), y(t)) of system (1.1) is called a periodic
solution if there exists a real number T > 0 such that

φ(t+ T ) = φ(t), ∀t ∈ R.

The smallest such T is called the period of the solution.
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1.3 Phase portrait

For example, the solutions of a vector field X are represented as trajectories or orbits,
showing how the system changes over time; the phase portrait, which is the collection
of these trajectories, offers important information about the qualitative behavior of the
system, revealing important features like equilibrium points, stability properties, etc. The
R2 plane is also referred to as the phase plane, where the behavior of dynamical systems
is visually represented.

Definition 1.7. [23] Let p ∈ ∆ be a point in the domain of the vector field X : ∆ → R2.
The orbit of X through p, denoted by γp, is defined as the image of the maximal solution
φp : Ip → ∆ that passes through p. In other words,

γp = {φp(t) | t ∈ Ip}.

Definition 1.8. [23] The phase portrait of a vector field X is the complete set of orbits
that represent the solutions of the system in the (x, y)-plane. It provides a global view of
the system’s dynamics by displaying all trajectories (orbits) and equilibrium points.

Example 1.2. The phase portrait associated with system (1.2) is shown in Figure (1.2)

Figure 1.2: Phase Portrait for the system (1.2).

1.4 Equilibrium points

When analyzing dynamical systems, equilibrium points are essential. When describing a
dynamical system with multiple variables, Henri Poincaré (1854−1912) demonstrated that
it is sufficient to characterize the system without computing exact solutions. Determining
the equilibrium points and evaluating their stability significantly simplifies the study of
nonlinear systems near these points.
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Definition 1.9. [2] A point (x0, y0) is called an equilibrium point (or a singular point)
of the system (1.1) if {

P (x0, y0) = 0,

Q(x0, y0) = 0.

Remark 1.2. [23] In the context of planar systems, the terms equilibrium point and sin-
gular point are often used interchangeably. However, the term singular point emphasizes
the local behavior of the vector field, whereas the term equilibrium point highlights the
system’s stationary solutions or trajectories.

Proposition 1.1. [23] Every periodic solution inherently contains at least one equilibrium
point.

1.4.1 The Jacobian Matrix and Linearization

In order to analyze the behavior of trajectories near equilibrium points, it is common
practice to consider the linearization of system (1.1) and then relate the trajectories of
the nonlinear system to those of its linear counterpart.

Definition 1.10. [2] Let J(x0, y0) be the Jacobian matrix of the vector field near an
equilibrium point (x0, y0), which is defined as

J(x0, y0) =

∂P
∂x
(x0, y0)

∂P
∂y
(x0, y0)

∂Q
∂x
(x0, y0)

∂Q
∂y
(x0, y0)

 .

Then, the linearized form of system (1.1) near the equilibrium point (x0, y0) is given
in matrix form by (

ẋ
ẏ

)
= J(x0, y0)

(
x
y

)
. (1.3)

Definition 1.11. [2] A equilibrium point (x0, y0) is defined as hyperbolic if the Jacobian
matrix J(x0, y0) has eigenvalues with non-zero real parts. Conversely, if at least one
eigenvalue has a zero real part, the point is classified as non-hyperbolic.

Example 1.3. Consider the following nonlinear system:{
ẋ = x2 + y,

ẏ = xy + 1.
(1.4)

To find the equilibrium points, we solve the system{
x2 + y = 0

xy + 1 = 0
⇒
{
y = −x2,
−x3 + 1 = 0.

Hence, the system has a unique equilibrium point at (x0, y0) = (1,−1).
We now compute the Jacobian matrix

J(x, y) =

[
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

]
=

[
2x 1
y x

]
.
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Evaluating the Jacobian at the equilibrium point (x0, y0) = (1,−1), we obtain

J(1,−1) =

[
2 1
−1 1

]
.

Therefore, the linearization of system (1.4) at the point (1,−1) is{
ẋ = 2x+ y,

ẏ = −x+ y.

1.4.2 Topological Equivalence

Definition 1.12. [24] A function h : R2 → R2 is called a homeomorphism if it is a
continuous bijection with a continuous inverse.

Definition 1.13. [25] Two autonomous systems in the plane

(S1):

{
ẋ = P1(x(t), y(t)),

ẏ = Q1(x(t), y(t)),
(S2):

{
ẋ = P2(x(t), y(t)),

ẏ = Q2(x(t), y(t)).

defined on two open sets V and W respectively, are said to be topologically equivalent if
there exists a homeomorphism h : V → W such that h maps the orbits of (S1) onto the
orbits of (S2) and preserves the direction of motion.

Remark 1.3. [26] Topological equivalence via a homeomorphism allows for a classification
primarily based on the stability or instability of the equilibrium. Two linear systems are
topologically equivalent if they have the same number of eigenvalues, with real parts of
the same signs.

Remark 1.4. Consider the differential system (1.1), and let J(x0, y0) be the Jacobian
matrix associated with this system at the equilibrium point (x0, y0). Let λ1 and λ2 be the
eigenvalues of this matrix.

1. A equilibrium point is said to be elementary if at least one eigenvalue of J(x0, y0)
is nonzero. If both eigenvalues vanish (λ1 = λ2 = 0), the point is called non-
elementary. In this case:

• The equilibrium point is referred to as degenerate if the linear part is identically
zero (J(x0, y0) = 0).

• If the linear part is nonzero, the equilibrium point is called nilpotent (see [23],
Theorem 3.5).

2. A equilibrium point is said to be semi-hyperbolic if exactly one of its eigenvalues is
zero while the other is nonzero. The phase portraits of such points are well known
(see [23], Theorem 2.19).

3. A equilibrium point (x0, y0) is called a center if there exists a neighborhood V
around it such that for every point p ∈ V (with P 2(p) + Q2(p) ̸= 0), the orbits
passing through p are closed and surround (x0, y0), indicating closed orbits and
periodic dynamics.
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1.4.3 Hartman-Grobman Theorem

This theorem states that a dynamical system (1.1) near a hyperbolic equilibrium point
can be reduced to the study of a topologically equivalent linear system (1.3) near the
origin. This theorem is a powerful tool in the analysis of dynamical systems, as it allows
for the simplification of complex dynamics by examining a simpler linear model. It is
particularly useful for understanding the local behavior of dynamical systems defined on
an open subset of the plane.

Theorem 1.1. [26] Suppose that the Jacobian matrix at the equilibrium point (x0, y0)
has two eigenvalues such that Re(λ1) ̸= 0 and Re(λ2) ̸= 0. Then, the solutions of the
nonlinear system (1.1) can be approximated by the solutions of the linearized system (1.3)
in a neighborhood of the equilibrium point.

In other words, the phase portrait of the linearized system (1.3) provides a good ap-
proximation of that of the nonlinear system (1.1) near this equilibrium point through a
continuous transformation.

Remark 1.5. [2] In the case where Re(λ1) = 0 and Re(λ2) = 0, the linearization method
does not provide sufficient information about the behavior of the nonlinear system. Specif-
ically, if the equilibrium point (x0, y0) is a center for the linearized system (1.3), determin-
ing whether it remains a center or becomes a focus in the nonlinear system (1.1) requires
further investigation. This is known as the center problem.

1.4.4 Stability of the equilibrium

There may be more than one equilibrium point in a nonlinear system, and these points
may be unstable or stable. Ensuring the stability of an equilibrium point is crucial in
various situations. The following is a definition of stability

Let (x0, y0) be an equilibrium point of system (1.1).
We denote X(t) = (P (x, y), Q(x, y)) end X0 = (P (x0, y0), Q(x0, y0))

Definition 1.14. [26] We say that

1. (x0, y0) is stable if and only if

∀ε > 0,∃η > 0 such that ∥(x, y)− (x0, y0)∥ < η ⇒ ∀t > 0, ∥X(t)−X0∥ < ε.

2. (x0, y0) is asymptotically stable if and only if it is stable and

lim
t→∞

∥X(t)−X0∥ = 0.
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Figure 1.3: [27] Stability of an equilibrium point .

Figure 1.4: [27] Asymptotic stability of an equilibrium point .

1.4.5 Classification of equilibrium points

Definition 1.15. [2] Consider the differential system (1.1) and let J(x0, y0) be the Ja-
cobian matrix associated with it at the equilibrium point (x0, y0). Let λ1 and λ2 be
the eigenvalues of this matrix. The classification of equilibrium points is based on the
following cases:

• Node : If λ1 and λ2 are real and have the same sign

• If λ1 ≤ λ2 < 0, the origin is a stable node.

• If λ1 ≥ λ2 > 0, the origin is an unstable node.

• Saddle :

If λ1 and λ2 are real, nonzero, and of opposite signs, the origin is a saddle. A saddle
is always unstable.

• Focus : If λ1 and λ2 are complex conjugates with Re(λ1,2) ̸= 0

• If Re(λ1,2) < 0, the origin is a stable focus.

• If Re(λ1,2) > 0, the origin is an unstable focus.

• Center : If λ1 and λ2 are purely imaginary, the origin is a center. A center is stable
but not asymptotically stable.

Example 1.4. [2] Consider the following nonlinear differential system
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{
ẋ = x+ 2y + x2 − y2,

ẏ = 3x+ 4y − 2xy.
(1.5)

We define the Jacobian matrix of the system (1.5) as

J(x, y) =

(
1 + 2x 2− 2y
3− 2y 4− 2x

)
.

At the equilibrium point (x0, y0) = (0, 0), the Jacobian takes the form

J(0, 0) =

(
1 2
3 4

)
.

By solving det(J(0, 0)− λI) = 0, we obtain the characteristic equation

λ2 − 5λ− 2 = 0.

Thus, the eigenvalues are

λ1 =
5 +

√
33

2
, λ2 =

5−
√
33

2
.

Since the eigenvalues are real and of opposite signs, the origin is classified as a saddle
point, which is always unstable.

Figure 1.5: Phase portrait of the system (1.5).

Example 1.5. [2] Consider the following nonlinear differential system{
ẋ = −y + xy2,

ẏ = x+ y3.
(1.6)
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To find the equilibrium points, we solve{
−y + xy2 = 0

x+ y3 = 0
⇒
{
−y − y5 = 0

x = −y3

Thus, the only equilibrium point is (x0, y0) = (0, 0).
The Jacobian matrix associated with the system (1.6) is

J(x, y) =

(
y2 −1 + 2xy
1 3y2

)
.

