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ڲــــڪــــٌـــۘ

ا௱௯௫ڎود و਍ಾި؜۳؇ ؇ዛኤ؇ਊುو ا৙৑ذن ଩ଃࡺ࢘ࢦ َޙݠاً ا૭૙৕৑؇ن، ل۰ ި۱ ܳٺ༲ڎࢴࣖ وا༟ڎة ዛዊᆇᅒ۠٭۰ ఋዳዧذن ل۰ اࠍ੆٭ި اܳگ٭؇ݿ؇ت ّگٷ٭۰ ߓߵزت
৖৑ اܳأ݄٭ݑ، اܳٺأ޺޾ ّگٷ٭؇ت ً؇ݿٺ༱ڎام ا৙৑ذن আॻ༟ اܳٺأݠف أَޙ۰݄ أداء ඔ൹ފොູ আॻ༟ ᄭᄟ؇ීݿෂا ۱ڍه ஼ߵணߙ اܳިڢب. ஓ୾ݠور
ResNet50 ྲྀྡྷ٭۰ وݪٴޔ ਍ಾڰ٭ڍ اৎ৊گଫଐح اዛዊܳھ ਐಱݯ݄݆ اܳٺఈఃڣ٭ڰ٭۰. اܳأݱྟ٭۰ اܳލٴႤၽت ݆݁ ا৖৑ݿٺڰ؇دة ఈః༠ل ݆݁ ؇ಣಈᕬ
أݿ؇ܳ٭ص ّޚُٴݑ .۰༟ި݁ٺٷ ووݪأ٭؇ت ޖݠوف ሒᇭ ܹ݁ٺگޚ۰ أذن ݬިر আॻ༟ ොູٺިي มฆܳا Ear، AMI ਃಸ؇َ؇ت ۰༟ިᆇ୞୘ ً؇ݿٺ༱ڎام
اࠍ੅ݱ؇فݧ ؕ݁ ይዧٺܝ٭ژ دڢ٭ݑ ݪٴޔ ؕ݁ ೞಱاܳٺڎر و෠ຬُݠى اࡺ࢕ࢦިذج، ݁ٺ؇۰َ ܳٺأݞߌ߳ ل؇دة ෑෂوا ይዧٴ٭؇َ؇ت اৎ৊ފٴگ۰ ۰੊أ؇ࠍৎ৊ا
ይዧٺأݠف، ො੼ފٷً؇ ً أداء ොຬگݑ ResNet50 আॻ༟ ቕሶ؇اܳگ ا௰௯௫ٺ؇ر اࡺ࢕ࢦިذج أن اܳٺ۠ݠ཯ྟ٭۰ ༇຀؇اܳٷٺ ༃وّިࡵ ا৙৑ذن. ܳݱިر ا௱௯௫ڎد
ሒᇭ اܳأ݄٭گ۰ اܳٺఈఃڣ٭ڰ٭۰ ஓ஁؇ذج إႤၽَ݁؇ت اܳأ݄ܭ ۱ڍا لޙ۳ُݠ اܳފ؇ًگ۰. اܳޚݠق আॻ༟ ݁ٺڰިڢً؇ % 99 .29 دڢ۰ ሌᇿإ لݱܭ ۋ٭ت
اܳݯ۰݄ۛ، اܳٴ٭؇َ؇ت و༟ިᆇ୞୘؇ت اৎ৊ލ؇۱ڎ، ݁ٺأڎد ༇ံᄴፁዧ ݁ފٺگٴܹ٭۰ ܳٺޚٴ٭گ؇ت لݑ اܳޚݠ ۳ஓُڎّ ୷و ఋዳዧذن، ل۰ اࠍ੆٭ި اܳگ٭؇ݿ؇ت

