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Abstract

Kidney cancer is a major health concern, with rising rates of diagnosis and mortal-
ity. Each vear, thousands of people are diagnosed, and many lose their lives due to
late detection. Traditional diagnostic methods, while valuable, often fall short in
accuracy, leading to challenges in treatment planning and patient outcomes. While
computed tomography (CT) imaging is the gold standard for diagnosis, manual
tumor segmentation is time-consuming, prone to variability, and highly dependent
on radiologists’ expertise. Deep learning-based methods, particularly U-Net, have
shown a great promise in automating segmentation tasks. However, existing models
often struggle with ambiguous tumor boundaries, class imbalances, and misclassi-
fication of benign cysts. In this study, we implemented a U-Net Attention model
architecture, which integrates attention mechanisms into a U Net framework to en-
hance feature extraction, tumor localization, and segmentation accuracy of kidney
tumor segmentation from CT images. In the experiment, we follow a different ap-
proach in the pre-processing pipeline of our dataset. Our approach proves a powerful
way to segment kidney and tumor, leading to more accurate kidney disease diagno-
sis and treatment planning. We utilize the KiTS19 dataset for contrast-enhanced
CT images using semantic segmentation. Our model achieves a mean Dice score
of 0.85% and 0.70% for kidney and kidney tumors, respectively. It showcases the
potential to improve clinical kidney method decision-making.

Keywords: Image Segmentation, Kidney Tumor, Deep Learning, Attention Mech-
anism, U-NET.



Résumé

Le cancer du rein représente un enjeu majeur de sante publique, avec une augmen-
tation notable des taux de diagnostic et de mortalité. Chaque année, des milliers
de personnes recoivent un diagnostic de cette maladie, et beaucoup en meurent
en raison d'une détection tardive. Bien que les méthodes de diagnostic tradi-
tionnelles soient utiles, elles manquent souvent de précision, ce gui complique la
planification du traitement et nuit aux résultats cliniques. L’imagerie par tomod-
ensitométrie (CT) est considérée comme la norme de référence pour le diagnostic,
mais la segmentation manuelle des tumeurs est lente, sujette a des variations inter-
opérateurs et fortement dépendante de 'expertise des radiologues. Les méthodes
d’apprentissage profond, en particulier le modele U-Net, ont montré un fort po-
tentiel dans 'automatisation des tiches de segmentation. Toutetois, les modeéles
existants rencontrent fréquemment des difficultés liées a des frontiéres tumorales
floues, des déséquilibres de classes, et des erreurs de classification des kystes bénins.
Dans cette étude, nous avons mis en ovre en modele basé sur 'architecture Atten-
tion U-Net, qui intégre des mécanismes d’'attention dans ’architecture U-Net afin
daméliorer 'extraction des caractéristiques, la localisation de la tumeur et la pré-
cision de la segmentation des tumeurs rénales a partir dimages CT. Nous adoptons
une approche diflerente dans le processus de prétraitement de notre ensemble de
données. Cette méthode s’est révélée eflicace pour la segmentation du rein et de la
tumeur, permettant un diagnostic plus précis des maladies rénales et une meilleure
planification thérapeutique. Notre méthode utilise le jeu de données Ki'T'519, com-
posé dimages CT rehaussées par contraste et segmentées de maniére sémantique.
Notre modele a atteint un score moyen de Dice de 0,85% pour le rein et de 0,70%
pour la tumeur rénale, démontrant ainsi son potentiel a améliorer la prise de décision
liée aux problémes cliniques rénales.

Mots clés: segmentation dimages, tumeur rénale, apprentissage profond, Mecha-
nism d’attention , U-NET.
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Introduction

Kidney cancer is a disease that originates in the kidneys when healthy cells
in one or both organs begin to grow uncontrollably, forming a tumor. It remains
a major global health concern, with over 400,000 new cases and nearly 156,000
deaths reported annually. According to the World Cancer Research Fund Interna-
tional’, kidney cancer ranks as the 14th most common cancer worldwide, placing
it 10th among men and 13th among women. The most prevalent subtype, renal
cell carcinoma (RCC), necessitates precise localization and segmentation for accu-
rate diagnosis and eflective treatment planning. Although imaging techniques such
as computed tomography (CT) scans and magnetic resonance imaging (MRIs) are
standard tools for detection, they often struggle with the accurate segmentation of
tumor boundaries, leading to potential misdiagnosis and delayed treatment.

Image segmentation, a critical step in medical image analysis, involves dividing
an image into meaningful regions to isolate specific anatomical structures such as
tumors|16]. Manual segmentation, while commonly used, is time-intensive, error-
prone, and heavily reliant on radiologists expertise. Traditional segmentation meth-
ods and even advanced deep learning models like U-Net and its extensions still face
challenges, such as poor delineation of small or low contrast tumors, misclassi-
fications of benign cysts as malignant, and limited ability to capture contextual
dependencies|2]. These limitations underscore the need for more accurate and ef-
ficient solutions. Artificial intelligence, especially through deep learning, presents
promising opportunities in this space. Among recent innovations, the Attention-
powered U-Net architecture stands out by incorporating attention gates into the
traditional U-Net framework, enabling the model to focus selectively on critical
regions within CT scans and thereby enhancing segmentation performance[12].

This thesis investigates the potential of the Attention U-Net model for kidney
tumor segmentation using the publicly available KiTS19 dataset|17]. It compares
its performance with baseline models such as standard U-Net and ResUNet.

The study is structured into three main chapters: the first chapter covers foun-
dational concepts including kidney anatomy, deep neural networks, Convolution
Neural Network (CNN) vs Fully Convolution Network (FCN) architectures, seg-
mentation techniques, evaluation metrics, and attention mechanisms. The second
chapter discusses related work, particularly models like Attention U-Net, R2AttU-
Net, and FR2PAttU-Net, analyzing their roles and limitations in medical image
segmentation. The third chapter presents the implementation details, covering
dataset usage, preprocessing techniques, model architecture, training procedures,
and performance evaluation.

'https://www.wcrf.org/preventing-cancer/cancer-statistics/
kidney-cancer—statistics/



Chapter 1

Basic Concepts

1.1 Introduction

In this chapter, we provide a comprehensive loundation for understanding kid-
ney anatomy, image processing methods, and various kidney tumor segmentation
techniques used to diagnose and treat diseases of the human kidney. The focus is on
understanding the critical role of medical imaging (MI) in detecting kidney-related
conditions, including kidney tumors, and exploring advances in segmentation tech-
niques, especially those involving deep learning models. Additionally, we will discuss
the importance of image-processing tools in enhancing the accuracy and efficiency
of diagnostic procedures.

1.2 Kidney

The kidney is a vital organ responsible for maintaining the balance of body
fluids and electrolytes by filtering and excreting waste products from the blood.
They are paired, bean-shaped organs. It also secretes essential hormones and plays
a key role in regulating blood pressure. The structure of the human kidneys is
illustrated in Figure 1.1 [16]. In this sense, kidney injuries and diseases are serious
medical concerns in urology.

Kidney tumors, most known as kidney cancer, particularly renal cell carcinoma
(RCC), are among the most common malignancies that affect the urinary system.
These diseases are characterized by the loss of renal function, causing kidney failure,
increased risk of death, and other complications of the organ system in the human
body. Notably, the exact cause of kidney cancer remains unknown, and several risk
factors have been identified. These include smoking, obesity, poor diet, excessive
alcohol consumption, a family history of hypertension, exposure to radiation and
chlorinated chemicals, and genetic predisposition [18].



Chapter 1. Basic Concepts

Human Kidnev Anatomy
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Figure 1.1: Diagram showing human kidney anatomy and renal cell carcinoma
developed inside the kidney. [1]

1.3 Imaging Modalities

To evaluate and examine kidney diseases and tumors, medical imaging (MI)
techniques are categorized into various types, including ultrasound sonography
(US), computed tomography (CT), and magnetic resonance imaging (MRI). Med-
ical images (MI) exhibit excellent homogeneity, which can complicate and make it
challenging to identify regions of interest (ROI) and patterns, thereby blurring the
houndaries between organs and other areas. Radiologists prefer CT imaging over
other imaging modalities due to its ability to produce high-resolution images with
good anatomical features. Additionally, it produces images with excellent contrast
and exceptional spatial resolution. Therefore, CT imaging offers excellent contrast
and exceptional spatial resolution, making it a crucial tool for diagnosing kidney-
related diseases [16]. In addition, some CT scan results can be utilized to classify
benign cancer (Figure 1.2) [2].
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Figure 1.2: Example of an axial slice of 3D CT images of two patients in the KiT519
dataset. Red color indicates kidneys, and green color indicates tumor region [2].

Accurate segmentation of the kidney from medical images is a fundamental
step in computer aided diagnosis, therapy planning, and disease monitoring. Vari-
ous imaging modalities have been applied in kidney imaging, each offering unique
benefits and limitations. The most widely used modalities in the literature for kid-
ney segmentation include computed tomography (CT'), magnetic resonance imaging
(MRI}, and ultrasound (US), as shown in Figure 1.3. This section provides a de-
tailed explanation of the clinical use of each modality, imaging characteristics, and
relevance to kidney segmentation.