Evaluating at the equilibrium point (0, 0), we obtain

J(0, 0) =

(
0 −1
1 0

)
.

To classify the equilibrium point, we compute the eigenvalues of the Jacobian by
solving the characteristic equation

det(J(0, 0)− λI) =

∣∣∣∣−λ −1
1 −λ

∣∣∣∣ = λ2 + 1 = 0 ⇒ λ1,2 = ±i.

Since the eigenvalues are purely imaginary and complex conjugates, the origin is clas-
sified as a center. Therefore, the system exhibits closed orbits around the equilibrium
point, and the origin is stable but not asymptotically stable.

Figure 1.6: Phase portrait of a system (1.6).

Example 1.6. [2] Consider the following nonlinear differential system{
ẋ = x− y,

ẏ = x+ y.
(1.7)
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To find the equilibrium points, we solve{
x− y = 0,

x+ y = 0.

Thus, the only equilibrium point is (x0, y0) = (0, 0).
The Jacobian matrix associated with the system (1.7) is

J(x, y) =

(
1 −1
1 1

)
.

Since the Jacobian is constant, it remains the same at the equilibrium point (0, 0).
To classify the equilibrium point, we compute the eigenvalues of the Jacobian by

solving the characteristic equation

det(J(0, 0)− λI) =

∣∣∣∣1− λ −1
1 1− λ

∣∣∣∣ = 0 ⇒ λ2 − 2λ+ 2 = 0 ⇒ λ = 1± i.

Since the eigenvalues have a nonzero real part (λ = 1 ± i), the origin is classified as
an unstable focus. Therefore, the system exhibits spiral trajectories that move away from
the equilibrium point, and the origin is unstable.

Figure 1.7: Phase portrait of a system (1.7).

Example 1.7. Consider the following nonlinear differential system{
ẋ = x+ xy,

ẏ = 2y + y2.
(1.8)
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To find the equilibrium points, we solve

x(1 + y) = 0 and y(2 + y) = 0.

which yields the unique solution (x0, y0) = (0, 0).
The Jacobian matrix associated with the system (1.8) is

J(x, y) =

(
1 + y x
0 2 + 2y

)
.

Evaluating at the equilibrium point (0, 0), we have

J(0, 0) =

(
1 0
0 2

)
.

The eigenvalues of this matrix are

λ1 = 1, λ2 = 2.

Since the eigenvalues are real and positive, the origin is classified as an unstable node.

Figure 1.8: Phase portrait of a system (1.8).

1.5 Invariant curves

Invariant algebraic curves are a fundamental tool in studying the integrability of planar
polynomial differential systems, as they are used to identify the existence of periodic
solutions and limit cycles.
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Definition 1.16. [23] We call an invariant curve of the system (1.1) any curve defined by
the equation U(x, y) = 0 in the phase plane for which there exists a function K = K(x, y),
called the cofactor of the invariant curve U = 0, such that:

P (x, y)
∂U(x, y)

∂x
+Q(x, y)

∂U(x, y)

∂y
= K(x, y)U(x, y). (1.9)

Equality (1.9) shows that on the invariant curve, the gradient
(

∂U
∂x
, ∂U
∂y

)
of U is or-

thogonal to the vector field X = (P,Q). This means that at every point on the invariant
curve, the vector field is tangent to the curve, and consequently, the curve is formed by
the solutions (or trajectories) of the vector field X .

Example 1.8. Consider the nonlinear system{
ẋ = x(π − y)

ẏ = y(x− π)

Assume that U(x, y) = xy is an invariant curve for the system.

∂U

∂x
ẋ+

∂U

∂y
ẏ = y · x(π − y) + x · y(x− π)

= xy[(π − y) + (x− π)]

= xy(x− y)

= U(x, y)K(x, y).

Thus, the curve xy = 0 is an invariant curve of the system, and its associated cofactor is
given by K(x, y) = x− y.

Definition 1.17. [28] An invariant curve U(x, y) = 0 is called algebraic of degree m if
U(x, y) is a polynomial of degree m. Otherwise, it is called non-algebraic.

Definition 1.18. [28] An algebraic curve U(x, y) = 0 is said to be irreducible if U(x, y) is
a polynomial that cannot be factored into polynomials of lower degrees in the ring R[x, y].

Remark 1.6. [23] When the cofactor k(x, y) is a polynomial, the invariant curve defined
by U(x, y) = 0 is said to have a polynomial cofactor. This allows us to apply algebraic
techniques specific to polynomials in its analysis.

Theorem 1.2. [29] Consider the system (1.1) and let Γ(t) be a periodic orbit with period
T > 0. Suppose that U : ∆ ⊂ R2 → R is an invariant curve such that:

Γ(t) = {(x, y) ∈ ∆ | U(x, y) = 0},

and let K(x, y) ∈ C1 be the cofactor associated with the invariant curve U(x, y) = 0 as
given in equation (1.9) . If there exists a point p ∈ ∆ such that U(p) = 0 and ∇U(p) ̸= 0,
then the following holds: ∫ T

0

div(Γ(t))dt =
∫ T

0

K(Γ(t))dt.

Remark 1.7. The condition ∇U(p) ̸= 0 ensures that the invariant curve U(x, y) = 0 does
not contain singular points, meaning that the periodic orbit does not pass through critical
points of the system.
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1.6 Integrability of polynomial differential systems

In the qualitative analysis of polynomial differential systems, the concept of integra-
bility plays a fundamental role. A polynomial differential system is said to be integrable
if it admits a first integral, as defined below. However, determining a first integral for a
given differential system is often a challenging task. The significance of the existence of
a first integral lies in the fact that it completely characterizes the phase portrait of the
system, providing a comprehensive understanding of its global dynamics.

1.6.1 First integral

Definition 1.19. [23] Let H : ∆ → R be a C1 function that is not locally constant. We
say that H is a first integral of the differential system (1.1) in ∆ if it remains constant
along every trajectory of the system that is contained in ∆. In other words, H is a first
integral if

dH(x, y)

dt
= P (x, y)

∂H(x, y)

∂x
+Q(x, y)

∂H(x, y)

∂y
≡ 0.

The general solution of this equation is given by H(x, y) = k, where k is an arbitrary
constant. Therefore, the system (1.1) is said to be integrable in ∆ if it possesses a first
integral H in ∆.

1.6.2 Darboux integrability

Definition 1.20. [30] A Darboux function is a function of the form

f(x, y) = f1(x, y)
λ1f2(x, y)

λ2 . . . fp(x, y)
λp exp

(
g(x, y)

h(x, y)

)
,

where fi(x, y) for i = 1, . . . , p, g(x, y), and h(x, y) are polynomials in C[x, y] and the λi
for i = 1, . . . , p are complex numbers.

Definition 1.21. System (1.1) is called Darboux integrable if it has a first integral which
is a Darboux function.

Definition 1.22. [31] A function that can be represented by quadratures of elementary
functions is known as a Liouvillian function.

Determining whether a given class of functions has an integrating factor or an inverse
integrating factor is another aspect of studying the integrability problem.

1.6.3 Integrating factors

Definition 1.23. [2] On the open subset ∆ ⊆ R2, the function R(x, y) is an integrating
factor of differential system (1.1).

div(RP,RQ) = 0 or P
∂R

∂x
+Q

∂R

∂y
= −R div(P,Q)

if R ∈ C1(U), R ̸= 0 on U and
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∂(RP )

∂x
= −∂(RQ)

∂y
.

As is customary,

div(X) = div(P,Q) =
∂P

∂x
+
∂Q

∂y

defines the divergence of the vector field X.
It is evident that the function H that satisfies

∂H

∂x
= RQ,

∂H

∂y
= −RP,

is a first integral, then the first integral H associated to the integrating factor R is
given by

H(x, y) = −
∫
R(x, y)P (x, y) dy + h(x).

H(x, y) =

∫
R(x, y)Q(x, y) dx+ h(y).

Inverse integrating factor

Definition 1.24. [13] If a nonzero function V : ∆ → R of class C1(∆) satisfies the
following linear partial differential equation and is not locally null:

Q
∂V

∂y
+ P

∂V

∂x
= V

(
∂P

∂x
+
∂Q

∂y

)
,

then V is called an inverse integrating factor of system (1.1).
It is simple to confirm that an integrating factor in ∆ \ {V = 0} of the system is

defined by the function:

R =
1

V
.

One of the instruments used to investigate whether limit cycles exist or not is the
inverse integrating factor. An important relationship between a limit cycle and an inverse
integrating factor is provided by the following theorem.

Theorem 1.3. [13] Let V : ∆ → R be one of the inverse integrating factors of system
(1.1). If Γ is a limit cycle of (1.1), then

Γ ⊂ {(x, y) ∈ ∆ : V (x, y) = 0}.
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2 Limit cycles of differential systems

2.1 Introduction

Limit cycles are dynamic phenomena that appear in nonlinear planar differential sys-
tems, representing regularly repeating patterns within the system’s phase space. The
concept was first extensively studied by Henri Poincaré in the late 19th century, notably
in his seminal memoir "On curves defined by a differential equation" see[7]. These phe-
nomena play a central role in explaining recurring behaviors observed in natural and
engineering contexts, such as self-sustained oscillations in chemical reactions, biological
rhythms, and electrical circuits. This chapter aims to review the fundamental mathe-
matical principles regarding the existence of limit cycles, their stability properties, and
essential characteristics, supported by practical examples illustrating their application in
various systems.

2.2 Limit cycles

Definition 2.1. [28] A limit cycle is an isolated periodic solution of a planar differential
system (1.1). It represents a closed trajectory in the phase space such that neighboring
trajectories either approach or diverge from it, depending on its stability

Remark 2.1. The limit cycle is stable if every neighboring trajectory approaches it; if not,
it is unstable.

Definition 2.2. [28] A periodic solution of system (1.1) is called an algebraic limit cycle if
it is a limit cycle and contained within an irreducible algebraic invariant curve U(x, y) = 0
of system (1.1); otherwise, it is referred to as a non-algebraic limit cycle.

Example 2.1. In [8] Chapter VII of his foundational work, Henri Poincaré presented
the first known example of a limit cycle. The studied system is a planar polynomial
differential system of degree three:{

ẋ = x(x2 + y2 − 1)− y(x2 + y2 + 1),

ẏ = y(x2 + y2 − 1) + x(x2 + y2 + 1).
(2.1)

This system has a unique singular point at the origin, which is a focus. There are no
singular points on the circle x2 + y2 = 1, which acts as a characteristic trajectory and
therefore constitutes an isolated limit cycle. Hence, the unit circle:

x2 + y2 = 1

is the only limit cycle in the system, as observed by Poincaré.
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Figure 2.1: The Algebraic Limit Cycle in Poincaré’s Example for System (2.1).