اරඝ৙৑ى. ل۰ اࠍ੆٭ި اܳگ٭؇ݿ؇ت ᆙᆊ؇ت ؕ݁ ۰෠੼ڎৎ৊ا واܳިݿ؇فޔ

۰༟ިᆇ୞୘ ، ResNet50 ، اܳٺఈఃڣ٭ڰ٭۰ اܳأݱྟ٭۰ اܳލٴႤၽت اܳأ݄٭ݑ، اܳٺأ޺޾ ل۰، اࠍ੆٭ި ا৙৑ذن ڢ٭؇ݿ؇ت ڲء׫ոؼמ١: ոஈ࿦྾ت
ا๤དྷྟܳل۰. ل۰ ިୖ୒ا ොູڎࢴࣖ , ل۰ اࠍ੆٭ި اܳگ٭؇ݿ؇ت আॻ༟ اܳٺأݠف ، AMI ا৙৑ذن ਃಸ؇َ؇ت



Abstract

Ear biometrics has risen as a promising methodology for human identification,
due to the ear’s uniqueness, permanence, and constrained variability over time.
This thesis centers on enhancing ear recognition systems utilizing deep learning
techniques, particularly by leveraging convolutional neural networks. The proposed
approach includes implementing and fine-tuning the ResNet50 architecture utilizing
the AMI Ear dataset, which contains ear images captured under diverse conditions
and postures. Data preprocessing and augmentation methods are applied
to enhance model robustness, and training is conducted with careful tuning
to adapt to the specific characteristics of ear pictures. The experimental
results demonstrate that the proposed ResNet50-based model achieves improved
recognition performance, reaching an accuracy of 99.29%, outperforming previous
methods. This work demonstrates the potential for deep convolutional models in
ear biometrics and sets the stage for future applications of multi-view fusion, large
datasets, and combined modalities with other biometric traits.

Keywords: Ear Biometrics, Deep Learning, Convolutional Neural
Networks(CNNs), ResNet50, AMI Ear Dataset, Biometric Recognition, Human
Identification.



Résumé

La biométrie auriculaire s’est imposée comme une méthodologie prometteuse pour
l’identification humaine, en raison de son caractère unique, de sa permanence et
de sa variabilité limitée dans le temps. Cette thèse se concentre sur l’amélioration
des systèmes de reconnaissance auriculaire grâce à des techniques d’apprentissage
profond, notamment en exploitant les réseaux de neurones convolutifs. L’approche
proposée comprend la mise en œuvre et le perfectionnement de l’architecture
ResNet50 à l’aide du jeu de données AMI Ear, qui contient des images d’oreilles
capturées dans diverses conditions et postures. Des méthodes de prétraitement
et d’augmentation des données sont appliquées pour améliorer la robustesse du
modèle, et l’apprentissage est réalisé avec un réglage précis pour s’adapter aux
caractéristiques spécifiques des images d’oreilles. Les résultats expérimentaux
démontrent que le modèle choisi basé sur ResNet50 atteint des performances
de reconnaissance améliorées, atteignant une précision de 99,29%, surpassant les
méthodes précédentes. Ces travaux démontrent le potentiel des modèles convolutifs
profonds en biométrie auriculaire et ouvrent la voie à de futures applications de
fusion multi-vues, de grands ensembles de données et de modalités combinées avec
d’autres caractéristiques biométriques.

Mots clés: Biométrie auriculaire, apprentissage profond, réseaux de neurones
convolutifs, ResNet50, jeu de données auriculaires AMI, reconnaissance
biométrique, Identification humaine.
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Introduction

Biometrics play a significant part in cybersecurity by verifying identity through
one-of-a-kind physical and behavioral characteristics, offering one of the most
precise and promising verification solutions. These systems are increasingly
replacing conventional strategies, such as smart cards and keys, especially in
high-security situations. In any case, no single biometric method is generally
successful, as each has its qualities and limitations. Common strategies incorporate
fingerprint recognition, facial recognition, iris scanning, voice recognition, and
Deoxyribonucleic Acid (DNA) investigation.

In 1890, Alphonse Bertillon recognized the potential of the human ear for
identification. Even though it has gotten little attention compared to other
biometric strategies, the ear is remarkably stable and distinctive, its measurements
remaining steady from birth until roughly the age of eight, with gradual enlargement
occurring later in life. Despite challenges such as hair, jewelry, and changing image
angles, the stability of the ear’s position and structure makes it more reliable
than fingerprints, requiring no user intervention. Its larger size also simplifies
the identification process. However, deep learning models still have trouble with
real-world variables, making it difficult to generalize across datasets and reducing
the accuracy of earprint recognition.