Figure 1.3: (A) US image; (B) MR image; (C) Contrast-enhanced MR image; (D)
CT image; (E) Contrast-enhanced CT image; 1- Parenchyma; 2- Cortex; 3- Medulla;
4- Renal sinus [3].
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1.3.1 Ultrasound (US)

Ultrasound is often the first line imaging modality in renal evaluations due
to its accessibility, low cost, and lack of radiation exposure. In US images, the
renal parenchyma appears hypoechoic relative to the echogenic renal sinus, with the
medulla and cortex distinguishable based on slight differences in echogenicity. It is
highly effective in detecting hydronephrosis, assessing renal size and morphology,
and identifying cystic lesions (Figure 1.3(A)).

Despite its safety and portability, ultrasound imaging presents several chal-
lenges for segmentation algorithms. It is subject to operator dependency and arti-
facts such as speckle noise, acoustic shadows, and low tissue contrast. These factors
introduce significant variability, making automated kidney segmentation in US a
nontrivial task. Recent studies have addressed these challenges using deformable
models, active shape models, and learning-based approaches to enhance segmenta-
tion accuracy [3].

1.3.2 Magnetic Resonance Imaging (MRI)

MRI provides high contrast soft tissue images without the use of ionizing ra-
diation. In renal applications, MRI allows precise visualization of internal kidney
structures such as the cortex, medulla, and renal pelvis (Figure 1.3(B)) and Figure
1.3(C)). MRI is particularly advantageous for functional evaluation using sequences
like diffusion weighted imaging and dynamic contrast-enhanced MRI. in particular,
it enables the assessment of renal perfusion and function by capturing the temporal
evolution of gadolinium based contrast agents within the renal vasculature.

Although MRI is excellent for distinguishing soft tissue types and detecting
lesions not visible on CT, it is less effective in identifying calcifications (e.g., renal
stones) and is costlier and slower than CT. Additionally, MRI may be contraindi-
cated in patients with certain implants or those at risk for nephrogenic systemic

fibrosis [3].

1.3.3 Computed Tomography (CT)

CT imaging uses X-rays to generate high resolution cross-sectional images of
the body. In renal imaging, CT is extensively used due to its excellent spatial
resolution and contrast sensitivity. The renal parenchyma typically appears as a
homogenous region, whereas the renal sinus, containing fat and urine-collecting
structures, presents as lower density areas. With contrast agents, enhanced C'T can
clearly delineate the cortex and medulla, identify vascular structures, and detect
small lesions such as stones or cysts (Figure 1.3(E)). CT is particularly valuable for
detecting kidney injuries, tumors as shown in Figure 1.2, and vascular anomalies,
and is often used for surgical planning.

However, exposure to ionizing radiation and potential nephrotoxicity of con-
trast agents remain significant drawbacks, especially in vulnerable populations such
as children and patients with chronic kidney disease [3].
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1.4 Image Segmentation

The segmentation stage is a critical step in the recognition of the imaging pro-
cess. It involves dividing and extracting meaningful objects and regions from the
entire image. Segmentation involves delineating the boundaries of the region of
interest for further analysis [16]. There are several methods for segmenting images:
manual segmentation, semi-automatic segmentation, automatic segmentation, and
semantic segmentation. Semantic segmentation is crucial for image analysis tasks
and plays a significant role in image interpretation. Image categorization, object
recognition, and border localization are all required for semantic segmentation. Im-
age segmentation can be divided into three main types.

1.4.1 Segmentation Types

« Semantic Segmentation Semantic segmentation assigns each pixel to a par-
ticular class, also it is a challenging task in Computer Vision (CV) systems.
A lot of Deep learning techniques and methods have been developed to tackle
this problem, ranging from autonomous vehicles and human-computer inter-
action to robotics and medical research. The lelt image in Figure 1.4 is an
example of semantic segmentation. The pixels either belong to the person (a
class) or the background (another class) [4].

Figure 1.4: Semantic segmentation (left) and instance segmentation (right) [4].

« Instance Segmentation Instance segmentation is a fundamental computer
vision (CV) task that assigns each pixel to a particular class. However, pixels
belonging to discrete objects are labeled with a different color (mask value).
Achieving accurate and robust instance segmentation in real-world scenarios
such as autonomous driving and video surveillance is challenging [19]. The
right image in Figure 1.4 is an example of instance, segmentation. The pixels
belonging to the person’s class are colored differently.

« Panoptic Segmentation is a unified image segmentation task which com-
bines semantic segmentation (assigning a class label to each pixel) and in-
stance segmentation (detecting and delineating individual object instances)
Figure 1.5. In panoptic segmentation, each pixel in an image is assigned
both a semantic label and an instance ID. This ensures a coherent scene un-
derstanding by distinguishing between diflerent instances of "thing' classes
(e.g., people and cars), while treating "stuff" classes (e.g sky and road) as
amorphous regions without instance differentiation. The task emphasizes a

6
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non-overlapping, complete, and interpretable segmentation of all elements in
a scene [5].

Instance
Segmentation 1 +
Panoptic
Segmentation

Semantic
[
Segmentation m#
Figure 1.5: panoptic segmentation schematic |5].

In medical imaging, it consists of recognizing and extracting individual or-
gans to help characterize tissue and improve diagnoses. [3], various imaging
techniques are applied, such as magnetic resonance imaging (MRI) [20], ultra-
sound (US), and computed tomography (CT) [2] are commonly used for image
segmentation, particularly for tasks like kidney tumor segmentation, also they
are used to visualize and evaluate through renal imaging in kidney segmenta-
tion. The main motivations for kidney segmentation (renal segmentation) in
clinical practice are :

— Ewvaluation of kidney parameters, namely its size and volume, to diagnose
potential diseases.

— Assessment of renal morphology and function.
— Localization of abnormalities or pathologies present in the kidney.

— Facilitate the decision-making process, helping in treatment and inter-
vention planning.

1.4.2 Kidney Tumor Segmentation

Accurate segmentation of kidney tumors from medical imaging modalities such
as CT and MRI plays a vital role in supporting clinical decisions, including diag-
nosis, treatment planning, and surgical intervention. It allows clinicians to assess
tumor size, location, and spread with high precision. Deep learning models, par-
ticularly convolutional neural networks (CNNs), have revolutionized medical image
segmentation by offering robust performance. However, the success of such models
heavily depends on various auxiliary techniques, including pre-processing, postpro-
cessing, and data augmentation. These components work in tandem to handle
the challenges posed by limited data availability, anatomical variability, and image
noise.

Modern segmentation pipelines utilize these techniques to enhance model gen-
eralization and accuracy across different patient populations and imaging protocols
121]. In the context of kidney tumor segmentation, these stages are especially im-
portant due to the tumors irregular shape, variable contrast in CT images, and
overlapping appearance with surrounding organs.
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« Preprocessing Preprocessing transforms raw medical images into a stan-
dardized and cleaner format, which is critical for improving the learning per-
formance of neural networks. Without consistent input formats and qual-
ity, segmentation models can suffer from poor generalization and inaccurate
boundary detection.

Common pre-processing steps in kidney tumor segmentation include:

— Intensity normalization: Since CT and MRI intensities vary depend-
ing on acquisition devices and protocols, normalizing intensities helps
reduce inter-scan variability. For CT scans, intensities are often clipped
to a fixed Hounsfield Unit range (e.g., [-200, 250]) before scaling [22].

— Resizing or resampling: Medical images, particularly 2D CT volumes,
may vary in resolution. Resizing images to a consistent input size (e.g.,
128% 128 or 256x256) ensures compatibility with deep learning models
while reducing computational costs |2].

— Cropping or patch extraction: Focusing only on the region of interest
(ROI) such as the kidney area allows the model to concentrate on relevant
anatomical features. This also reduces computational cost and helps
address class imbalance (23].

— Noise reduction: Denoising methods, including (zaussian filtering or
median filtering, are used to suppress image noise and enhance tissue
contrast, improving boundary clarity for both kidneys and tumors [13].

« PostProcessing Alter a model produces segmentation predictions, postpro-
cessing steps are employved to refine results, suppress false positives, and en-
force anatomical consistency. These techniques are essential in correcting the
limitations of learned models, which may occasionally predict fragmented or
disconnected tumor regions. Also These methods ensure that the final seg-
mentation maps are not only accurate but also clinically interpretable.

T'ypical postprocessing strategies include:

— Morphological operations: Applying operations such as dilation, ero-
sion, opening, and closing helps to eliminate small noisy predictions and
smooth the segmentation boundaries [10]. These are especially useful in
removing holes within tumor masks or bridging broken regions.

— Connected component analysis: To prevent over segmentation, only
the largest connected region is retained as the final tumor or kidney mask,
assuming that smaller components are false positives [24].

— Boundary refinement: Advanced techniques like Conditional Ran-
dom Fields or active contour models can be used to align segmentation
boundaries more closely with image gradients and anatomical borders.
This leads to more precise tumor delineation [25].

« Data Augmentation In medical imaging, data scarcity and class imbalance
are persistent challenges, especially when tumor regions occupy only a small
fraction of the entire scan. Data augmentation artificially enlarges the train-
ing dataset and introduces meaningful variability, helping to regularize the
learning process and reduce overfitting.