2.3 Existence and non existence of limit cycles in the
plane

We provide some conclusions in this section that allow us to demonstrate the existence
or non-existence of limit cycles for a polynomial differential system (1.1).

Remark 2.2. Limit cycles appear only in nonlinear differential systems.

Theorem 2.1. [32] Let (P,Q) be a C1 vector field defined in the open subset ∆ ⊂ R2,
(u(t), v(t)) a periodic solution of period T of the system (1.1), and R : ∆ → R a C1 map
such that ∫ T

0

R(u(t), v(t)) dt ̸= 0,

and let U = U(x, y) be a C1 solution of the linear partial differential equation (1.9).
Then the closed trajectory

γ = {(u(t), v(t)) ∈ ∆ : t ∈ [0, T ]}
is contained in the set

Σ = {(x, y) ∈ ∆ : U(x, y) = 0},
and γ is not contained in a periodic annulus of the vector field (P,Q). Moreover, if

the vector field (P,Q) and the functions R and U is analytic, then γ is a limit cycle.

Theorem 2.2. [33] Let C and C ′ be two simple closed curves in the plane, with C ′ entirely
enclosed by C. If the vector field (P,Q) along every point of C points strictly outward and
along every point of C ′ points strictly inward, then there is at least one limit cycle lying
in the region between C ′ and C.
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Figure 2.2: Existence of a limit cycle located between C and C ′

Theorem 2.3. [34] (Bendixson Criterion) Let ∆ be a simply connected domain in R2.
If the quantity ∂P

∂x
+ ∂Q

∂y
is not identically zero and has a constant sign throughout ∆, then

the vector field X = (P,Q) does not admit any limit cycle entirely contained in ∆.
Theorem 2.4. [35] If the system (1.1) has no singular point, then it has no limit cycles

2.4 Stability of limit cycles

Let γ represent the trajectory associated with the limit cycle of the system (1.1). The
neighboring trajectories, although not closed, should resemble γ. Depending on whether
these nearby trajectories spiral towards or away from γ, the behavior of γ as a limit
cycle can be categorized as stable, semi-stable, or unstable. This classification depends
on whether the surrounding trajectories approach γ, diverge from it, or exhibit both
behaviors.
Theorem 2.5. [33] Consider a closed trajectory γ representing a limit cycle in a nonlinear
dynamical system. The stability characteristics of γ can be described as follows:

a. Stable (attractive): If all trajectories in the vicinity of γ, both inside and outside,
spiral towards γ as t→ +∞.

b. Unstable (repulsive): If all neighboring trajectories spiral towards γ as t→ −∞.

c. Semi-Stable: If trajectories inside γ approach it as t → +∞ while those outside
approach it as t→ −∞, or vice versa.

Figure 2.3: Stable limit cycle. Figure 2.4: Unstable limit cycle.
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Figure 2.5: Semi-stable limit cycle.

2.5 Poincaré map

The Poincaré map,introduced by Henri Poincaré in 1881 [7], is one of the fundamental
tools used to study the stability of periodic orbits in dynamical systems, particularly when
analyzing the stability of isolated periodic trajectories. The basic idea behind this map
is as follows: Suppose we have a periodic orbit of system (1.1) that passes through the
point X0 = (x0, y0), and let Σ be a section (a local surface) transverse to the orbit at the
point X0. Then, the surface Σ intersects the orbit at that point.
Now, if we take any point X = (x, y) ∈ Σ sufficiently close to X0, the solution of system
(1.1) starting from X at t = 0 will evolve and intersect the surface Σ again at a new point
Π(X) located near the original point X0. This transformation X 7→ Π(X) (Figure 2.6)
is known as the Poincaré first return map.
The following theorem establishes the existence and continuity of this map, and it also
guarantees the continuity of its first derivative near X0. In other words, the theorem
ensures not only that the map is well-defined, but also that it behaves smoothly in a
neighborhood of the periodic orbit.

Figure 2.6: [2] The Poincaré map .

Theorem 2.6. [2] Let ∆ be an open subset of Rn and Let the vector field of system (1.1)
. Suppose that φt(X0) is a periodic solution of (1.1) of period T , and that the cycle

γ = {X ∈ Rn | X = φt(X0), 0 ≤ t ≤ T}
is contained in ∆ .Let Σ be the hyperplane orthogonal to γ at X0; i.e., let

Σ = {X ∈ Rn | (X −X0) · (P (X0), Q(X0)) = 0}.
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Then there exists δ > 0 and a unique function τ(X), defined and continuously differen-
tiable for X ∈ Nδ(X0), such that

τ(X0) = T and φt(X) ∈ Σ for all X ∈ Nδ(X0).

Definition 2.3. [2] Let γ, Σ, δ and τ(X) be defined as in Theorem (2.6). Then for
X ∈ Nδ(X0) ∩ Σ, the function

Π(X) = φτ(X)(X)

is called the Poincaré map for γ at X0.
Theorem 2.7. [2] Let γ(t) be a periodic solution of (1.1) of period T . Then the derivative
of the Poincaré map Π(s) along a straight line Σ normal to γ = {X ∈ R2 | X =
γ(t)− γ(0) 0 ≤ t ≤ T} at X = (0, 0) is given by

Π ′(0, 0) = exp

∫ T

0

div · (P (γ(t), Q(γ(t))dt.

Corollary 2.1. [2] Under the hypotheses of Theorem (2.7), the periodic solution γ(t) is
a stable limit cycle if ∫ T

0

div · (P (γ(t), Q(γ(t)) dt < 0,

and it is an unstable limit cycle if∫ T

0

div · (P (γ(t), Q(γ(t)) dt > 0.

It may be a stable, unstable, or semi-stable limit cycle, or it may belong to a continuous
band of cycles if this quantity is zero.

2.6 Averaging Theory

Determining limit cycles remains one of the most fundamental open problems in the
qualitative theory of differential systems [36]. Various analytical techniques have been
developed to investigate the number of limit cycles that can bifurcate from the periodic
orbits of a center. Among these, the averaging method stands out as one of the most
powerful perturbation techniques used in the study of nonlinear dynamical systems. Other
notable methods include the Poincaré map, Melnikov’s method, and bifurcation theory.

The averaging method simplifies the analysis of periodic solutions by transforming a
non-autonomous, time-periodic system into an associated autonomous averaged system.
Consider the perturbed differential equation

ẋ = εf(x, t, ε),

where t ∈ R, x ∈ R, ε is a small parameter, and the function f is T -periodic in t. The
corresponding first-order averaged system is given by

ẋ = εf 0(x), where f 0(x) =
1

T

∫ T

0

f(x, t, 0) dt.

The zeros of the averaged function f 0(x) correspond to approximate periodic solutions
of the original system, which may give rise to limit cycles.

This technique provides an effective framework for identifying and analyzing limit
cycles in complex polynomial differential systems. For this reason, averaging theory is
central to the approach adopted in this work.
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2.6.1 Perturbation of Differential Systems

Definition 2.4. [16] A widely used strategy for studying limit cycles in planar polynomial
differential systems is to start from an integrable system with a center-type singularity.
This system is then perturbed by adding small polynomial terms of a prescribed degree.
The perturbed system takes the form:{

ẋ = P (x, y) + εf(x, y),

ẏ = Q(x, y) + εg(x, y),

where ε is a small parameter, and f(x, y), g(x, y) are polynomial perturbations. The aim
is to destroy the continuum of periodic orbits of the integrable system in such a way that
some isolated closed orbits persist, corresponding to limit cycles.

2.6.2 First-Order Averaging Method

Theorem 2.8. [37] Consider the differential equation

ẋ(t) = εF1(t, x) + ε2R(t, x, ε),

where F1 : D → R and R : D(−εf , εf ) → R are continuous functions that are T -periodic
in t, and D ⊂ R is an open set.

Assume that

• F1(t, ·) ∈ C1(D) for all t ∈ R,

• F1 and R are locally Lipschitz continuous with respect to x, and R is differentiable
with respect to ε.

Define the averaged function

F10(x) =
1

T

∫ T

0

F1(s, x) ds.

Suppose that there exists an open bounded set V ⊂ D and a family of points aε ∈ V
such that for each ε ∈ (−εf , εf ) \ {0}, we have:

F10(aε) = 0 and dB(F10, V, aε) ̸= 0,

where dB denotes the Brouwer degree.
Then, for sufficiently small |ε|, the system admits a T -periodic solution x(t, ε) such

that
x(0, ε) → aε as ε→ 0.

2.6.3 Second-Order Averaging Method

Theorem 2.9. [37] Consider the differential equation

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : D → R and R : D(−εf , εf ) → R are continuous, T -periodic in t, and
D ⊂ R is an open domain.

Assume
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• F1(t, ·) ∈ C2(D), and F2(t, ·) ∈ C1(D),

• F1, F2, R are locally Lipschitz with respect to x, and R is twice differentiable in ε.

Define the first and second-order averaged functions

F10(x) =
1

T

∫ T

0

F1(s, x) ds, F20(x) =
1

T

∫ T

0

[
∂F1(s, x)

∂x
y1(s, x) + F2(s, x)

]
ds,

where
y1(s, x) =

∫ s

0

F1(t, x) dt.

Suppose there exists an open bounded set V ⊂ D and a family of points aε ∈ V such
that for each ε ∈ (−εf , εf ) \ {0}

F10(aε) + εF20(aε) = 0, and dB(F10 + εF20, V, aε) ̸= 0.

Then, for sufficiently small |ε|, the system admits a T -periodic solution x(t, ε) satis-
fying

x(0, ε) → aε as ε→ 0.

Here, dB(F10 + εF20, V, aε) denotes the Brouwer degree of the function F10 + εF20 at
the point aε relative to the open set V . The condition dB ̸= 0 guarantees, in a topolog-
ical sense, the existence of a zero of the function inside V . In other words, this ensures
that the averaged function vanishes at some point in V , which implies the existence of a
periodic solution of the original system.