The motivation for this research stems from the increasing demand for secure,
non-intrusive, and reliable biometric systems - especially post-pandemic - There
is a pressing need to address the limitations of current systems; ear biometrics
holds incredible potential for applications in security, surveillance, and scientific
examinations due to its capacity to capture pictures remotely. Using advanced
neural networks (CNNs) and improving feature extraction techniques, this research
aims to contribute to the growing field of biometric authentication and enhance the
applicability of ear biometrics in the security-related domain.

Although biometric recognition systems have made significant progress, the
field of ear biometrics remains relatively underdeveloped. Most existing approaches
to ear print recognition still face challenges related to variations in lighting,
head orientation, and image quality, which pose an obstacle to a good accuracy.
Therefore, the central problem addressed in this thesis is: How can the recognition
accuracy and reliability of ear print biometrics be enhanced using advanced deep
learning techniques such as convolutional neural networks (CNNs)?

This thesis offers a few key contributions to the field of ear biometric
recognition. First, it proposes an optimized, deep learning-based system for
earprint recognition, focusing on improving model robustness and accuracy. It
explores advanced feature extraction and data augmentation techniques to enhance

1



recognition performance within the AMI ear dataset. We suggest a system for
ear print recognition that is based on supervised machine learning, especially deep
learning. By utilizing neural networks with multiple layers, deep learning models
can extract complex features from visual data, leading to remarkable accuracy in
various domains.

We chose to articulate our study around four main chapters :

1. The first chapter is dedicated to the work background, we will see an
overview, definition and importance of biometrics in security and forensics, common
biometric traits (fingerprints, iris, face, ear, etc.), advantages of ear prints over other
biometric traits, stability and uniqueness of ear prints, some Key deep learning
models for image recognition and applications of deep learning in ear recognition
systems.

2. The second chapter is specified for the State of the art, it contains the
advancement of techniques utilized in ear recognition, discusses their advantages
and limitations, and reviews the current research within this context.

3. The third chapter, which is called “System Design and Methodology”,
contains the scope of the ear print recognition system, an overview of the
Dataset Collection and Preprocessing, also talks about Model Selection, System
Architecture, and the Implementation Framework.

4. The fourth and final chapter, “Results and Evaluation”, will present the
training and optimization of the model, performance evaluation, and finally testing
and validation.

2



Chapter 1

Background

1.1 Introduction

Biometric systems are automated techniques for identifying or authenticating
people based on personal characteristics that are directly related to who they are. A
system gathers each person’s unique biometric traits, and then directly links them
to confirm or identify the person. What reaffirmed the significance of biometrics in
modern society is the necessity for large identity management systems that function
depends on the precise identification of an individual in the context of several
applications. We begin this chapter by introducing some fundamental concepts
and terms related to biometrics and the ear recognition among the other biometric
techniques. Next, we see a comparative advantages of ear prints in biometric
systems, stability and uniqueness of ear prints and its accuracy. Finally, the
chapter focuses on Deep learning in Biometric Recognition and the presentation of
Convolutional Neural Networks (CNNs) and their relevance to ear print recognition.

1.2 Biometrics

1.2.1 Definition

Biometrics is generally understood as the science that deals with identifying
people based on their physical or behavioral traits. When it comes to biometric
recognition, it refers more specifically to the use of technology to automatically
recognize individuals by analyzing distinctive features that can be measured and
repeated reliably.

Biometric features are typically classified into two broad categories:
Physiological biometrics and behavioral biometrics [25].

1. Physiological Biometrics
These characteristics are taken from the physical characteristics of the human
body. They can be further divided into:

• Morphological features: They include fingerprints, hand geometry, face
appearance, finger vein patterns, and iris or retina patterns.

3



Chapter 1. Background

• Biological attributes: Attributes like DNA, blood type, or other
molecular attributes are included in this category.

2. Behavioral Biometrics
These traits are related to human behavior and activity patterns. Some
common examples include voice recognition, signature dynamics, typing
rhythm (keystroke dynamics), and gait analysis.