Auvugmentation techniques employed in kidney tumor segmentation include:
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— Geometric transformations: These include rotation, flipping, scal-
ing, translation, and shearing. Such transformations simulate real-world
anatomical variability and help the model learn rotation- and scale-
invariant features [26].

— Elastic deformations: These simulate non-rigid anatomical changes
in the kidney and tumor shapes. Originally popularized in biomedical
image segmentation by Ronneberger et al. in the UJ-Net paper|9] , elastic
deformation has proven effective in training models to cope with realistic
organ variations.

— Intensity variations: Adjusting brightness, contrast, adding (Gaussian
noise, or even applying histogram equalization helps models become ro-
bust to differences in scan quality and acquisition conditions.

By incorporating these augmentations during training, models are better pre-
pared for the diversity seen in real world clinical datasets.

1.4.3 Segmentation Evaluation

In order to evaluate the performance of an image segmentation model, a set

of quantitative metrics is used to assess how accurately the predicted outputs align
with the ground truth annotations. These metrics are essential in determining the
models effectiveness in distinguishing between different regions or classes within an
image, particularly in sensitive applications such as medical imaging. Also, they
help quantify not only the correctness of the classification but also the degree of
overlap between the predicted and actual regions. These are the most common ones:

Accuracy: The correct predictions produced by the prediction model across
all suitable forecasts completed are referred to as the models accuracy [27].

TP+ TN
TP+TN+FP+FN

(1.1)

Accuracy =

Recall: True positive rate, the proportion of true positives, or successes, that
is accurately detected is calculated as the true positive rate, also known as
sensitivity [28].

P

Recall = TP+ FN Sensitivity = TPR (L

Precision: The number of correct positive scores divided by the number
of positive scores anticipated by the classification algorithm is the positive
predictive value, or precision [29].

. TP
Precision = TP+ FP (1:3)

Specificity: measures the proportion of actual negative instances (e.g., back-
ground or non-tumor pixels) that are correctly identified by the segmentation
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model. It reflects the models ability to avoid false positives by correctly ex-
cluding areas that do not belong to the target class.[30].

TN
TN+ FP

Speci ficity = (1.4)

Where:

— TP: True positives represent the cases where the model correctly predicted
the positive class. In other words, these are instances where both the actual
value and the predicted value are positive.

— TIN: True negatives represent the cases where the model correctly pre-
dicted the negative class. These are instances where both the actual value
and the predicted value are negative.

— FP: False positives occur when the model incorrectly predicts the positive
class when the actual class is negative. In other words, these are instances
where the model falsely predicts the presence of the condition.

— FNN: False negatives happen when the model incorrectly predicts the neg-
ative class when the actual class is positive. These are instances where the
model fails to detect the presence of the condition.

« Fl-score: is delined as a harmonic mean of precision and recall The formula
for Fl-score is [31].

2w Precision x Recall
F'1 — Seore = 1:5
Precision + Recall (1.5)

« Intersection Over Union (IOU) : or Jaccard Index (JI), was used to

compare the statistical similarity of regions segmented (Figure 1.6) using a
computational approach to hand delineations [32].

|Ser N Spy

Loll—
|S¢T U Spi|

(1.6)

Area of Overla
Tol = —_— p = =

Area of Union

Figure 1.6: Intersection over Union [4].
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+ Dice Similarity Coefficient (DSC): The binary mask produced by the
manual segmentation of the experts in the domain corresponds to the binary
mask produced by the suggested approach. DSC must be close to unity to
ensure that the manually drawn region corresponds to the segmented result
correctly [33].

i |S{;T M Sp L|

+ |[Sprl

DSC(Ser, SpL) = (1.7)

|Ser
Where:

— Spr, represents the predicted segmentation.
— Ser represents the ground truth.

— |Spr| and |Sgr| denote the cardinality (number of elements) of the sets
S DL and S{;T.

1.5 Deep Learning Architectures and Techniques

1.5.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are specialized kinds of deep learn-
ing models that have become the cornerstone of modern Computer Vision (CV),
particularly for medical image analysis. A CNN is composed of several layers, in-
cluding convolutional layers that extract spatial features, pooling layers that reduce
dimensionality and provide translational invariance, and optionally fully connected
layers for decision-making, as shown in Figure 1.7. Unlike traditional image process-
ing techniques that rely on hand-crafted features, CNNs learn hierarchical feature
representations directly from raw input data and are very effective in identifying
complex structures in medical images such as tumors, lesions, and organ boundaries.
According to Litjens et al{22]. CNNs have significantly improved performance in
various diagnostic tasks, including classification, detection, and segmentation across
a wide range of medical imaging modalities such as CT, MRI, and ultrasound.
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Figure 1.7: The CNN architecture [6].
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A typical CNN architecture consists of the following main components:

« Convolutional layers: These layers perform convolution operations using
learnable filters to extract spatial features from the input. Each filter detects
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a specific feature, such as edges or textures, enabling the model to learn local
and global representations of the image.

« Activation functions: Nonlinear activation functions, particularly ReLU,
are used after convolution operations to feed into the model, allowing it to
capture complex patterns.

« Pooling layers: Pooling operations reduce the spatial resolution of feature
maps while preserving the underlying features while reducing computational
cost and overfitting.

« Fully connected layers: Dense layers are typically used at the output to
integrate high-level features for downstream classification or regression tasks.

In the domain of image segmentation, CNNs play a critical role in localizing
regions of interest by leveraging learned spatial patterns. Hesamian et al [7]. Em-
phasized how CUNNs have been successtul in addressing challenges such as variability
in organ shape, noise in imaging data, and low contrast between healthy and dis-
eased tissues. These strengths have made CNNs a foundational component in many
segmentation pipelines, particularly as an encoder within larger architectures such
as Fully Convolutional Networks (FCNs) and U-Net, which further refine pixel-level
predictions.

1.5.2 Fully Convolutional Network (FCN)

Fully Convolutional Networks (FCNs) are a modification of the classical CNNs
architecture to enable dense, pixel-wise prediction for tasks such as semantic seg-
mentation. Unlike classical CNINs that end with fully connected layers and output
a single classification label, FCNs replace these layers with additional convolutional
layers, allowing the model to produce segmentation maps that align spatially with
the input image (Figure 1.8). This architectural change allows FCNs to be trained
end-to-end for segmentation tasks, learning both global context and fine-grained
spatial details simultaneously.
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Figure 1.8: The FCN architecture [7].
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Litjens et al (22|, describe FCNs as a key innovation in the evolution of deep
learning for medical image segmentation, particularly because of their ability to
work with variable input sizes and produce high-resolution segmentation outputs.

Hesamian et al [7|, pointed out that FCNs, especially in their 3D forms like
V-Net, have shown significant promise in volumetric segmentation tasks such as
identifying tumors within CT or MRI scans. These models not only provide high
accuracy but also allow for more consistent and reproducible segmentation results,
which are critical in clinical applications.

1.5.3 AlexNET

AlexNet is a leading deep convolutional neural network designed for image clas-
sification. It was presented by Geoflrey Hinton and his team, Alex Krizhevsky and
Ilya Sutskever, at the 2012 International Large-Scale Visual Recognition Competi-
tion (ILSVRC). It competed with ImageNET at the ILSVRC to produce a 1,000-
label classification using the ImageNET dataset, which contains over 1.2 million
images. The model consists of multiple layers: five convolutional layers and three
fully connected linear layers to automatically learn hierarchical representations of
multiple layers of image data.
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Figure 1.9: The AlexNet architecture [§].

AlexNET featured some innovative techniques that were influential in the net-
work, most notably the ReLLU activation function, dropout regularization, and GPU
training, achieving an error rate of the top five of 15.3 percent, significantly outper-
forming ImageNET [§].

1.5.4 U-Net

U-Net is a convolutional neural network that was developed for image segmen-
tation, designed for biomedical image segmentation. Introduced by Ronneberger
et al. in 2015 for the ISBI cell tracking challenge, U-Net addressed the problem
of segmenting complex structures in medical images where annotated data is often
scarce. Its architecture follows a symmetric encoderdecoder structure, shaped like
the letter "U" as depicted in Figure 1.10 [9].
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Figure 1.10: The U-Net architecture [9)].

The contracting path (encoder) captures contextual information through con-
volutional and max-pooling layers, while the expanding path (decoder) performs
precise localization using up-convolution and concatenation with high-resolution
features from the encoder via skip connections. These skip connections help preserve
spatial accuracy and improve segmentation quality. U-Net’s ability to perform accu-
rate, end-to-end, pixel-level segmentation with a relatively small amount of training
data has made it highly effective and widely adopted in medical applications such
as tumor detection, organ segmentation, and lesion delineation.