The reader may refer to the following references for a more in-depth treatment
[16],[17], [38],[39].
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3 Estimating the Maximum Number of
Limit Cycles in Polynomial Liénard
Systems

In this chapter, we primarily rely on the study presented in the article “On the number
of limit cycles of a class of polynomial differential systems” by Jaume Llibre and Clàudia
Valls [1]. We conducted a detailed analysis of the methodology and main steps outlined in
their work. Rather than merely restating their results, we supplemented the study with
illustrative examples of our own creation. The construction of these examples proved to
be challenging due to the precision and depth of analysis required to capture the system’s
properties accurately. These additions aim to enrich the discussion and clarify practi-
cal applications of the employed methodology, thereby providing a more comprehensive
perspective.

3.1 Introduction

The analysis of limit cycles in polynomial differential systems is one of the fundamental
challenges in nonlinear dynamics. This topic is closely related to the celebrated 16th

Hilbert problem [15],[40], which seeks to determine the maximum number of limit cycles
that can occur in polynomial vector fields of a given degree. In this context, Liénard
systems represent an important class that has attracted significant interest, beginning
with the classical work of [41], who established sufficient conditions for the existence and
uniqueness of a limit cycle.

In [1], we consider a generalized Liénard-type system given by{
ẋ = y − g1(x)− f1(x)y,

ẏ = −x− g2(x)− f2(x)y,
(3.1)

where g1, f1, g2, and f2 are polynomial functions of specified degrees. When g1(x) =
f1(x) = 0, the system reduces to the classical Liénard equation{

ẋ = y,

ẏ = −x− f(x)y,
(3.2)

In this work, [42] proposed that the maximum number of limit cycles is given by
[
n
2

]
,

where f(x) is a polynomial of degree n. This bound has been confirmed for n = 1, 2, 3
[43],[44], but counterexamples were found for n ≥ 5 [45].

This work focuses on analyzing the linear center system
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ẋ = y, ẏ = −x,
which possesses an infinite number of periodic orbits surrounding the origin. The goal is
to study the effect of polynomial perturbations on this system using the Averaging Theory
of first and second order [17],[16].

We begin by analyzing the first-order perturbed system{
ẋ = y − ε (g11(x) + f11(x)y) ,

ẏ = −x− ε (g21(x) + f21(x)y) ,
(3.3)

where g11, f11, g21, f21 are polynomials of degrees k, l,m, n, respectively, and ε is a small
parameter.

We then extend the analysis to a second-order perturbed system{
ẋ = y − ε (g11(x) + f11(x)y)− ε2 (g12(x) + f12(x)y) ,

ẏ = −x− ε (g21(x) + f21(x)y)− ε2 (g22(x) + f22(x)y) ,
(3.4)

where the functions g11, g12 are of degree k, f11, f12 are of degree l, g21, g22 are of degree
m, and f21, f22 are of degree n. Introducing second-order perturbations in ε increases
the system’s nonlinearity and allows for a more detailed study of the bifurcating periodic
behavior.

The objective of this work is to apply the tools of Averaging Theory to provide a
detailed analysis of these two perturbed systems and to estimate the number of limit
cycles that bifurcate from the periodic orbits of the unperturbed linear system.

3.2 First-Order Averaging Analysis of Perturbed Sys-
tems

Theorem 3.1. [1] For |ε| sufficiently small, the maximum number of limit cycles of
the generalized Liénard polynomial differential system (3.3) bifurcating from the periodic
orbits of the linear centre ẋ = y, ẏ = −x using the averaging theory of first order is

λ1 = max

{[
n

2

]
,

[
k − 1

2

]}
. (3.5)

Proof. We shall need the first-order averaging theory to prove Theorem 3.1. We write
system (3.3) in polar coordinates (r, θ) where x = r cos θ and y = r sin θ, r > 0.
Time Derivatives of x and y

dx

dt
=
∂x

∂r
· dr
dt

+
∂x

∂θ
· dθ
dt

dy

dt
=
∂y

∂r
· dr
dt

+
∂y

∂θ
· dθ
dt

=⇒


dx

dt
= cos θ · dr

dt
− r sin θ · dθ

dt

dy

dt
= sin θ · dr

dt
+ r cos θ · dθ

dt

From this, we obtain the simplified formẋ = ṙ cos θ − rθ̇ sin θ,

ẏ = ṙ sin θ + rθ̇ cos θ.
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After transforming to polar coordinates, the system (3.3) takes the following form
ṙ cos θ − rθ̇ sin θ=r sin θ − ε (g11(r cos θ) + f11(r cos θ) · r sin θ) ,

ṙ sin θ + rθ̇ cos θ = −r cos θ − ε (g21(r cos θ) + f21(r cos θ) · r sin θ) .

Start with polar definitions r2 = x2 + y2 and θ = tan−1(y/x).Thus, differentiating with
respect to time gives the following result

rṙ = xẋ+ yẏ and r2θ̇ = xẏ − yẋ

Upon substitution, we find

ṙ =
1

r

[
r cos θ

[
r sin θ − ε

(
g11(r cos θ) + f11(r cos θ)r sin θ

)]
+ r sin θ

[
− r cos θ − ε

(
g21(r cos θ) + f21(r cos θ)r sin θ

)]]

= −ε
(
g11(r cos θ) cos θ + f11(r cos θ)r sin θ cos θ + g21(r cos θ) sin θ + f21(r cos θ)r sin

2 θ

)

θ̇ =
1

r2

[
r cos θ

[
− r cos θ − ε

(
g21(r cos θ) + f21(r cos θ)r sin θ

)]
− r sin θ

[
r sin θ − ε

(
g11(r cos θ) + f11(r cos θ)r sin θ

)]]

=
1

r

[
− r(cos2 θ + sin2 θ)− ε

(
g21(r cos θ) cos θ + f21(r cos θ)r sin θ cos θ

)
+ ε
(
g11(r cos θ) sin θ + f11(r cos θ)r sin

2 θ
)]

= −1− ε

r

(
g21(r cos θ) cos θ + f21(r cos θ)r sin θ cos θ

)
− g11(r cos θ) sin θ − f11(r cos θ)r sin

2 θ

)

Thus, system (3.3) can be written in the standard form suitable for applying the averaging
theory. If we define the following polynomials

f11(x) =
l∑

i=0

ai,1x
i, f21(x) =

n∑
i=0

ai,2x
i, g11(x) =

k∑
i=0

bi,1x
i and g21(x) =

m∑
i=0

bi,2x
i,

(3.1)
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then, system (3.3) becomes

ṙ = −ε
(

n∑
i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ

)
,

θ̇ = −1− ε

r

(
n∑

i=0

ai,2r
i+1 cosi+1 θ sin θ +

m∑
i=0

bi,2r
i cosi+1 θ

−
l∑

i=0

ai,1r
i+1 cosi θ sin2 θ −

k∑
i=0

bi,1r
i cosi θ sin θ

)
.

(3.6)

We now denote the expression appearing in ṙ by A(r, θ), and the expression inside the
perturbation term in θ̇ (excluding the factor −1) by B(r, θ), that is:

A(r, θ) =
n∑

i=0

ai,2r
i+1 cosi θ sin2 θ+

m∑
i=0

bi,2r
i cosi θ sin θ+

l∑
i=0

ai,1r
i+1 cosi+1 θ sin θ+

k∑
i=0

bi,1r
i cosi+1 θ,

and

B(r, θ) =
n∑

i=0

ai,2r
i+1 cosi+1 θ sin θ+

m∑
i=0

bi,2r
i cosi+1 θ−

l∑
i=0

ai,1r
i+1 cosi θ sin2 θ−

k∑
i=0

bi,1r
i cosi θ sin θ.

Hence, system (3.6) becomes:

dr

dθ
=
ṙ

θ̇
=

−εA(r, θ)
−1− ε

r
B(r, θ)

.

Since ε is small, we apply a first-order approximation and expand the denominator as
follows:

1

−1− ε
r
B(r, θ)

= −1 +
ε

r
B(r, θ) +O(ε2).

Multiplying this expansion by −εA(r, θ), we obtain:

dr

dθ
= εA(r, θ) +O(ε2).

Finally, defining
F1(r, θ) = A(r, θ),

we write the differential equation in the simplified form:

dr

dθ
= ε

(
n∑

i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ

)
+O(ε2).
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Let us take

F1(r, θ) =
n∑

i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ (3.7)

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ.

We compute F10(r) by applying its definition as the average of F1(r, θ) over one period

F10(r) =
1

2π

∫ 2π

0

F1(r, θ) dθ.

Thus

F10(r) =
1

2π

∫ 2π

0

(
n∑

i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ

)
dθ

=
1

2π

(
n∑

i=0

ai,2r
i+1

∫ 2π

0

cosi θ sin2 θdθ +
m∑
i=0

bi,2r
i

∫ 2π

0

cosi θ sin θdθ

+
l∑

i=0

ai,1r
i+1

∫ 2π

0

cosi+1 θ sin θdθ +
k∑

i=0

bi,1r
i

∫ 2π

0

cosi+1 θdθ

)
.

In order to simplify the expression and eliminate the integrals that involve odd powers of
sin θ or cos θ, which vanish when integrated over the interval [0, 2π], the sums are split
according to whether the index i ∈ N is even or odd.

F10(r) =
1

2π

[ [n
2
]∑

i=0

a2i,2r
2i+1

∫ 2π

0

cos2i θ sin2 θdθ +

[n−1
2

]∑
i=0

a2i+1,2r
2i+2

∫ 2π

0

cos2i+1 θ sin2 θdθ

+
m∑
i=0

bi,2r
i

∫ 2π

0

cosi θ sin θdθ +
l∑

i=0

ai,1r
i+1

∫ 2π

0

cosi+1 θ sin θdθ

+

[ k
2
]∑

i=0

b2i,1r
2i

∫ 2π

0

cos2i+1 θdθ +

[ k−1
2

]∑
i=0

b2i+1,1r
2i+1

∫ 2π

0

cos2i+2 θdθ

]
.

Now, using the expressions for the integrals given in Appendix A 54, and noting that
αi+1 = (2i+ 1)αi, we obtain the following

F10(r) =
1

2π

[n/2]∑
i=0

a2i,2r
2i+1 παi

2i(i+ 1)!
+

1

2π

[(k−1)/2]∑
i=0

b2i+1,1r
2i+1 2παi+1

2i+1(i+ 1)!