However, the different sorts of measurements do not all have the same level of
reliability. Physiological measurements usually offer the benefit of remaining more
stable throughout an individual’s life. For example, they are not subject to stress,
in contrast to identification by behavioral measurement.

Figure 1.1 represents the different types of biometric features, including
physiological and behavioral traits, commonly used in recognition systems.

Figure 1.1: Types of Biometrics

1.2.2 History of biometrics

The Chinese emperor Ts’In She was already using fingerprints to verify certain
seals in the second century B.C. In 1858, British administrator William James
Herschel utilized fingerprints for the first time in a business context in India. He
had his subcontractors sign contracts with their fingers after being assigned to build
roads in Bengal. Bertillon, a French police officer, developed scientific policing at
the close of the 1800s. In order to identify persistent criminals, he employed physical
measures of particular anatomical traits, which often worked [53].

• This procedure was started in 1888 by the French police in Paris (préfecture
de police) through their Forensic Identification Unit (anthropometry and mug
photo). In 1894, four prints were established, and in 1904, ten prints were
added.

• In 1901, the Metropolitan Police in the United Kingdom began utilizing
biometrics for identification.

4



Chapter 1. Background

• It was started in the United States by the FBI in 1924 and the New York
police in 1902.

The measurement of unique patterns (behavioral biometrics) is not a new concept
and it goes back to the 1860s. Telegraph operators using Morse code could recognize
each other by sending dash and dot signals. This technique was later employed
by Allied troops during World War II to identify senders and authentication
messages they received. This process of identifying an individual based on specific
characteristics forms the fundamental principle of biometric systems [53].

1.2.3 Operational Modes of a Biometric System

There are three fundamental modes of operation used by biometric systems to
both establish and authenticate individual identities [42]:

• Enrollment: The first phase entails the acquisition of a person’s biometric
features, for instance, ear images, which are processed to form a reference
template to be kept in the system database.

• Verification: In this mode, the system compares freshly acquired biometric
data to the stored template in order to confirm the claimed identity of an
individual on a one-to-one match basis.

• Identification: In this case, the system compares the acquired biometric
information with a number of templates in the database to verify the subject
individual’s identity without a prior assertion, on a one-to-many matching
basis.

1.2.4 Working Principle of Biometric Systems

A biometric system uses an individual’s collected biometric data, from which
a special algorithm extracts characteristics to create a biometric template. After
that, the system can use the biometric database to confirm the user’s identification.
It can compare hundreds of millions of biometric data in the database in only one
second [24] [23].

Here’s a simple breakdown of how biometric systems function:

• Capture - Biometric software, such as face recognition, captures the biological
input provided by a user (like a face scan) – usually by prompting them to
take a selfie [24].

• Template creation - The software measures the captured input to create a
baseline data template. The biometric template is a digital representation of
the distinctive characteristics extracted from a person’s biometric data (such
as facial features, voice, or iris patterns).

• Data storage – The biometric template is not a raw image or recording
but a mathematical model that encodes the essential data points needed
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for comparison and verification. The template stored either on the device’s
internal hardware or in a secure cloud platform.

• Matching - During subsequent use, the new biometric template is compared
to the stored template. If the data matches, access is granted. Otherwise,
access is denied [23].

figure1.2 below represents the biometric recognition process, showing how input
data is enrolled, stored, and later matched during authentication.

Figure 1.2: General Architecture of a Biometric System

1.2.5 Key Characteristics of Biometric Traits

Biometric systems depend on some inherent characteristics of human traits to
be able to work effectively. These are:

• Universality – This quality must be found in all people.

• Uniqueness – There cannot be two individuals with the identical
characteristic.

• Permanence – This attribute should stay relatively stable over time.

• Measurability – The attribute should be measurable in a manner such that
it can be recognized [55].

Other real-world implications include being able to measure the trait in a reliable
fashion, and to resist spoofing or forgery.

1.2.6 Advantages and Disadvantages of Biometric
authentication

Biometric authentication presents both strengths and limitations, which are
outlined below.
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Advantages of Biometric Authentication

• Enhanced security and reliability: Biometric systems are
more secure. due to their unique physiological or behavioral
traits, which results in challenging for identity credential forgery
or theft.