1.5.5 V-Net

V-Net is a volumetric convolutional neural network developed for 3D medical
image segmentation, particularly effective for analyzing data from modalities like
MRI and CT. Proposed by Milletari et al. in 2016, V-Net extends the U-Net ar-
chitecture to operate directly on 3D volumetric data instead of 2D slices. It uses a
fully convolutional encoderdecoder structure with residual learning, allowing deeper
networks to be trained effectively. The encoder path captures hierarchical features
through convolution and downsampling, while the decoder path progressively re-
constructs the segmentation map using deconvolution layers and skip connections
1.11. A key innovation in V-INet is the use of a Dice loss function, which directly
optimizes the overlap between predicted and ground truth volumesa crucial aspect
for class-imbalanced medical segmentation tasks. V-Net has been successfully ap-
plied to tasks such as prostate segmentation from MRI volumes and other organ
delineation tasks in 3D [10] .
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Figure 1.11: The U-Net architecture [10].

1.5.6 ResNet

ResNet (Residual Network) is a deep convolutional neural network architec-
ture introduced by He et al. in 2015, which addressed the degradation problem in
training very deep networks. As neural networks grow deeper, their performance
often degrades due to vanishing gradients and difficulty in learning identity map-
pings. ResNet overcomes this by introducing residual learning, where shortcut or
skip connections (Figure 1.12) allow gradients to flow more easily through the net-
work by bypassing one or more layers. Instead of learning the full output, each
residual block learns the difference (residual) between the input and the output.
This simple vet powerful idea enables the construction of extremely deep networks,
such as ResNet-50, ResNet-101, and ResNet-152, which have achieved state-ol-the-
art results in image classification, detection, and segmentation tasks. ResNet won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2015 and has
become a foundational architecture in Computer Vision (CV) [11].
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Figure 1.12: Residual learning: a building block [11].

1.5.7 EffecientNETU-Net

EfficientNet-U-Net is a deep learning architecture that integrates the powerful
EfficientNet model as the encoder within the U-Net segmentation framework. Effi-
cientNet, proposed by Mingxing Tan and Quoc Le [34] in 2019, introduced a novel
compound scaling method that uniformly scales a convolutional network’s depth,
width, and resolution using a mathematically derived scaling rule. This approach
achieves state-of-the-art performance on image classification tasks while maintain-
ing computational efficiency. By embedding EfficientNet (typically variants such as
EfficientNet-B0O to B7) as the encoder in U-Net, the model leverages EfficientNet’s
rich hierarchical feature extraction capabilities alongside U-Net’s precise spatial lo-
calization, provided by its decoder and skip connections. This combination has been
shown to significantly enhance performance in high-resolution image segmentation
tasks, particularly within the medical imaging domain.

1.5.8 Attention Mechanism

The attention mechanism in deep learning is a strategy for enhancing neural
models by allowing the network to refer back to the input sequence instead of forcing
it to encode all information into one fixed length vector. Traditionally, sequence
transduction tasks such as machine translation relied heavily on recurrent neural
networks (RNNs), which face limitations in capturing long range dependencies and
supporting parallelization.

Vaswani et al. (2017) proposed the Transformer, an architecture built en-
tirely around attention, replacing recurrence and convolution with self-attention
mechanisms to model global dependencies in input and output sequences [35]. The
Transformer further enhances this mechanism through multi-head attention, which
projects the input into multiple subspaces and performs parallel attention opera-
tions. Each head captures different aspects of the information, and their outputs
are concatenated and linearly transformed. This design increases the model’s ex-
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pressiveness without significantly increasing computation.

Attention is used in three key ways within the Transformer:

« pelf-attention in the encoder allows each token to consider all other tokens in
the input.

» Masked self-attention in the decoder ensures autoregressive generation by pre-
venting access to future tokens.

« Encoder-decoder attention lets the decoder attend to the encoders output,
aligning input and output sequences effectively.

Compared to RNNs, self-attention has several advantages: it enables greater
parallelization during training and provides shorter path lengths for gradient How,
which improves the models ability to learn long-range dependencies [35].

1.5.9 Transfer Learning

Building accurate machine learning models often requires large amounts of
labeled data and significant computational resources. However, collecting and la-
beling massive datasets can be time consuming, expensive, or even impractical,
especially in specialized domains like medical imaging or legal document analysis.
This is where transfer learning becomes invaluable.

Transfer learning is improvement in learning a new task by transfer of knowl-
edge from a related task that has already been learned. Also, transter learning
is essentially the use of pre-trained neural networks (e.g., Computer Vision (CV),
medical imaging, natural language processing (NLP) tasks) to try to work around
the perceived requirement of large datasets, and to train deep neural networks to
train, two primary strategies are commonly used:

» Using a pre-trained model as a fixed feature extractor.

« Fine-tuning the pre-trained model on specific data, such as medical images.

The first approach offers a notable advantage: It eliminates the need to com-
pletely train a deep network, allowing the extracted features to seamlessly integrate
into existing image analysis workflows|22)].

Transter learning has proven effective across a wide range of applications in
both classical machine learning and deep learning. Two of the most prominent areas

where it is widely used are Computer Vision (CV) and natural language processing
(NLP).

In image recognition, training high-performing deep learning models from scratch
often requires massive datasets and significant computational resources, sometimes
taking days or even weeks. To address this, many research institutions and technol-
ogy companies develop and release pre-trained models that others can reuse through
transfer learning. These models are typically trained on large datasets such as Im-
ageNet and serve as a foundation for downstream tasks via fine-tuning or feature
extraction. Some widely used models include:
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« EfficientNet developed by Google Al for optimized accuracy and efficiency
across model sizes [34].

« ResNet by Microsoft [11].

In the domain of natural language processing, transfer learning is often imple-
mented using pre-trained word embeddings, which represent words as dense vectors
based on their semantic context within large corpora. These embeddings capture re-
lationships between words such that those with similar meanings are located close to
each other in the vector space. This form of representation enables efficient learning
and generalization in a variety of NLP tasks. Two widely adopted word embedding
technigues are:

« Word2Vec developed by Google [36].

+ GloVe (Global Vectors for Word Representation), developed by Stanford,

[l
b

which captures global word co-occurrence statistics from a corpus [37]

These methods form the foundation for many modern NLP models and have
significantly improved performance in tasks like text classification, sentiment anal-
ysis, and machine translation 37, 36].

1.6 Conclusion

In summary, this chapter has established the foundational concepts necessary
for understanding and advancing kidney tumor segmentation. We reviewed kidney
anatomy and the clinical imperatives for precise tumor delineation, examined the
strengths and limitations of key imaging modalities (US, MRI, CT), defined the
segmentation task and its variants (semantic, instance, panoptic) in the medical
imaging domain, and detailed the pre-processing, postprocessing, and data aug-
mentation techniques that underpin modern deep learning based pipelines. We also
introduced essential evaluation metrics, such as accuracy, precision, recall, IoU, and
Dice coefficient. We discussed important neural network architectures, from classi-
cal CNNs and FCNs to U-Net and its volumetric and attention enhanced derivatives.
Finally, we discussed the transformative roles of attention mechanisms and transfer
learning in overcoming challenges of limited annotated data and complex tumeor
boundaries. Together, these concepts form the intellectual scatiolding for our inves-
tigation of Attention UNets application to kidney tumor segmentation, setting the
stage for the detailed literature review in Chapter 2.
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State Of The Art

2.1 Introduction

This chapter provides an overview of the state of the art in kidney tumor seg-
mentation methods, briefly mentioning traditional techniques, machine learning-
based approaches, and deep learning methods. The chapter further describes the
advancements in U-Net architecture, particularly the integration of attention mech-
anisms, and explores how these innovations address challenges in accurately seg-
menting kidney tumors. Despite the progress in the area of study, several challenges
remain, including variability in tumor morphology, the presence of benign cysts, and
difficulties associated with poor image contrast in CT scans. As such, this chapter
discusses the benefits and drawbacks of such methods, with a particular focus on
their applicability to kidney tumor segmentation, and discusses ongoing challenges
such as the need for large annotated datasets, computational complexity.

2.2 Classical Techniques

Traditionally, the methods used in kidney segmentation has relied on manual
delineation. However, this approach is time consuming and labor-intensive, be-
ing highly prone to intra-observer variability. For these reasons, a multitude of
semi-automatic and automatic methods have already been proposed. Despite, ad-
vancements kidney segmentation remains a challenging task, namely due to the
presence of different renal compartments inside the kidney. Owing to their different
characteristics, these structures present different intensity distributions, which leads
to a higher intensity inhomogeneity inside the kidney when compared to the rest of
the abdominal organs. The spatial localization of the kidney between organs with
similar intensities is also a drawback in the segmentation process, given the low
contrast between the kidney and its surrounding structures. Another challenge is
the shape variability (in terms of length and volumes) expected between subjects.
Moreover, certain congenital anomalies also modify the kidneys shape [2, 20|. These
factors of the kidney may be more evident depending of the imaging modality.

In this sense, several clinical analyses require multiple imaging acquisitions
(with different modalities) to improve the diagnosis and treatment process kidney
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segmentation or renal segmentation such as MRI [20], US [3], and CT [2, 20]

2.3 Machine Learning-based Techniques

Earlier systems were built on traditional techniques such as edge detection
filters and mathematical models|7]. These were later followed by machine learning
technigques, which were based on handcrafted feature extraction, which remained
dominant for a significant period. However, the process of designing and extracting
these features posed major challenges, and the complexity of such methods limited
their scalability as well as applicability in real-world scenarios.