= r

[n/2]∑
i=0

a2i,2αi

2i+1(i+ 1)!
r2i + r

[(k−1)/2]∑
i=0

b2i+1,1αi+1

2i+1(i+ 1)!
r2i

= r

[n/2]∑
i=0

a2i,2αi

2i+1(i+ 1)!
r2i + r

[(k−1)/2]∑
i=0

b2i+1,1(2i+ 1)αi

2i+1(i+ 1)!
r2i. (3.8)
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Thus, the polynomial F10(r) has at most λ1 positive roots. By appropriately choosing
the coefficients a2i,2 and b2i+1,1, we can ensure that F10(r) has exactly λ1 simple positive
roots, where

λ1 = max

{[
n

2

]
,

[
k − 1

2

]}
.

Hence, Theorem 3.1 is proved.

3.2.1 Application example

By choosing the polynomial functions The degrees k = 3, l = 2, m = 1, n = 4 as

g11(x) = −31

5
x+ 5x3 (degree 3),

f11(x) = x2 (degree 2),
g21(x) = x+ 1 (degree 1),

f21(x) =
6

5
+ 2x2 − x4 (degree 4),

the system (3.3) becomes
ẋ = y − ε

(
−31

5
x+ 5x3 + x2y

)
,

ẏ = −x− ε

(
x+ 1 +

(
6

5
+ 2x2 − x4

)
y

)
.

(3.9)

To apply the Averaging Theory, we first convert the system into polar coordinates using
the transformation x = r cos θ, y = r sin θ. This yields the following system in terms of r
and θ 

ṙ = −ε
(
6

5
r sin2 θ + 2r3 cos2 θ sin2 θ − r5 cos4 θ sin2 θ

+ r cos θ sin θ + sin θ + r3 cos4 θ sin θ − 31

5
r cos2+5r3 cos4 θ

)
,

θ̇ = −1− ε

r

(
6

5
r cos θ sin θ + 2r3 cos3 θ sin θ − r5 cos5 θ sin θ

− r cos2 θ + cos θ − r3 cos2 sin2 θ +
31

5
r cos2 θ − 5r3 cos4 θ

)
.

Next, we derive the first-order differential equation dr
dθ

by dividing ṙ by θ̇, and expand the
expression to first order in ε. we obtain

dr

dθ
= ε

(
6

5
r sin2 θ + 2r3 cos2 θ sin2 θ − r5 cos4 θ sin2 θ + r cos θ sin θ + sin θ

+ r3 cos4 θ sin θ − 31

5
r cos2+5r3 cos4 θ

)
+O(ε2).
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We then compute the first-order averaged function F10(r) using the formula

F10(r) =
1

2π

∫ 2π

0

F1(r, θ) dθ.

Substituting in the expression, we get

F10(r) =
1

2π

∫ 2π

0

(
6

5
r sin2 θ + 2r3 cos2 θ sin2 θ − r5 cos4 θ sin2 θ + r cos θ sin θ + sin θ

+ r3 cos4 θ sin θ − 31

5
r cos2+5r3 cos4 θ

)
dθ

=
1

16
r
(
−r4 + 34r2 − 40

)
.

This equation has two positive roots approximately r1 ≈ 1 and r2 ≈ 6. According to
the theory (3.1), system admits the maximum possible number of small-amplitude limit
cycles emerging from the origin, which corresponds to the number of positive nonzero
roots of the averaged function. Therefore, the system (3.9)admits two limit cycles.

3.3 Second-Order Averaging Analysis of Perturbed Sys-
tems

Theorem 3.2. [1] For |ε| sufficiently small, the maximum number of limit cycles of
the generalized Liénard polynomial differential systems (3.4) bifurcating from the periodic
orbits of the linear centre ẋ = y, ẏ = −x using the averaging theory of second order is
λ3 = max{λ1, λ2}, where

λ2 = max

{
µ+

[
m− 1

2

]
, µ+

[
l

2

]
,

[
n− 1

2

]
+

[
m

2

]
,[

k

2

]
+

[
m

2

]
− 1,

[
n− 1

2

]
+

[
l − 1

2

]
+ 1,

[
k

2

]
+

[
l − 1

2

]}
.

(3.10)

with µ = min {[n/2], [(k − 1)/2]}.

Proof. We shall need the second-order averaging theory to prove Theorem 3.2. We write
system (3.4) in polar coordinates (r, θ) where x = r cos θ and y = r sin θ, r > 0.
After transforming system (3.4), we obtain

ṙ cos θ − rθ̇ sin θ = r sin θ − ε
(
g11(r cos θ) + f11(r cos θ)r sin θ

)
−ε2

(
g12(r cos θ) + f12(r cos θ)r sin θ

)
,

ṙ sin θ + rθ̇ cos θ = −r cos θ − ε
(
g21(r cos θ) + f21(r cos θ)r sin θ

)
−ε2

(
g22(r cos θ) + f22(r cos θ)r sin θ

)
.
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Thus, the system (3.4) can be written in polar coordinates in the following form

ṙ =
1

r

[
r cos θ

[
r sin θ − ε

(
g11(r cos θ) + f11(r cos θ)r sin θ

)
− ε2

(
g12(r cos θ) + f12(r cos θ)r sin θ

)]
+ r sin θ

[
− r cos θ − ε

(
g21(r cos θ) + f21(r cos θ)r sin θ

)
− ε2

(
g22(r cos θ) + f22(r cos θ)r sin θ

)]]

= −ε
(
g11(r cos θ) cos θ + f11(r cos θ)r sin θ cos θ + g21(r cos θ) sin θ + f21(r cos θ)r sin

2 θ

)
− ε2

(
g12(r cos θ) cos θ + f12(r cos θ)r sin θ cos θg22(r cos θ) sin θ + f22(r cos θ)r sin

2 θ

)

θ̇ =
1

r2

[
r cos θ

[
− r cos θ − ε

(
g21(r cos θ) + f21(r cos θ)r sin θ

)
− ε2

(
g22(r cos θ) + f22(r cos θ)r sin θ

)]
− r sin θ

[
r sin θ − ε

(
g11(r cos θ) + f11(r cos θ)r sin θ

)
− ε2

(
g12(r cos θ) + f12(r cos θ)r sin θ

)]]
.

= −1− ε

r

(
g21(r cos θ) cos θ + f21(r cos θ)r cos θ sin θ − g11(r cos θ) sin θ − f11(r cos θ)r sin

2 θ

)
− ε2

r

(
g22(r cos θ) cos θ + f22(r cos θ)r cos θ sin θ − g12(r cos θ) sin θ − f12(r cos θ)r sin

2 θ

)
.

We write f11, f21, g11 and g21 as in (3.1), and

f12(x) =
l∑

i=0

ci,1x
i, f22(x) =

n∑
i=0

ci,2x
i, g12(x) =

k∑
i=0

di,1x
i and g22(x) =

m∑
i=0

di,2x
i.
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The system becomes

ṙ = −ε
(

n∑
i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ

)

− ε2

(
n∑

i=0

ci,2r
i+1 cosi θ sin2 θ +

m∑
i=0

di,2r
i cosi θ sin θ

+
l∑

i=0

ci,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

di,1r
i cosi+1 θ

)
,

θ̇ = −1− ε

r

(
n∑

i=0

ai,2r
i+1 cosi+1 θ sin θ +

m∑
i=0

bi,2r
i cosi+1 θ

−
l∑

i=0

ai,1r
i+1 cosi θ sin2 θ −

k∑
i=0

bi,1r
i cosi θ sin θ

)

− ε2

r

(
n∑

i=0

ci,2r
i+1 cosi+1 θ sin θ +

m∑
i=0

di,2r
i cosi+1 θ

−
l∑

i=0

ci,1r
i+1 cosi θ sin2 θ −

k∑
i=0

di,1r
i cosi θ sin θ

)
.

(3.11)

Taking θ as the new independent variable, system (3.11) becomes

dr

dθ
= εF1(θ, r) + ε2F2(θ, r) +O(ε3),

where

F1(θ, r) =
n∑

i=0

ai,2r
i+1 cosi θ sin2 θ +

m∑
i=0

bi,2r
i cosi θ sin θ

+
l∑

i=0

ai,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

bi,1r
i cosi+1 θ (3.12)

and
F2(θ, r) = I(r, θ) + rII(r, θ),

where

I(r, θ) =
n∑

i=0

ci,2r
i+1 cosi θ sin2 θ +

m∑
i=0

di,2r
i cosi θ sin θ (3.13)

+
l∑

i=0

ci,1r
i+1 cosi+1 θ sin θ +

k∑
i=0

di,1r
i cosi+1 θ
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and

II(r, θ) = −
(

n∑
i=0

ai,2r
i cosi θ sin2 θ +

m∑
i=0

bi,2r
i−1 cosi θ sin θ (3.14)

+
l∑

i=0

ai,1r
i cosi+1 θ sin θ +

k∑
i=0

bi,1r
i−1 cosi+1 θ

)
(

n∑
i=0

ai,2r
i cosi+1 θ sin θ +

m∑
i=0

bi,2r
i−1 cosi+1 θ (3.15)

−
l∑

i=0

ai,1r
i cosi θ sin2 θ −

k∑
i=0

bi,1r
i−1 cosi θ sin θ

)
.

In order to compute F20(r),weneedthat F10 be identically zero.Then from(3.8),
all coefficients of r2i+1 must vanish. This gives.

a2i,2αi

2i+1(i+ 1)!
+
b2i+1,1(2i+ 1)αi

2i+1(i+ 1)!
= 0

By simplifying the expression, we get

a2i,2 + b2i+1,1(2i+ 1) = 0

Therefore, we choose  b2i+1,1 = − a2i,2
2i+ 1

, for i = 0, 1, . . . , µ,

b2i+1,1 = a2i,2 = 0, for i = µ+ 1, . . . , λ1.
(3.16)

Let us define the following indices µ = min([n
2
], [k−1

2
]), λ1 = max([n

2
], [k−1

2
])

We compute F20(r) by applying its definition as the average

F20(r) =
1

2π

∫ 2π

0

(
∂F1

∂r
(θ, r)

(∫ θ

0

F1(ψ, r) dψ

)
+ F2(θ, r)

)
dθ.

We split the computation of the function F20 into three parts, i.e., we define

2πF20 = r
(
P1(r

2) + P2(r
2) + P3(r

2)
)
.

where

rP1(r
2) =

∫ 2π

0

III(r, θ) dθ =
∫ 2π

0

d

dr
F1(θ, r) y1(θ, r) dθ,

P2(r
2) + P3(r

2) =

∫ 2π

0

I(r, θ) dθ +
∫ 2π

0

II(r, θ) dθ

where

y1(θ, r) =

∫ θ

0

F1(ψ, r) dψ and

∫ 2π

0

I(r, θ) + II(r, θ) dθ =
∫ 2π

0

F2(θ, r) dθ.