• Efficiency of user experience: As opposed to the complexity
involved within biometric systems, the intrinsic nature of the
algorithms used generally favors an efficient and easily accessible
user interface.

• Non-transferable: The biometric features, being unique in
nature, cannot be shared or transferred like passwords or ID
cards.

• Scalable systems: Biometric systems can be applied to a vast
array of applications and populations, and they have been found
to be extremely effective when it comes to scalability, particularly
when implemented in networked or cloud setups [23].

Weaknesses of Biometric Authentication

• High implementation cost: The process of implementing
biometric infrastructure, like sensors, software, and interfaces to
install infrastructure, can be expensive.

• Privacy Concerns: The acquisition and storage of biometric
data bring up severe ethical and legal questions regarding user
privacy, especially when the data are stored in a centralized
database.

• Susceptibility to bias: Regardless of the natural objectivity
of biometric systems, mistakes may arise due to anomalous
sets of data, defective sensors, or design issues in algorithmic
structures, and this can produce inconsistent performance on
different demographic populations [23].

1.2.7 Applications of Biometrics

Today, there are a huge number of applications and services that
utilize biometric technology. Here are some common examples of how
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people interact with physiological and behavioral biometrics in their
daily lives:

• Personal hardware: Mobile phones, laptops, PCs, and tablets
often enable fingerprint or facial recognition to unlock the device
[24].

• Financial transactions: Payments like wire transfers frequently
require identity verification through biometrics and/or
cloud-based biometrics for secure access [8].

• Healthcare: Biometric authentication helps healthcare providers
manage patient records securely and prevent unauthorized access
to sensitive information [35].

• Airports: Many modern airports use facial recognition to
expedite passenger processing. Travelers can enroll by having a
photo of their eyes and face captured, allowing faster movement
through queues [23].

• Entertainment venues: Stadiums and other venues are beginning
to offer ticketless access using face biometrics [32].

• Secured physical access: Biometrics are replacing key cards and
PIN entries as a more secure and traceable way to authorize
access to secured buildings or areas within buildings [24].

1.3 Ear Prints in Biometric Systems

Ears are often overlooked in everyday descriptions; unlike faces,
ears don’t usually get much attention in everyday descriptions,
especially compared to faces, which are far easier to picture and
describe in detail [11]. But their unique structure actually makes
them a great option for biometric recognition, particularly in certain
situations. One of the advantages of the ear is that it is non-surgical,
as it can be taken without touching, i.e., without physical contact,
unlike other biometric methods that are usually done by touch
[26]. This makes the process not only more hygienic but also more
user-friendly, since there’s no need for direct interaction.

It is particularly beneficial in public or high-traffic environments
like airports, hospitals, or workplaces, as well as in covert surveillance
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scenarios where capturing biometric data without the subject’s
knowledge is crucial [57].

Another advantage of the ear is that the ear’s features remain
consistent and remarkably stable over time, i.e., they do not change,
unlike facial features or fingerprints, which may be affected by several
reasons, including aging, surgical injuries, or environmental factors
[21]. Since the ear changes very little over time, it stays a dependable
choice for long-term identification. On top of that, ear recognition
helps address some of the limitations of other biometric systems.
For example, facial recognition often has trouble when people wear
masks—an issue that became glaringly obvious during the COVID-19
pandemic. Iris recognition, on the other hand, requires specialized
equipment and close-range scanning, which isn’t always practical [43].
Thanks to its accuracy, ease of use, and non-intrusive nature, ear
recognition proves to be a versatile and efficient solution for various
applications, from security systems to forensic investigations.

1.3.1 Stability and Uniqueness of Ear Prints

1. Stability of Ear Prints

Ear prints are highly stable over time, making them well-suited for
biometric recognition. The concept dates back to 1890 with Alphonse
Bertillon, and was later advanced by A. Iannarelli in 1989, who
analyzed 10,000 ears and confirmed their uniqueness—even among
identical twins [11]. Although slight age-related changes may occur,
particularly in the lobule due to gravity, the overall ear structure
remains consistent, supporting their use in long-term identification
systems such as national IDs and forensic databases [2].