Since the 2000s. Traditional machine learning methods such as support vector
machines (SVM), k-nearest neighbors (KNN), and k-means clustering have been
extensively utilized in medical image segmentation [7]. These methods typically
operate on low- or mid-level features (e.g., intensities, textures) to segment images
into tissue classes or to localize pathological regions. In medical imaging, SVMs
are often used as voxel-level or superpixel classifiers, while k-means provides an
unsupervised grouping of image intensities.

This section discusses how machine learning techniques have been applied in
recent research on medical image segmentation, offering a deeper look into their
methodologies and analyzing their respective strengths and limitations. We dis-
cusses representative studies, datasets, imaging modalities, targeted organs or dis-
eases, and evaluation metrics.

2.3.1 Support Vector Machines (SVM)

Support Vector Machine (SVM) is a supervised machine learning technique
typically used for classification and regression tasks [38]. In the context of medical
image segmentation, SVMs are employed to differentiate anatomical structures or
pathological regions from surrounding tissues based on extracted features.

In [39], the study titled "Automatic 3D Segmentation of the Kidney in MR, Im-
ages Using Wavelet Feature Extraction and Probability Shape Model", researchers
developed a method for segmenting kidneys in MRI images by combining wavelet-
hased feature extraction with Support Vector Machines (SVMs). They employed
wavelet transforms to extract texture features from different regions of the kidney
and used SVMs to classily kidney and non-kidney tissues. The segmentation results
were further refined using a probability shape model to adaptively identify kidney
boundaries. This approach achieved a mean Dice Similarity Coefficient (DSC) of
90.6% across seven test cases, demonstrating its effectiveness in accurately delin-
eating kidney structures in MRI images.

These studies show that SVM-based segmentation techniques are capable of
high accuracy in distinguishing soft tissues and pathological areas from healthy
regions in various medical imaging modalities.
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2.3.2 SVM Combined with KNIN

In [40], Farahani et al. proposed a hybrid machine learning approach for de-
tecting lung nodules from chest CT images. The method combined SVM and K-
Nearest Neighbors (KNN) classifiers to enhance classification accuracy. The dataset
included 1,000 CT scans from the LIDC-IDRI database. Their approach achieved

an overall accuracy of 93.5%.

In [41], Shah et al. proposed a hybrid classification framework for kidney tumor
detection using abdominal CT scans. Their system begins with segmentation using
the Fuzzy C-Means (FCM) clustering algorithm to isolate the tumor region from
the kidney. Once segmented, the system extracts texture-based features using the
Grey Level Co-occurrence Matrix (GLCM), which provides statistical descriptors
such as contrast, energy, entropy, and correlation. These features are then passed
to two classifiers, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN),
to determine whether the tumor is benign or malignant. The authors compared
the classification results using a confusion matrix and observed improved accuracy
when both classifiers were incorporated into the decision pipeline. While specific
numerical metrics (e.g., sensitivity or Dice coefficient) were not reported, the hy-
brid approach demonstrated increased classification reliability and effectiveness for
medical decision support.

These results illustrate the effectiveness of combining SVM and KNN to exploit
both global decision boundaries and local neighborhood relationships, especially in
cases where data is noisy or classes are highly imbalanced.

2.3.3 k-Means Clustering

k-means is an unsupervised clustering algorithm that groups image pixels into
clusters based on similarity in intensity or texture. In medical image segmentation,
it is often used as a pre-processing step to isolate regions ol interest.

In [42], Prasad et al. developed a method for lung cancer detection using fuzzy
k-means clustering followed by deep learning classifiers. The method was tested
on a CT dataset of 1,200 images, achieving 99% sensitivity and 100% specificity in
identifying cancerous regions.

In [43], a semantic whole-heart segmentation technique was developed using
K-means clustering in combination with mathematical morphology. Applied to
chest CT images, the method achieved an average Dice similarity coeflicient of
90.8%. The approach was unsupervised and demonstrated robust performance in
generating clinically meaningful heart segmentations.

Overall, k-means clustering serves as a fast, unsupervised segmentation tool in
medical imaging. It has been applied to modalities including CT (lungs, liver), MRI
(brain tumors, bone lesions), and ultrasound (kidney). Reported performance varies
by task: brain-tumor Dice scores of 0.82 |44]|. These studies confirm that k-means
clustering is a simple yet powertul segmentation tool, especially when enhanced with
postprocessing techniques like morphological filtering and edge detection.
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2.3.4 Limitations of Traditional Machine Learning Methods

Despite their uselulness in structured and low-noise environments, traditional
machine learning techniques face several limitations when applied to complex med-
ical images such as CT scans [3]:

« Dependency on manual feature engineering : These methods require domain
expertise to select and extract relevant features.

» Poor generalization : They often fail to generalize well across different imaging
datasets or modalities.

« Lack of spatial understanding : Unlike convolutional neural networks, they
struggle to capture spatial dependencies and contextual information within
volumetric data.

« Computational inefhiciency : Feature extraction and tuning are time-consuming
and not scalable for large datasets.

2.4 Deep Learning-based Techniques

Due to the limitations of traditional machine learning approaches, such as
the need for hand-crafted features and limited generalizability, there is a relative
scarcity ol research explicitly focused on kidney tumor segmentation using classi-
cal methods. Consequently, machine learning-based segmentation techniques have
been increasingly supplanted by deep learning architectures, such as U-Net, which
offer superior performance through end-to-end learning, hierarchical feature repre-
sentation, and automatic feature extraction. These models have become especially
valuable in complex segmentation tasks, where tumor shapes, sizes, and textures
can vary significantly. However, understanding the development and impact of ear-
lier techniques remains essential to contextualizing modern advances, particularly
in architectures like Attention-Powered U-Net, which integrate mechanisms of se-
lective focus and contextual modeling that originated in foundational segmentation
research.

2.4.1 Attention U-Net

The U-Net attention network model, presented by [12], is an extension of the
traditional U-Net architecture, which is widely used in medical image segmentation.
It provides a solution to the difficulty traditional U-Nets face in accurately segment-
ing body organs with significant variations in size and shape, especially in complex
medical image processing, such as kidney segmentation. To address this challenge,
many segmentation techniques rely on multistage concatenated convolutional neural
networks (CNN), where the first model focuses on extracting the region of interest
(ROI). In contrast, the second model focuses on detailed segmentation. However,
these stages result in the overextraction of features, which increases computational
cost and model complexity, making them unsuitable for clinical applications.
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Attention Gates (AG): are used for medical imaging that automatically
learns to focus on target structures of varying shapes and sizes. Models trained
with AGs implicitly learn to suppress irrelevant regions in an input image while
highlighting salient features useful for a specific task. This enables them [12] to
eliminate the necessity of using explicit external tissue or organ localization mod-
ules of cascaded convolutional neural networks (CNNs). AGs can be integrated into
standard CNN architectures as shown in Figure 2.1 [12] . To do that, they used the
U-Net model with minimal computational overhead while increasing the model sen-
sitivity and prediction accuracy. AGs are commonly used in natural image analysis,
knowledge graphs, and language processing (NLP) for image captioning [45].

Figure 2.1 shows a block diagram of the Attention U-Net segmentation model.
The input image is progressively filtered and downsampled by a factor of 2 at each
scale in the encoding part of the network (e.g. Hy = H1/8). N, denotes the number
of classes. Attention gates (AGs) filter the features propagated through the skip
connections. Schematic of the AGs is shown in Figure 2.2.
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Figure 2.1: Block diagram of the Attention U-Net segmentation model [12].

As shown in Figure 2.2. Attention Gates Architecture consist of an input
features (z*) are scaled with attention coefficients (a) computed in AG. Spatial
regions are selected by analyzing both the activations and contextual information
provided by the gating signal { g ) which is collected from a coarser scale. Grid
resampling of attention coeflicients is done using trilinear interpolation. Attention
coefficients, a; € [0, 1], are used to identify salient image regions and prune feature
responses to preserve only the activations relevant to the specific task. Therefore,
each AG learns to focus on a subset ol target structures, and AGs progressively
suppress feature responses in irrelevant background regions without the requirement
to crop an ROI between networks.and the softmax activation function is often used
to normalise attention coeflicients (o3). However, as sequential use of softmax tends
to vield overly sparse activations, Oktay et al. (2018), the authors of the Attention
U-Net,[12], chose a sigmoid activation function instead. This decision allows for
more flexible and smoother gating of spatial features in medical image segmentation.
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Figure 2.2: Schematic of the additive attention gate (AG) [12].

There are different types of attention that are described as follows:

Trainable Attention: Trainable attention, on the other hand, is enforced
by design and categorised as hard-attention and soft-attention [12].

Hard Attention: is a non-diflerentiable attention mechanism that selects
discrete regions of input (e.g., crops or proposals). Training typically relies
on reinforcement learning (RL)! techniques such as policy gradient methods.

46].

Soft attention: A differentiable, probabilistic attention mechanism that
assigns continuous weights to all parts of the input. It supports end-to-end
training via standard backpropagation [47].

Channel-wise Attention: In (48], is employed to emphasize key feature
dimensions, making it the top performer in the ILSVRC 2017 image classifi-
cation challenge.