We now compute the partial derivative of F1(θ, r) as given in equation (3.12). Differenti-
ating with respect to r, we obtain
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∂F1

∂r
(θ, r) =

n∑
i=0

(i+ 1)ai,2r
i cosi θ sin2 θ +

m∑
i=0

ibi,2r
i−1 cosi θ sin θ

+
l∑

i=0

(i+ 1)ai,1r
i cosi+1 θ sin θ +

k∑
i=0

ibi,1r
i−1 cosi+1 θ. (3.17)

For i ∈ N, where i is odd or even, we find

=

[n/2]∑
i=0

(2i+ 1)a2i,2r
2i cos2i θ sin2 θ +

[(n−1)/2]∑
i=0

(2i+ 2)a2i+1,2r
2i+1 cos2i+1 θ sin2 θ

+
m∑
i=0

ibi,2r
i−1 cosi θ sin θ +

l∑
i=0

(i+ 1)ai,1r
i cosi+1 θ sin θ

+

[k/2]∑
i=0

2ib2i,1r
2i−1 cos2i+1 θ +

[(k−1)/2]∑
i=0

(2i+ 1)b2i+1,1r
2i cos2i+2 θ

From the condition (3.16) for F10 = 0, it follows that

=

µ∑
i=0

(2i+ 1)a2i,2r
2i cos2i θ sin2 θ − (2i+ 1)

a2i,2
2i+ 1

r2i cos2i+2 θ

+

[(n−1)/2]∑
i=0

(2i+ 2)a2i+1,2r
2i+1 cos2i+1 θ sin2 θ

+
m∑
i=0

ibi,2r
i−1 cosi θ sin θ +

l∑
i=0

(i+ 1)ai,1r
i cosi+1 θ sin θ

+

[k/2]∑
i=0

2ib2i,1r
2i−1 cos2i+1 θ

=

µ∑
i=0

a2i,2r
2i cos2i θ

(
(2i+ 1) sin2 θ − cos2 θ

)
+

[(n−1)/2]∑
i=0

(2i+ 2)a2i+1,2r
2i+1 cos2i+1 θ sin2 θ

+
m∑
i=0

ibi,2r
i−1 cosi θ sin θ +

l∑
i=0

(i+ 1)ai,1r
i cosi+1 θ sin θ

+

[k/2]∑
i=0

2ib2i,1r
2i−1 cos2i+1 θ

We now compute the integral y1(θ, r) =
∫ θ

0
F1(ψ, r) dψ by rewriting F1(θ, r) (3.12) in a

suitable form
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Using the trigonometric identity sin2 θ = 1− cos2 θ, we obtain the following expression.

F1(θ, r) =

[n/2]∑
i=0

(2i+ 1)a2i,2r
2i cos2i θ(1− cos2 θ)

+

[(n−1)/2]∑
i=0

(2i+ 2)a2i+1,2r
2i+1 cos2i+1 θ(1− cos2 θ)

+
m∑
i=0

ibi,2r
i−1 cosi θ sin θ +

l∑
i=0

(i+ 1)ai,1r
i cosi+1 θ sin θ

+

[k/2]∑
i=0

2ib2i,1r
2i−1 cos2i+1 θ +

[(k−1)/2]∑
i=0

(2i+ 1)b2i+1,1r
2i cos2i+2 θ

After applying the condition F10 ≡ 0, the expression simplifies to

F1(θ, r) =

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2 cos2i+1 θ −

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2 cos2i+3 θ

+

[n/2]∑
i=0

a2i,2r
2i+1 cos2i θ −

[n/2]∑
i=0

a2i,2r
2i+1 cos2i+2 θ

+
m∑
i=0

bi,2r
i cosi θ sin θ +

l∑
i=0

ai,1r
i+1 cosi+1 θ sin θ

+

[(k−1)/2]∑
i=0

b2i+1,1r
2i+1 cos2i+2 θ +

[k/2]∑
i=0

b2i,1r
2i cos2i+1 θ

Finally, we obtain the final form after applying the condition (3.16)

F1(θ, r) =

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2 cos2i+1 θ −

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2 cos2i+3 θ

+

µ∑
i=0

a2i,2r
2i+1 cos2i θ −

µ∑
i=0

2i+ 2

2i+ 1
a2i,2r

2i+1 cos2i+2 θ

+
m∑
i=0

bi,2r
i cosi θ sin θ +

l∑
i=0

ai,1r
i+1 cosi+1 θ sin θ

+

[k/2]∑
i=0

b2i,1r
2i cos2i+1 θ.
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The integral can now be computed using Appendix A (54)

y1(θ, r) =

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2

∫ θ

0

cos2i+1 ψ dψ −
[(n−1)/2]∑

i=0

a2i+1,2r
2i+2

∫ θ

0

cos2i+3 ψ dψ

+

µ∑
i=0

a2i,2r
2i+1

∫ θ

0

cos2i ψ dψ −
µ∑

i=0

2i+ 2

2i+ 1
a2i,2r

2i+1

∫ θ

0

cos2i+2 ψ dψ

+
m∑
i=0

bi,2r
i

∫ θ

0

cosi ψ sinψ dψ +
l∑

i=0

ai,1r
i+1

∫ θ

0

cosi+1 ψ sinψ dψ

+

[k/2]∑
i=0

b2i,1r
2i

∫ θ

0

cos2i+1 ψ dψ.

Using the above, we obtain

y1(θ, r) =

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2

i∑
l=0

γi,l sin
(
(2l + 1)θ

)
−

[(n−1)/2]∑
i=0

a2i+1,2r
2i+2

i+1∑
l=0

γi+1,l sin
(
(2l + 1)θ

)
+

µ∑
i=0

a2i,2r
2i+1 1

22i

(
2i

i

)
θ +

i∑
l=1

βi,l sin(2lθ)

−
µ∑

i=0

2i+ 2

2i+ 1
a2i,2r

2i+1 1

22i+2

(
2i+ 2

i+ 1

)
θ +

i+1∑
l=1

βi+1,l sin(2lθ)

+
m∑
i=0

bi,2r
i 1

i+ 1

(
1− cosi+1 θ

)
+

l∑
i=0

ai,1r
i+1 1

i+ 2

(
1− cosi+2 θ

)
+

[k/2]∑
i=0

b2i,1r
2i

i∑
l=0

γi,l sin
(
(2l + 1)θ

)
.

Therefore

y1(θ, r) =

[(n−1)/2]∑
i=0

a2i+1,2 r
2i+2

i+1∑
l=0

γ̃i,l sin
(
(2l + 1)θ

)
+

µ∑
i=0

a2i,2 r
2i+1

i+1∑
l=1

β̃i,l sin(2lθ)

+
m∑
i=0

bi,2
i+ 1

ri
(
1− cosi+1 θ

)
+

l∑
i=0

ai,1
i+ 2

ri+1
(
1− cosi+2 θ

)
+

[k/2]∑
i=0

b2i,1 r
2i

i∑
l=0

γi,l sin
(
(2l + 1)θ

)
where

γ̃i,l =

{
γi,l − γi+1,l, if 0 ≤ l ≤ i,

−γi+1,i+1, if l = i+ 1.
β̃i,l =


βi,l − 2(i+ 1)βi+1,l

2i+ 1
, if 0 ≤ l ≤ i,

−2(i+ 1)βi+1,i+1

2i+ 1
, if l = i+ 1.
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We now turn to the computation of the following integral∫ 2π

0

III(r, θ)dθ =
∫ 2π

0

d

dr
F1(θ, r) y1(θ, r) dθ = rP1(r

2).

∫ 2π

0

III(r, θ)dθ =
∫ 2π

0

[(
µ∑

i=0

a2i,2 r
2i cos2i θ

(
(2i+ 1) sin2 θ − cos2 θ

)
+

[(n−1)/2]∑
i=0

(2i+ 2)a2i+1,2 r
2i+1 cos2i+1 θ sin2 θ +

m∑
i=0

i bi,2 r
i−1 cosi θ sin θ

+
l∑

i=0

(i+ 1)ai,1 r
i cosi+1 θ sin θ +

[k/2]∑
i=0

2i b2i,1 r
2i−1 cos2i+1 θ

)
(

[(n−1)/2]∑
i=0

a2i+1,2 r
2i+2

i+1∑
l=0

γ̃i,l sin
(
(2l + 1)θ

)
+

µ∑
i=0

a2i,2 r
2i+1

i+1∑
l=1

β̃i,l sin(2lθ)

+
m∑
i=0

bi,2
i+ 1

ri
(
1− cosi+1 θ

)
+

l∑
i=0

ai,1
i+ 2

ri+1
(
1− cosi+2 θ

)
+

[k/2]∑
i=0

b2i,1 r
2i

i∑
l=0

γi,l sin
(
(2l + 1)θ

))]
dθ,

After simplification, and by eliminating the terms whose integrals vanish due to the or-
thogonality of sine and cosine functions over the interval [0, 2π], we obtain the expression

∫ 2π

0

III(r, θ)dθ =
µ∑

i=0

[(m−1)/2]∑
j=0

Ai,j(r
2)i+j +

µ∑
i=0

[l/2]∑
j=0

Bi,j(r
2)i+j +

[(n−1)/2]∑
i=0

[m/2]∑
j=0

Ci,j(r
2)i+j

+

[(n−1)/2]∑
i=0

[(l−1)/2]∑
j=0

Di,j(r
2)i+j+1 +

[k/2]∑
i=0

[m/2]∑
j=0

Ei,j(r
2)i+j−1 +

[k/2]∑
i=0

[(l−1)/2]∑
j=0

Fi,j(r
2)i+j

+

[m/2]∑
i=0

[(n−1)/2]∑
j=0

Gi,j(r
2)i+j +

[(m−1)/2]∑
i=0

µ∑
j=0

Hi,j(r
2)i+j +

[m/2]∑
i=0

[k/2]∑
j=0

Ii,j(r
2)i+j−1

+

[(l−1)/2]∑
i=0

[(n−1)/2]∑
j=0

Ji,j(r
2)i+j+1 +

[l/2]∑
i=0

µ∑
j=0

Ki,j(r
2)i+j +

[(l−1)/2]∑
i=0

[k/2]∑
j=0

Li,j(r
2)i+j

= rP1(r
2).