According to Figure 1.3, the human ear is presented with
a combination of distinct features commonly used in biometric
recognition.
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Figure 1.3: Anatomy of human ear

2. Uniqueness of Ear Prints

What really makes ear prints stand out is how unique they are.
Every person’s ear has its own combination of features The outer ear
is defined by distinctive features such as the helix, lobe, antihelix,
incisura, antitragus, cavum conchae, foseta, crus of the helix, crus of
the antihelix, and tragus, which contribute to its uniqueness. These
parts form patterns that are completely individual. So, the probability
of two people having the same earprint is incredibly low, making ear
recognition a very accurate way to ID people [26].

Ear prints are really hard to fake. Unlike fingerprints, which
can be lifted and copied, or facial features, which can sometimes be
recreated using fancy technology (like 3D modeling or masks), ear
prints are much harder to duplicate. This makes ear recognition a
strong choice for security purposes, whether it’s for access control or
forensic identification [41].

Three distinct external ear anatomical features—the helix,
antihelix, and lobule—play a crucial role in biometric identification
systems due to their individual variability, which aids in distinguishing
people.

• The helix, forming the outer rim of the ear, varies in size and
shape from person to person. Because of its unique shape and
curvature, the ear print is unique to the individual.

• The antihelix is the ridge located on the inner part of the ear. It
is directly in front of the helix and parallel to it, and its shape
and clarity may vary greatly from one person to another, making
it a key factor in the distinctiveness of each ear’s structure.
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• The lobule, or earlobe—the soft, fleshy part at the bottom of
the ear. It comes in all sorts of sizes and shapes, and the way it
attaches to the face can vary too (the pendulous lobule elongates
under the influence of gravity). These differences make the
lobule another key feature that helps set ears apart in biometric
recognition systems.

1.3.2 Accuracy of Ear Print Recognition

Accuracy comparisons with other biometrics

In the previous section, we mentioned several biometrics and,
in table 1.1, we show the comparison between them. Biometric
systems are divided into two sections: physiological and behavioral.
Physiological biometrics are DNA, face, ear, iris, fingerprint, etc [11].
While behavioral biometrics, which are signatures, gait patterns, etc.,
voice is a combination of biometrics and physiological [21].

Many systems have been developed to distinguish between
biometrics, and they are widely used in many applications, such as
criminal investigations and security systems [21].

Table 1.1 provides a comparative analysis that includes
several important factors, including distinctiveness, permanence,
performance, and acceptance, in order to better understand how ear
biometrics compare to other biometrics :

Table 1.1: Comparison of Biometric Identifiers
[9]

Biometric
Identifier

Biometric
Type

Distinct-
iveness

Perma-
nence

Perfor-
mance

Accept-
ability

DNA Physiological High High High Low
Ear Physiological Medium High Medium High
Face Physiological Low Medium Low High
Fingerprint Physiological High High High Medium
Iris Physiological High High High Low
Palm print Physiological High High High Medium
Signature Behavioural Low Low Low High
Voice Physiological

and Behavioural
Low Low Low High

From the table, it’s clear that ear biometrics offer a strong
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advantage in terms of permanence — a key factor for reliable
long-term identification [2].

While they may not be as inherently distinctive as fingerprints or
DNA, their high acceptability — being non-intrusive and easy to use
— makes them appealing [44]. Unlike iris or DNA recognition, which
often require specialized equipment, ear recognition can be performed
using common imaging technologies, making it a practical choice for
various applications [2].

Although the current performance is considered moderate,
ongoing advancements in deep learning and feature extraction are
steadily enhancing the accuracy and reliability of ear recognition
systems [9].

Studies have shown that ear print recognition typically achieves
moderate accuracy, performing better than face recognition in terms
of permanence but lower than fingerprints and iris recognition in terms
of distinctiveness [44]. Machine learning and deep learning techniques,
such as Convolutional Neural Networks (CNNs), have significantly
improved ear recognition accuracy, reducing error rates and making
it more viable for security and forensic applications [9].