Self-Attention: In [35], often referred to as intra-attention, this attention
mechanism focuses on the relationships between diflerent positions within
a single sequence to generate its representation. Self-attention has proven
effective in various tasks, including reading comprehension. Each element of
a. sequence (or feature map) attends to every other element to model internal
dependencies, capturing long-range context.

2.4.2 Recurrent Residual Convolutional Neural Network U-

I
(R2U

Net

n 2018, Alom et al [14]. Proposed the recurring convolutional neural network

-Net) shown in Figure 2.4 based on the U-Net architecture as an advanced ver-

sion of the traditional U-Net architecture. The network incorporates recurrent and
residual mechanisms, as illustrated in Figure 2.3, to enhance feature representation
in image segmentation, particularly in medical imaging applications. The R2U-Net
model combines three of the most potent and effective deep learning concepts: the
U-Net baseline architecture, residual learning-inspired networks (ResNETs) shown

'Reinforcement Learning (RL) is a type of machine learning where agents learn to make deci-
sions by interacting with an environment and receiving feedback in the form of rewards or penalties.
For more details, see https://www.ibm. com/topics/reinforcement-learning
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in Figure 2.3, and recurrent convolutional neural networks (RCNNs) shown in Fig-
ure 2.3(b), to achieve superior performance in incident segmentation and feature
representation.
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Figure 2.3: Diflerent variants of convolutional and recurrent convolutional units
(a) the forward convolutional unit, (b) the recurrent convolutional block, (c) the
residual convolutional unit, and (d) the recurrent residual convolutional unit. |[13].

Although the U-Net architecture is highly eflective in image segmentation, it
struggles with feature refinement and contextual understanding of spatial hierar-
chies. This is due to the accumulation of repetitive teature layers over time, render-
ing the model incapable of recognizing complex structures, such as blood vessels or
tumor junctions.
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Figure 2.4: The Recurrent Residual Convolutional Neural Network U-Net architec-
ture [14].

Recurrent Convolutional Layers (RCLs): The R2U-Net replaces standard
convolutional layers with RCLs, which significantly improve features over discrete
time intervals. This process is performed at each pixel using the following function
statement. For a pixel at position (¢, §) on the k* feature map of layer I, the output
at time ¢ is computed as:

0L, = (WE)" » XFD) (1 1 (W) T X769 (¢ — 1) 4 b, (2.1)

iy

25



Chapter 2. State Of The Art

The function combines feedforward and recurrent convolutions at each pixel
to refine feature representations over time. Here, W ;:r and W are weights for for-
ward and recurrent convolutions, and b is the bias. The convolution operator
(%) aggregates local spatial information from the input and the previous output.
This accumulation of temporal features captures the hierarchical context, critical

to segmenting fine structures such as blood vessels or tumour boundaries.

Residual Connections: Inspired by the ResNet architecture, residual con-
nections are incorporated into R2U-Net to address the vanishing gradient problem
common in deep networks. These connections enable the model to learn residual
functions and reuse them as the input layer, allowing for more efficient gradient ow
and improving the training ol deep architectures without any degradation.

The residual unit applies a nonlinear activation functiontypically a rectified
linear unit (ReLU)to the output of the recurrent layer. This formulation not only
facilitates deepening the network but also preserves low-level features by directly
bypassing them to deeper layers, improving convergence and segmentation perfor-
mance.

2.4.3 Fuzzy set Recurrent Residual Parallel and Attention
U-Net

Pang et al [15], designed a deep learning architecture called FR2PAttU-Net
by combining different image segmentation methods and techniques to focus and
improve the segmentation of kidney tumors, even when the tumors are clear. First,
they use the R2ZPAttU-net network, the first "R" refers to the residual network, and
the second "R" refers to recurrent. Also, the letter "P" relers to parallel, which helps
the model to deepen and avoid the inability to learn the gradient under the same
amount of parameters, resulting in better performance. the model uses the recurrent
residual block instead of the traditional Conv + ReLU layer in the encoding and
decoding process, which can train a deeper network. All convolution layers are
composed of successive convolution are modified to parallel convolutional networks,
and combine those blocks into the attention U-Net architecture. As shown in Figure
2.5. Then, they used the fuzzy set enhancement algorithm to enhance the input
image and construct the FRZPAttU-Net model to make the image obtain more
prominent features to adapt to the model. To implement their model, they used
the KiTS19 data set and tested the segmentation effect of the model on different
convolutions and depths, and they got a score of 0.948 in kidney Dice and a (0.911
in tumor Dice, resulting in a 0.930 composite score, showing a good segmentation
effect.
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Figure 2.5: FR2PAttU-Net architecture [15].

According to Pang et al. [15], the KiTS19 dataset was used to train multiple
deep learning architectures for kidney tumor segmentation, including U-Net, ResU-
Net, AttU-Net, and R2U-Net. The average performance of these models, evaluated
using the Dice coefficient, is summarized in Table 2.1.

Table 2.1: Comparison of algorithms on Kidney and Tumor segmentation tasks

References architectures | Kidney Dice | Tumor Dice | Composite score
Reference [9] | U-Net 0.482 0.444 0.463
Reference [11] | ResU-Net 0.638 0.694 0.691
Reference [12] | AttU-Net 0.789 0.735 0.763
Reference [14] | R2U-Net 0.681 0.711 0.696
Reference [15] | FR2PAttU-Net 0.948 0.911 0.930

2.5 Conclusion

This chapter has traced the evolution of some representation kidney tumor
segmentation techniques. There is a transition from early manual and classical im-
age processing techniques to machine learning techniques, and in particular there
is a lack of research on kidney and tumor segmentation in the latest deep learning
architectures. We highlight the limitations of hand-crafted features and shallow
models in handling anatomical variability, low contrast, and class imbalance. This
motivates the shift toward end-to-end architectures. Key advances in UNet and
its volumetric and residual variables laid the groundwork for attention-enhanced
networks, which use attention gates to focus on salient regions and eliminate back-
ground noise. We reviewed the Attention UNets design, as well as subsequent
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extensions like R2UNet and FR2PAtUNet, noting how each builds on skip con-
nections, recurrent and residual blocks, and fuzzy enhancement preprocessing to
improve Dice scores on the KiT519 benchmark. Finally, we discuss complex chal-

lenges such as the small amount of labelled data, high computational cost, and the
need for strong clinical validation.
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Chapter 3

Implementation

3.1 Introduction

In this chapter, we detail the practical implementation of our attention-powered
U-Net framework for kidney tumor segmentation. We begin by describing the com-
putational environment and software libraries used, followed by the presentation of
the KiTS19 dataset and the steps taken to preprocess the CT volumes into suitable
2D slices. Next, we define the evaluation metrics used to quantify segmentation
performance. We then outline the network architecture in full, highlighting how
attention gates are integrated into the classic U-Net structure, and summarize our
training configuration, including hyperparameters and callbacks. Finally, we report
the results obtained during both training and validation.

3.2 Implementation Setup

3.2.1 Environment

To test and validate our implementation, we chose a special working environ-
ment. We utilized Kaggle as a platform for data analytics, leveraging a high-level
neural network API written in Python that offers pre-configured notebooks with
open-source datasets and GPU/CPU options. Furthermore, we utilized Tensor-
Flow as the development framework, an open-source DL framework designed for
numerical computation.

Python': Python is a popular high-level programming language widely used
for scientific computing, web development, data analysis, and artificial intelligence.
It was created in the late 1980s by Guido van Rossum and released in 1991. Python
has become one of the most popular programming languages worldwide due to its
simplicity, readability, and versatility.

Numpy(Numerical Python): This is a fundamental Python library used for
numerical computing. It supports large, multidimensional arrays and matrices,
along with a collection of high-level mathematical functions to operate on these

lhttps://www.python.org/
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arrays. NumPy is essential for performing mathematical operations, such as lin-
ear algebra, Fourier transformations, and random number generation. It serves as
the foundation for many other scientific computing libraries, including SciPy and
Pandas.

Matplotlib: Is a popular Python library used for creating static, interactive,
and animated visualizations. It provides an extensive collection of plotting functions
and tools, enabling users to generate a wide range of charts, graphs, and plots,
including line plots, bar charts, histograms, scatter plots, and more. Matplotlib is
highly customizable and is often used for data visualization in scientific, statistical,
and engineering applications. It integrates well with other libraries like NumPy and
Pandas to visualize results.

TensorFlow?: It is an open-source machine learning framework and library
developed by Google for building, training, and deploying machine learning (ML)
and deep learning (DL) models. It provides a wide range of tools, libraries, and APIs
to help developers and researchers create neural networks and other machine learn-
ing (ML) models for tasks such as image recognition, natural language processing
(NLP), and time series prediction.

Kaggle: It is a global platform and community of data scientists and ma-
chine learning practitioners from diverse backgrounds and skill levels. It provides a
space for collaboration, learning, and competition in the fields of data science and
machine learning. Kaggle facilitates learning, experimentation, and model develop-
ment by hosting competitions, providing datasets, and utilizing various notebooks
and codes to help users learn, experiment, and develop models. The platform em-
phasizes the value of diversity and believes that embracing differences strengthens
the community, fostering innovation in data science and machine learning.