(3.18)
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with

Ai,j =
πa2i,2b2j+1,2αi+j+1

2i+j+1(i+ j + 2)!
, Bi,j =

πa2i,2a2j,1αi+j+1

2i+j+1(i+ j + 2)!
,

Ci,j = −π(2i+ 2)a2i+1,2b2j,2αi+j+1

(2j + 1)2i+j+1(i+ j + 2)!
, Di,j = −π(2i+ 2)a2i+1,2a2j+1,1αi+j+2

(2j + 3)2i+j+2(i+ j + 3)!
,

Ei,j =
π2ib2i,1b2j,2αi+j+1

(2j + 1)2i+j(i+ j + 1)!
, Fi,j =

π2ib2i,1a2j+1,1αi+j+2

(2j + 3)2i+j+1(i+ j + 2)!
,

Gi,j = π

j+1∑
s=0

2ib2i,2a2j+1,2γ̃j,sCi,s, Hi,j = π

j+1∑
s=1

(2i+ 1)b2i+1,2a2j,2β̃j,sKi,s,

Ii,j = π

j∑
s=0

2ib2i,2b2j,1γj,sCi,s, Ji,j = π

j+1∑
s=0

(2i+ 2)a2i+1,1a2j+1,2γ̃j,sCi,s,

Ki,j = π

j+1∑
s=1

(2i+ 1)a2i,1a2j,2β̃j,sKi,s, Li,j = π

j∑
s=0

(2i+ 2)a2i+1,1b2j,1γj,sCi,s.

Then, P1(r
2) is a polynomial in the variable r2 of degree λ2,

λ2 = max

{
µ+

[
m− 1

2

]
, µ+

[
l

2

]
,

[
n− 1

2

]
+

[
m

2

]
,[

k

2

]
+

[
m

2

]
− 1,

[
n− 1

2

]
+

[
l − 1

2

]
+ 1,

[
k

2

]
+

[
l − 1

2

]}
.

We now turn to the computation of
∫ 2π

0
F2(θ, r) dθ =

∫ 2π

0
I(r, θ)dθ +

∫ 2π

0
II(r, θ) dθ

We begin with the first part of the integral used in (3.13), and we have that∫ 2π

0

I(r, θ)dθ = rP2(r
2).

Thus, we obtain the following∫ 2π

0

I(r, θ) dθ =
[n/2]∑
i=0

c2i,2r
2i+1

∫ 2π

0

cos2i θ sin2 θ dθ +

[(n−1)/2]∑
i=0

c2i+1,2r
2i+2

∫ 2π

0

cos2i+1 θ sin2 θ dθ

+
m∑
i=0

di,2r
i

∫ 2π

0

cosi θ sin θ dθ +
l∑

i=0

ci,1r
i+1

∫ 2π

0

cosi+1 θ sin θ dθ

+

[k/2]∑
i=0

d2i,1r
2i

∫ 2π

0

cos2i+1 θ dθ +

[(k−1)/2]∑
i=0

d2i+1,1r
2i+1

∫ 2π

0

cos2i+2 θ dθ

=

[n/2]∑
i=0

c2i,2r
2i+1

∫ 2π

0

cos2i θ sin2 θ dθ +

[(k−1)/2]∑
i=0

d2i+1,1r
2i+1

∫ 2π

0

cos2i+2 θ dθ

= πr

[n/2]∑
i=0

c2i,2αi

2i(i+ 1)!
r2i + πr

[(k−1)/2]∑
i=0

d2i+1,1αi(2i+ 1)

2i(i+ 1)!
r2i

= rP2(r
2).

(3.19)
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where P2 is a polynomial in the variable r2 of degree λ1.

We now turn to the second part of the integral used in (3.14),we have that∫ 2π

0

II(r, θ) dθ = rP3(r
2).

we have∫ 2π

0

II(r, θ) = −
(

n∑
i=0

ai,2r
i

∫ 2π

0

cosi θ sin2 θ dθ +
m∑
i=0

bi,2r
i−1

∫ 2π

0

cosi θ sin θ dθ

+
l∑

i=0

ai,1r
i

∫ 2π

0

cosi+1 θ sin θ dθ +
k∑

i=0

bi,1r
i−1

∫ 2π

0

cosi+1 θ dθ

)
(

n∑
j=0

aj,2r
j

∫ 2π

0

cosj+1 θ sin θ dθ +
m∑
j=0

bj,2r
j−1

∫ 2π

0

cosj+1 θ dθ

−
l∑

j=0

aj,1r
j

∫ 2π

0

cosj θ sin2 θ dθ −
k∑

j=0

bj,1r
j−1

∫ 2π

0

cosj θ sin θ dθ

)
.

After simplification, all terms whose integrals vanish due to the orthogonality properties
of sine and cosine functions on the interval [0, 2π] have been excluded,we find

∫ 2π

0

II(r, θ) dθ =− 2
n∑

i=0

m∑
j=0

ai,2bj,2r
i+j−1

∫ 2π

0

cosi+j+1 θ sin2 θ dθ

+
n∑

i=0

l∑
j=0

ai,2aj,1r
i+j

∫ 2π

0

cosi+j θ sin4 θ dθ

+
m∑
i=0

k∑
j=0

bi,2bj,1r
i+j−2

∫ 2π

0

cosi+j θ sin2 θ dθ

−
l∑

i=0

n∑
j=0

ai,1aj,2r
i+j

∫ 2π

0

cosi+j+2 θ sin2 θ dθ

+ 2
l∑

i=0

k∑
j=0

ai,1bj,1r
i+j−1

∫ 2π

0

cosi+j+1 θ sin2 θ dθ

−
k∑

i=0

m∑
j=0

bi,1bj,2r
i+j−2

∫ 2π

0

cosi+j+2 θ dθ.

We split the double sums according to the even and odd indices of both i and j, which
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allows us to apply the condition F10 ≡ 0∫ 2π

0

II(r, θ) dθ =− 2

[n/2]∑
i=0

[(m−1)/2]∑
j=0

a2i,2b2j+1,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

− 2

[(n−1)/2]∑
i=0

[m/2]∑
j=0

a2i+1,2b2j,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

+

[n/2]∑
i=0

[l/2]∑
j=0

a2i,2a2j,1r
2i+2j

∫ 2π

0

cos2i+2j θ sin4 θ dθ

+

[(n−1)/2]∑
i=0

[(l−1)/2]∑
j=0

a2i+1,2a2j+1,1r
2i+2j+2

∫ 2π

0

cos2i+2j+2 θ sin4 θ dθ

+

[m/2]∑
i=0

[k/2]∑
j=0

b2i,2b2j,1r
2i+2j−2

∫ 2π

0

cos2i+2j θ sin2 θ dθ

−
[(m−1)/2]∑

i=0

[(k−1)/2]∑
j=0

a2j,2
2j + 1

b2i+1,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

−
[l/2]∑
i=0

[n/2]∑
j=0

a2i,1a2j,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

−
[(l−1)/2]∑

i=0

[(n−1)/2]∑
j=0

a2i+1,1a2j+1,2r
2i+2j+2

∫ 2π

0

cos2i+2j+4 θ sin2 θ dθ

+ 2

[l/2]∑
i=0

[k/2]∑
j=0

a2i,1b2j,1r
2i+2j−1

∫ 2π

0

cos2i+2j+1 θ sin2 θ dθ

+ 2

[(l−1)/2]∑
i=0

[(k−1)/2]∑
j=0

a2i+1,1

(
− a2j,2
2j + 1

)
r2i+2j+1

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

−
[k/2]∑
i=0

[m/2]∑
j=0

b2i,1b2j,2r
2i+2j−2

∫ 2π

0

cos2i+2j+2 θ dθ

−
[(k−1)/2]∑

i=0

[(m−1)/2]∑
j=0

(
− a2i,2
2i+ 1

)
b2j+1,2r

2i+2j

∫ 2π

0

cos2i+2j+3 θ dθ
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Using relation (3.16) , we get

∫ 2π

0

II(r, θ) dθ = −2

µ∑
i=0

[(m−1)/2]∑
j=0

a2i,2b2j+1,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

− 2

[(n−1)/2]∑
i=0

[m/2]∑
j=0

a2i+1,2b2j,2r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

−
µ∑

i=0

[l/2]∑
j=0

a2i,2a2j,1r
2i+2j

∫ 2π

0

cos2i+2j θ sin2 θ cos(2θ) dθ

−
[(n−1)/2]∑

i=0

[(l−1)/2]∑
j=0

a2i+1,2a2j+1,1r
2i+2j+2

∫ 2π

0

cos2i+2j+2 θ sin2 θ cos(2θ) dθ

−
[m/2]∑
i=0

[k/2]∑
j=0

b2i,2b2j,1r
2i+2j−2

∫ 2π

0

cos2i+2j θ cos(2θ) dθ

−
[(m−1)/2]∑

i=0

[(k−1)/2]∑
j=0

b2i+1,2b2j+1,1r
2i+2j

∫ 2π

0

cos2i+2j+2 θ cos(2θ) dθ

− 2

[l/2]∑
i=0

µ∑
j=0

a2i,1
a2j,2
2j + 1

r2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ

+ 2

[(l−1)/2]∑
i=0

[k/2]∑
j=0

a2i+1,1b2j,1r
2i+2j

∫ 2π

0

cos2i+2j+2 θ sin2 θ dθ.

we have∫ 2π

0

II(r, θ) dθ =
µ∑

i=0

⌊(m−1)/2⌋∑
j=0

Ãi,j(r
2)i+j +

⌊(n−1)/2⌋∑
i=0

⌊m/2⌋∑
j=0

B̃i,j(r
2)i+j

+

µ∑
i=0

⌊l/2⌋∑
j=0

C̃i,j(r
2)i+j +

⌊(n−1)/2⌋∑
i=0

⌊(l−1)/2⌋∑
j=0

D̃i,j(r
2)i+j+1

+

⌊m/2⌋∑
i=0

⌊k/2⌋∑
j=0

Ẽi,j(r
2)i+j−1 +

⌊(l−1)/2⌋∑
i=0

⌊k/2⌋∑
j=0

F̃i,j(r
2)i+j

= rP3(r
2).

(3.20)

where

Ãi,j =
πa2i,2b2j+1,2αi+j+1

2i+j(i+j+2)!

(
−1 + i+j+1

2i+1

)
B̃i,j = −πa2i+1,2b2j,2αi+j+1

2i+j(i+j+2)!

C̃i,j = −πa2i,2a2j,1αi+j

2i+j(i+j+2)!

(
i+ j − 1 + 2(i+j)+1

2i+1

)
D̃i,j = −π(i+j)a2i+1,2a2j+1,1αi+j+1

2i+j+1(i+j+3)!

Ẽi,j = −π(i+j)b2i,2b2j,1αi+j

2i+j−1(i+j+1)! F̃i,j =
πa2i+1,1b2j,1αi+j+1

2i+j(i+j+2)!
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Then , P3 is a polynomial in the variable r2 of degree λ2,
Then

2πF20 = r
(
P1(r

2) + P2(r
2) + P3(r

2)
)
.

To find the real positive roots of F20, we must find the zeros of a polynomial in r2 of
degree λ3.
This implies that F20 has at most λ3 real positive roots. Moreover, we can choose the
coefficients ai,1, ai,2, bi,1, bi,2, ci,1, ci,2, di,1, di,2 in such a way that F20 has exactly λ3 real
positive roots.
where

λ3 = max{λ1, λ2}.
Hence , the theorem (3.2) is proved.

3.3.1 Application example

By choosing the polynomial functions the degrees n = l = 3 and k = m = 1 as

g11(x) = −7

5
+ x, (degree 1)

f11(x) =
1

10
+

11

10
x, (degree 1)

g12(x) =
7

10
x, (degree 1)

f12(x) = 1 + x3, (degree 3)

g21(x) = − 7

10
− 7

10
x, (degree 1)

f21(x) =
1

5
− 4

5
x+

4

5
x2 +

1

2
x3, (degree 3)

g22(x) = x, (degree 1)

f22(x) =
11

5
− 9

5
x2, (degree 2),

the system (3.4) becomes
ẋ = y − ε

(
−7

5
+ x+

1

10
y +

11

10
xy

)
− ε2

(
7

10
x+ x3y + y

)
,

ẏ = −x− ε

(
− 7

10
− 7

10
x+

1

5
y − 4

5
xy +

4

5
x2y +

1

2
x3y

)
− ε2

(
x+

11

5
y − 9

5
x2y

)
.

(3.21)
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Transforming the system into polar coordinates x = r cos θ, y = r sin θ, we obtain

ṙ = −ε
(
1

5
r sin2 θ − 4

5
r2 cos θ sin2 θ +

4

5
r3 cos2 θ sin2 θ +

1

2
r4 cos3 θ sin2 θ − 7

10
sin θ

− 6

10
r cos θ sin θ +

11

10
r2 cos2 θ sin θ − 7

5
cos θ + r cos2 θ

)

− ε2

(
11

5
r sin2 θ − 9

5
r3 cos2 θ sin2 θ + 2r cos θ sin θ + r4 cos4 θ sin θ +

7

10
r cos2 θ

)
,

θ̇ = −1− ε

r

(
1

5
r cos θ sin θ − 4

5
r2 cos2 θ sin θ +

4

5
r3 cos3 θ sin θ +

1

2
r4 cos4 θ sin θ

− 7

10
cos θ − 7

10
cos2 θ − 1

10
r sin2 θ − 11

10
r2 cos θ sin2 θ +

7

5
sin θ − r cos θ sin θ

)

− ε2

r

(
11

5
r cos θ sin θ − 9

5
r3 cos3 θ sin θ + r cos2−r4 cos3 θ sin2 θ

− r cos θ sin2 θ − 7

10
r cos θ sin θ

)
.

Next, we derive the first-order differential equation dr
dθ

by dividing ṙ by θ̇, and expand the
expression keeping only terms of first order in ε. We obtain

dr

dθ
= εF1(θ, r) + ε2F2(θ, r) +O(ε3),

where the functions are given by

F1(θ, r) =
1

5
r sin2 θ − 4

5
r2 cos θ sin2 θ +

4

5
r3 cos2 θ sin2 θ +

1

2
r4 cos3 θ sin2 θ

− 7

10
sin θ − 6

10
r cos θ sin θ +

11

10
r2 cos2 θ sin θ − 7

5
cos θ + r cos2 θ,

and
F2(θ, r) = I(r, θ) + rII(r, θ),

where

I(θ, r) = 11

5
r sin2 θ − 9

5
r3 cos2 θ sin2 θ + 2r cos θ sin θ + r4 cos4 θ sin θ +

7

10
r cos2 θ,

and

II(θ, r) = −
(
1

5
sin2 θ − 4

5
r cos θ sin2 θ +

4

5
r2 cos2 θ sin2 θ +

1

2
r3 cos3 θ sin θ

− 7

10
r−1 sin θ − 7

10
cos θ sin θ − 7

10
r−1 cos θ + cos2 θ

)
(
1

5
cos θ sin θ − 4

5
r cos2 θ sin θ +

4

5
r2 cos3 θ sin θ +

1

2
r3 cos4 θ sin θ

− 7

10
r−1 cos θ − 7

10
cos2 θ − 1

10
sin2 θ − 11

10
r cos θ sin2 θ +

7

5
r−1 sin θ − cos θ sin θ

)
.
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Since F10(r) ≡ 0, we can proceed to compute F20(r).

Then, the second-order averaged function F20(r) is computed and given by

F20(r) =
1

2π

∫ 2π

0

(
∂F1

∂r
(θ, r)

(∫ θ

0

F1(ψ, r) dψ

)
+ F2(θ, r)

)
dθ

As a result

F20(r) =
r

960

(
384− 1008

5
r − 270r2 +

176

5
r3 +

136955

2000
r4 − 144

25
r5 − 9

4
r6
)
.

This equation has exactly three positive roots, r1 ≈ 1, r2 ≈ 2, r3 ≈ 4. According
to theorem 3.2, the system (3.21) has three distinct limit cycles, whose existence can be
proved using the second-order averaging theory. we have that λ3 =

[
n−1
2

]
+
[
l−1
2

]
+1 = 3

Therefore, the system attains the maximum possible number of limit cycles.

Figure 3.1: Graph of the second-order averaged function F20(r).

3.4 Appendix A

During the computation of the averaged functions F10 and F20, several trigonometric
integrals involving powers of sin θ and cos θ arise. These integrals can be evaluated directly
or by using classical references such as [46]. Below, we summarize the main integrals with
their exact values and validity conditions.

•
∫ 2π

0

cos2i θ sin2 θ dθ =
παi

2i(i+ 1)!
, •

∫ 2π

0

cos2i+1 θ sin2 θ dθ = 0

•
∫ 2π

0

cosi θ sin θ dθ = 0, •
∫ 2π

0

cosi+1 θ sin θ dθ = 0

•
∫ 2π

0

cos2i+1 θ dθ = 0, •
∫ 2π

0

cos2i+2 θ dθ =
2παi+1

2i+1(i+ 1)!
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where αi = 1 · 3 · 5 · · · (2i− 1) and αi+1 = (2i+ 1)αi and i ≥ 0
During the computation of second-order terms in the averaging expansions, expressions
containing cos2 θ naturally appear. Using the double-angle identity

cos2 θ =
1 + cos(2θ)

2
,

integrals modulated by cos(2θ) arise and play an essential role in simplifying the expan-
sions

•
∫ 2π

0

cos2i θ cos(2θ) dθ =
πiαi

2i−1(i+ 1)!
,

•
∫ 2π

0

cos2i θ sin2 θ cos(2θ) dθ =
π(i− 1)αi

2i+1(i+ 2)!
, i ≥ 1.

For integration with respect to a general angle θ, we use the following useful identities for
indefinite integrals.

•
∫ θ

0

cos2i+1 ψ dψ =
i∑

l=0

γi,l sin
(
(2l + 1)θ

)
, where γi,l =

1

22i
(
2i+1
i−l

)
1

2l+1

•
∫ θ

0

cos2i ψ dψ =
1

22i

(
2i

i

)
θ +

i∑
l=1

βi,l sin(2lθ),

•
∫ θ

0

cos2i+2 ψ dψ =
1

22i+2

(
2i+ 2

i+ 1

)
θ +

i∑
l=1

βi,l sin(2lθ)

•
∫ θ

0

cosi ψ sinψ dψ =
1

i+ 1

(
1− cosi+1 θ

)
•
∫ θ

0

cosi+1 ψ sinψ dψ =
1

i+ 2

(
1− cosi+2 θ

)
• Identity

1

22i

(
2i

i

)
θ − 2i+ 2

2i+ 1
· 1

22i+2

(
2i+ 2

i+ 1

)
θ = 0

•
∫ 2π

0

cosi θ sin θ sin((2l + 1)θ) dθ = 0, l ≥ 0

•
∫ 2π

0

cosi θ sin θ sin(2lθ) dθ = 0, l ≥ 0

•
∫ 2π

0

cosi θ sin2 θ sin((2l + 1)θ) dθ = 0, l ≥ 0

•
∫ 2π

0

cosi θ sin2 θ sin(2lθ) dθ = 0, l ≥ 0

•
∫ 2π

0

cos2i θ sin θ sin((2l + 1)θ) dθ = πCi,l, l ≥ 0
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•
∫ 2π

0

cos2i+1 θ sin θ sin(2lθ) dθ = πKi,l, l ≥ 1

Remark 3.1. All integrals of odd functions over the interval [0, 2π], such as those involving
cos2k+1 θ or cosk θ sin θ, vanish due to symmetry. That is,∫ 2π

0

f(θ) dθ = 0, if f(θ) is an odd function.
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Conclusion

In this thesis of master, we conducted a general study of limit cycles in planar poly-
nomial differential systems, recognizing their significance in understanding the periodic
behavior of dynamical systems. We began by presenting the fundamental concepts re-
lated to limit cycles, including their definitions and properties, and provided a historical
overview of the main challenges, particularly the second part of Hilbert’s 16th problem.
We then focused on a specific class of polynomial differential systems inspired by gen-
eralized Liénard systems, analyzing the bifurcation of limit cycles resulting from small
polynomial perturbations applied to a linear center. Our approach relied on the first- and
second-order averaging theory to establish accurate upper bounds for the number of limit
cycles based on the degrees of the perturbations.
The main contribution of this research lies in the construction of an original applied
example that attains the computed theoretical upper bound, thereby emphasizing the
effectiveness of the analytical method used. Furthermore, our results align with prior
studies, particularly those by Llibre and Valls, thus reinforcing the validity and reliability
of the theoretical framework adopted in this study.
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