3.2.2 Dataset

In this work, we used the 2019 edition of the Kidney Tumor Segmentation Chal-
lenge (KiTS19® database to do our experiment. The main goal of this challenge is
to advance the research of kidney tumor segmentation and improve the diagnosis
and treatment of patients with renal cancer. It consists of 300 contrast-enhanced
CT scans and contains data from 210 patients where both image and ground truth
labels were provided in an anonymized NIFTI (Neuroimaging Informatics Technol-
ogy Initiative) format with shape (num_ slices, height, width), along with 90 unseen
test cases.

3.2.3 Data Pre-processing

To preprocess the KiTS519 dataset, we choose to work with 2D images, so
we had to convert from the 3D format and save each slice (image) as an array
using the NumPy package in Python. They are an efficient way to store and load
NumPy arrays, which are the backbone of scientific computing and machine learning
in Python. The dataset comprises 210 cases, with each case featuring three main

*https://github.com/tensorflow/tensorflow
Shttps://kits19.grand-challenge.org/data/
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images. The first is a CT scan image, the second is a labeled mask for the kidney, and
the third contains tumor masks. The next step is to resize the image. The original
size was 512x512, so we downsized it to 128x128 due to memory limitations. This
was necessary because our available hardware was unable to process or compress
full-resolution images, which would have increased training time.

Also a very important step is to remove all irrelevant slices and keep only the
ones that are related to kidney or tumor. In the final step we compressed all the
images into a single file called "image.npz’, all the kidney mask image into a single
file called "ykid.npz", and all the kidney tumor mask images into a single file called
"ytum.npz' the Figure 3.1 below shows the pre-process pipeline.

Resize(512*512,128%128)| —— | Remove_irrelevant() | ——| Image.npz

(- ;AR
i,
T s
o

- + | Resize(512%512,128*%128) » | Remove_irrelevant() » | v _kiden.npz
‘-—P Resize(512%512,128*%128)| —— | Remove_irrelevant() | —— | y_tumernpz

Figure 3.1: Pre-process image pipeline.

KiTS19

3.2.4 Ewaluation Metric

As proposed by the challenge organizers, we used the most common evaluation
metrics for image segmentation, The quality of the output image segmentation was
evaluated with the Dice Similarity Coeflicient (Eq. 3.1) computed on the tumor
and kidneys, considered a single entity, and on the tumor as a standalone object.
Both structures segmented with our method (Spr) were compared with the ground
truth segmentations (Sgr) provided.

2 |Ser M Spy|

(3.1)

|Ser

3.3 Architecture

To train our models, we worked on attention U-Net architecture for its high
performance when it comes to medical image segmentation. The implemented model
architecture follows an Attention U-Net (Figure 2.1) structure.

The encoder path progressively captures spatial information and compresses
it into deeper semantic representations, while the decoder path restores the spa-
tial dimensions using upsampling and attention mechanisms to emphasize relevant
features.

Attention gates are integrated at each skip connection to highlight tumor re-
gions and suppress irrelevant background features, enhancing segmentation accu-
racy.
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3.3.1 Training settings and results

Properties

Kidney model Values

Kidney Tumor Values

Number of all images 16293

16293

Number of training images 13056 13034
Number of validation images | 3237 3259
Image format npy(NumPy array file) | npy(NumPy array file)
Modality CT OT

Table 3.1: Dataset properties used for the experimentation.
Hyperparameter | Kidney model Settings Kidney Tumor model Settings
Activation Sigmoid Sigmoid
Optimizer Adam Adam
Learning rate 0.001 0.001
Batch size 32 1
Epochs 25 4
Metries Dice Similarity Coeflicient(DSC) | Dice Similarity Coefficient(DSC)
Input images size | 128%128 128%128

Table 3.2: Model's hyperparameter setup.

3.3.2 Ewvaluation Results

U-MNet

Att U-Net

Ouer implement

W Kidney Dice mTumor Dice m Composite score

Figure 3.2: Evaluation results for kidney and kidney tumor segmentation models.
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The reason for implementing into two model because each model has a different
hyperparameter. With the above configuration shown in Tables 3.1 and 3.2, we ob-
tained the results expressed in Tabel 77 on 80% for training and 20% for validation.
We obtained a Dice score of 0.85% and 0.70% for kidney and tumor (Figure 3.3 and
3.4), respectively. .

Training and Validation Loss
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Figure 3.3: Evaluation results for kidney and kidney tumor segmentation models.

Training and Validation Loss

0.34 1
0.33 1
w — Training Loss
L5
9 0.32 — Validation Loss
0.31 A
0.30 1

0.0 0.5 1.0 1.5 2.0 L 3.0
Epochs

Figure 3.4: Evaluation of the tumor segmentation model.
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3.4 Discussion

The baseline U-INet architecture has long been a standard in medical image
segmentation due to its encoder-decoder design and skip connections that help retain
spatial features. However, it has notable limitations when dealing with complex
structures such as kidney tumors, especially in low-contrast or irregular shapes.

Our method is based on the same dataset (KiTS19) as U-Net, ResU-Net, AttU-
Net, R2U-Net, and FR2PAtt-U-Net. We employed the Attention U-Net, which
incorporates attention gates (AGs) into the standard U-Net framework. This en-
hancement allows the model to selectively focus on more relevant spatial regions
and suppress background noise.

From the evaluation results in Table 77, the Attention U-Net achieved a Dice
score of 0.8595 for kidneys and 0.7027 for tumors. In contrast, as reported in
Table 2.1, the standard U-Net achieved only 0.482 for kidney and 0.444 for tumor
segmentation. In this case, our approach outperforms U-Net, ResU-Net, AttU-Net,
and R2U-Net. However, our tumor Dice score is still about 0.3% lower than some
of the more complex models, such as FR2PAttU-Net, suggesting room for further
improvement in tumor detection performance.

3.5 Conclusion

In this chapter, we presented the implementation and evaluation of a kidney
and tumor segmentation model based on the Attention U-Net architecture. The
integration of attention gates enabled the network to focus on critical areas in CT
images, leading to more accurate segmentation results. Compared to the stan-
dard U-Net, our model showed significant improvements: the kidney Dice score
increased from (.482 to 0.8595, and the tumor Dice improved from (.444 to 0.7027.
This confirms the effectiveness of both the attention mechanism and our tailored
preprocessing pipeline.

While these results are promising, further enhancements, such as deeper archi-
tectures, 3D context modeling, or multi-model data integration, may help bridge
the gap with top-performing models in tumor segmentation.
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Conclusion and Perspectives

In this thesis, we presented a deep learning-based approach for automated
kidney tumor segmentation using the Attention U-Net architecture. By incorpo-
rating attention gates into the conventional U-Net framework, our model was able
to selectively focus on the most relevant regions within CT images, enhancing both
the precision and reliability ol segmentation results. Our implementation on the
KiTS19 dataset demonstrated strong performance, achieving Dice scores of 0.85%
for kidney and 0.70% for tumor segmentation, which indicates the effectiveness of
our pre-processing strategy and model architecture. Compared to baseline mod-
els such as standard U-Net and ResU-Net, our method provided a more accurate
delineation of kidney structures, particularly in challenging scenarios involving am-
biguous boundaries or class imbalance. The inclusion of attention mechanisms sig-
nificantly contributed to this improvement by suppressing irrelevant background
noise and refining feature localization.

Despite the encouraging results, several areas remain that could be improved
and enhanced in the future. Firstly, extending the model to operate on complete
3D volumes rather than 2D slices could provide richer spatial context and improve
segmentation accuracy, especially for irregular or small tumors. Additionally, inte-
grating multimodal imaging data, such as MRI, alongside C'T' may provide comple-
mentary information and enhance the models robustness. Exploring more advanced
attention-based architectures or transformer models may also yield additional per-
formance gains. From a practical standpoint, incorporating uncertainty estimation
would enhance the interpretability and reliability of the model in clinical settings,
allowing radiologists to gauge confidence in automated predictions. Moreover, do-
main adaptation techniques should be considered to ensure the model generalizes
well across different hospitals, scanner types, and patient populations. In conclusion,
the Attention U-Net architecture provides a promising foundation for automated
kidney tumor segmentation, with strong potential to support enhanced diagnostic
workflows and treatment planning in real-world clinical applications.

35



Bibliography

1]

2

&l

4

5]

6]

7]

8]

9]

Abubaker Abdelrahman and Serestina Viriri. Kidney tumor semantic segmen-
tation using deep learning: A survey of state-of-the-art. Journal of imaging, 8

(3):55, 2022.

Andriy Myronenko and Ali Hatamizadeh. 3d kidneys and kidney tu-
mor semantic segmentation using boundary-aware networks. arXiv preprint

arXiv:1908. 06684, 2019.

Helena R Torres, Sandro Queiros, Pedro Morais, Bruno Oliveira, Jaime C
Fonseca, and Joao L Vilaca. Kidney segmentation in ultrasound, magnetic
resonance and computed tomography images: A systematic review. Computer
methods and programs in biomedicine, 157:49--67, 2018.

Vinorth Varatharasan, Hyo-Sang Shin, Antonios Tsourdos, and Nick Colosimo.
Improving learning effectiveness for object detection and classification in clut-
tered backgrounds. In 2019 Workshop on Research, Education and Develop-
ment of Unmanned Aerial Systems (RED UAS), pages 78--85. IEEE, 2019.

Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr
Dollar. Panoptic segmentation. In 2019 IEEE/CVF Conference on Computer
Vision and Patlern Recognition (CVEPR). IEEE, June 2019. doi: 10.1109/cvpr.
2019.00963. URL http://dx.doi.org/10.1109/CVPR.2019.00963.

Sumit Saha. A comprehensive guide to convolutional neural networksthe eli
way. Towards data science, 15:15, 2018.

Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy.
Deep learning techniques for medical image segmentation: achievements and
challenges. Journal of digital imaging, 32:582--596, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira, C.].
Burges, L. Bottou, and K.(Q). Weinberger, editors, Advances in Neu-
ral Information Processing Syslems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper . pdf.

Olal Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical image computing and
computer-assisted inlervention-MICCAT 2015: 18th inlernational conference,
Munich, Germany, October 5-9, 2015, proceedings, part Il 18, pages 234--241.

Springer, 2015.

36



Bibliography

110}

[11]

[12]

20}

[21]

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully con-
volutional neural networks for volumetric medical image segmentation. In 2016
fourth international conference on 3D vision (3DV), pages 565--571. Ieee, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770--778, 2016.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich,
Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bern-

hard Kainz, et al. Attention u-net: Learning where to look for the pancreas.
arXiv preprint arXiv:1804.05999, 2018.

otetan Bauer, Roland Wiest, Lutz-P Nolte, and Mauricio Reyes. A survey of
mri-based medical image analysis for brain tumor studies. Physics in Medicine

& Biology, 58(13):R97, 2013.

Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M Taha, and Vi-
javan K Asari. Recurrent residual convolutional neural network based on u-net
(r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955,

2018.

Peng Sun, Zengnan Mo, Fangrong Hu, Fang Liu, Taiping Mo, Yewei Zhang, and
Zhencheng Chen. Kidney tumor segmentation based on {r2pattu-net model.
Frontiers in Oncology, 12:853281, 2022.

Ravinder Kaur and Mamta Juneja. A survey of kidney segmentation techniques
in ¢t images. Current Medical Imaging Reviews, 14(2):238--250, 2018.

Nicholas Heller, Niranjan J Sathianathen, Anirban Kalapara, Erik Walczak,
Kyle Moore, Henryk Kaluzniak, Jonathan Rosenberg, Patrick Blake, Zachary
Rengel, Michael Oestreich, et al. The kitsl9 challenge data: Kidney tumor
segmentation 2019. arXiv preprint arXiv:1904.00445, 2019. URL https://
kits19.grand-challenge.org/.

Loren Lipworth, Robert E Tarone, Lars Lund, and Joseph K McLaughlin.
Epidemiologic characteristics and risk factors for renal cell cancer. Clinical

epidemiology, pages 33--43, 2009.

Kai Chen, Jiangmiao Pang, Jiagi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun,
Wansen Feng, Ziwel Liu, Jianping Shi, Wanli Ouvang, et al. Hybrid task
cascade for instance segmentation. In Proceedings of the IEEE/CVE conference
on computer vision and patiern recognition, pages 4974--4983, 2019.

Benjamin Cheong, Raja Muthupillai, Mario F Rubin, and Scott D Flamm.
Normal values for renal length and volume as measured by magnetic resonance
imaging. Clinical journal of the American Society of Nephrology, 2(1):38--45,
2007.

Wentao Zhu, Yutang Huang, Liang Zeng, Xuming Chen, Yong Liu, Zhen Qian,
Nan Du, Wei Fan, and Xiaohui Xie. Anatomynet: deep learning for fast and
fully automated whole-volume segmentation of head and neck anatomy. Medical

physics, 46(2):576--589, 2019.

37



Bibliography

22}

23]

[24]

[25]

26

[27]

28]

[29]

[30]

[31]

132}

[33]

[34]

(eert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
setio, Francesco Ciompi, Mohsen (Ghaloorian, Jeroen Awm Van Der Laak,
Bram Van Ginneken, and Clara [ Sanchez. A survey on deep learning in
medical image analysis. Medical image analysis, 42:60--88, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiw:1409.1556, 2014.

Philipp Krédhenbiihl and Vladlen Koltun. Efficient inference in fully connected
crfs with gaussian edge potentials. Advances in neural information processing
systems, 24, 2011.

S Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S Duncan, Bram
Van Ginneken, Anant Madabhushi, Jerry L Prince, Daniel Rueckert, and
Ronald M Summers. A review of deep learning in medical imaging: Imag-
ing traits, technology trends, case studies with progress highlights, and future

promises. Proceedings of the IEEE, 109(5):820--838, 2021.

Dan Ciresan, Alessandro Giusti, Luca Gambardella, and Jiirgen Schmidhuber.
Deep neural networks segment neuronal membranes in electron microscopy
images. Advances in neural information processing systems, 25, 2012.

Han Wu, Shengqi Yang, Zhangqin Huang, Jian He, and Xiaoyi Wang. Type
2 diabetes mellitus prediction model based on data mining. Informatics in
Medicine Unlocked, 10:100--107, 2018.

Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more in-

formative than the roc plot when evaluating binary classifiers on imbalanced
datasets. PloS one, 10(3):e0118432, 2015.

Kaitlin Kirasich, Trace Smith, and Bivin Sadler. Random forest vs logistic
regression: binary classification for heterogeneous datasets. SMU Data Science

Review, 1(3):9, 2018.

Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image
segmentation: analysis, selection, and tool. BMC medical imaging, 15:1--28,
2015.

Yutaka Sasaki et al. The truth of the fmeasure. Teach tutor mater, 1(5):1--5,
2007.
Vanderson Dill, Alexandre Rosa Franco, and Mércio Sarroglia Pinho. Auto-

mated methods for hippocampus segmentation: the evolution and a review of
the state of the art. Neuroinformatics, 13:133--150, 2015.

Ravinder Kaur, Mamta Juneja, and Arup Kumar Mandal. A hybrid edge-based

technique for segmentation of renal lesions in ct images. Multimedia Tools and
Applications, 78:12917--12937, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-

volutional neural networks. In Iniernational conference on machine learning,
pages 6105--6114. PMLR, 2019.

38



Bibliography

[35]

[36]

137]

[38]

[39]

140}

[41]

142}

[43]

[44]

45]

|46

147]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3751,

2013.

Jeflrey Pennington, Richard Socher, and Christopher D Manning. Glove:
(Global vectors for word representation. In Proceedings of the 2014 confer-
ence on empirical methods in naetural language processing (EMNLP), pages

1532--1543, 2014.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20:273--297, 1995.

Hamed Akbari and Baowel Fei. Automatic 3d segmentation of the kidney in
mr images using wavelet feature extraction and probability shape model. In

Proceedings of SPIE, volume 8314, page 83143D, 2013.

Farzad Vasheghani Farahani, Abbas Ahmadi, and Mohammad Hossein Fazel
Zarandi. Hybrid intelligent approach for diagnosis of the lung nodule from ct
images using spatial kernelized fuzzy c-means and ensemble learning. Mathe-
matics and Computers in Simulation, 149:48--68, 2018.

Bansari shah, Charmi Sawla, Shraddha Bhanushali, and Poonam Bhogale.
Kidney tumor segmentation and classification on abdominal ct scans. Interna-
tional Journal of Computer Applications, 164(9):1--5, 2017.

J Prasad, S Chakravarty, and M Vamsi Krishna. Lung cancer detection using
an integration of fuzzy k-means clustering and deep learning techniques for ct
lung images. Bulletin of the Polish Academy of Sciences Technical Sciences,

pages e139006—e139006, 2022.

Beanbonyka Rim, Sungjin Lee, Ahyoung Lee, Hyo-Wook (il, and Min Hong.
Semantic cardiac segmentation in chest ¢t images using k-means clustering and
the mathematical morphology method. Sensors, 21(8):2675, 2021.

Ponuku Sarah, Srigiri Krishnapriya, Saritha Saladi, Yepuganti Karuna, and
Durga Prasad Bavirisetti. A novel approach to brain tumor detection using

k-means++, sgldm, resnetb0, and synthetic data augmentation. Frontiers in
Phystology, 15:1342572, 2024.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognilion, pages 6077—-6086, 2018.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Re-
current models of visual attention. Advances in neural information processing
systems, 27, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0475, 2014.

39



Bibliography

48] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on compuler vision and pattern recognition, pages

7132--7141, 2018.

40



A il dgdal jaasall 4 5 jall 4y ) seaadl

——adall Songll g bl o bl 5 )1 5
s ye dada

L b i€l o shall &€
S aNe Yy il M a8

09-07- 2025 : il e

st ple] rdgad
ol jlaad) o Al ApSal Ay 1 auadl

R

2 il ke g AT § S el oy puadl iyl b

Attention-Powered U-Net for Kidney Tumor Segmentation

() I )
G dieland ol -

sl Jaaa 9390 -

30-06- 2025 7 )% Ldé g Al

o5 28 5 A58 Aaad B sk (e & glhal) sl s G el | a8 o8 Al lUall o agdd
Agslladl b g pal) avan b giaad 385 U e @l (e (3B