Challenges in Ear Print Recognition

Images in the real world suffer from different poses, lighting,
background clutter, hair coverage, and occlusion of ear accessories.
It is evident that these environmental factors have a significant
impact on the images and make it extremely challenging to detect
and recognize ears [26][44]. Furthermore, shadows can cover other
areas of the ear, which is called occlusion [44]. and this can distort
the detection of edges by fragmenting edges, making the process
of identifying them more difficult and complex [57]. The accuracy
and dependability of earprint recognition systems have significantly
increased as a result of experts’ introduction of increasingly complex
algorithms and improved imaging techniques to address these issues
[3].

1.4 Problem Definition and Research Objectives

In this work, we address the challenge of ear biometric recognition
by leveraging deep learning techniques to improve accuracy and
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robustness. While ear biometrics offer key advantages such as
non-intrusiveness, permanence, and ease of acquisition, they remain
underutilized compared to other modalities like fingerprint or iris
recognition. Traditional methods often rely on handcrafted features,
which may fail to capture the full variability of ear structures.
To overcome these limitations, this study proposes the evaluation
of multiple pre-trained convolutional neural networks including
”ResNet50, EfficientNet, VGG16, AlexNet, DenseNet121” on the AMI
Ear Dataset. The objective is to compare their performance in terms
of recognition accuracy and determine the most suitable model for
developing an effective ear recognition system.

1.5 Deep learning Approaches in Biometric
Recognition

Machine learning

Machine Learning was first defined by Arthur Samuel in 1959 in
his article “Some Studies in Machine Learning Using the Game of
Checkers” as: “The field of study that gives computers the ability to
learn without being explicitly programmed” [48].

A more formal definition was provided by Tom M. Mitchell in
his 1997 book “Machine Learning”: “A computer program is said to
learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E” [33].

Deep learning

Deep Learning is defined by Ian Goodfellow, Yoshua Bengio,
and Aaron Courville in their 2016 book “Deep Learning” as:“Deep
learning allows computational models that are composed of multiple
processing layers to learn representations of data with multiple levels
of abstraction” [15].

These methods have significantly advanced the state of the
art in fields such as speech recognition, visual object recognition,
object detection, drug discovery, and genomics. Deep learning
models uncover complex structures in large datasets by using the
backpropagation algorithm, which adjusts internal parameters layer
by layer to improve the learned representations [31].
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1.5.1 Deep feedforward networks

Profound feedforward systems, also known as multilayer
perceptrons (MLPs), are a sort of fake neural organize (ANN) that
comprises different layers of associated neurons, or nodes. These
systems are really propelled by the way our brain works. Within the
brain, neurons are associated through neural connections, and they
send electrical signals to each other to prepare data. Essentially,
in an ANN, data streams in one direction from the input layer
to the output layer, without any criticism circles, mirroring how
signals move between neurons within the brain. The structure of
a feedforward arrange depends on components just as the number of
layers, how numerous of neurons each layer has, and how the neurons
are connected. An ordinary neural network has an input layer, one or
more hidden layers, and an output layer. The crude input information
comes into the input layer, gets prepared by the covered-up layers, and
inevitably produces a yield [15] (as shown in Figure 1.4).

Figure 1.4: The Structure of Multi-layer Perceptron.

The basic building component of a feedforward network is a
neuron, which receives input from other neurons or external sources,
conducts a computation on this input and provides an output. Until
the output layer generates the final output, the output of one neuron
is then sent as input to the subsequent neuron in the network.

The following figure 1.5 illustrates how an artificial neuron
processes inputs by applying weights and an activation function to
produce an output.
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Figure 1.5: The structure of the artificial neuron

Each neuron in a feedforward network is typically characterized
by an activation function, which maps the input to the output.

Common activation functions include the sigmoid function, the
Sigmoid Linear Unit (SiLU) function, the rectified linear unit (ReLU)
function, and the hyperbolic tangent (tanh) function [27].

ReLU(x) = max(0, x) (1.1)

• x: The input to the activation function, which can be any real
number.

• max(0, x): Outputs 0 if x < 0, otherwise returns x. It introduces
non-linearity and is commonly used in neural networks due to its
simplicity and efficiency.

SiLU(x) = x · σ(x) =
x

1 + e−x (1.2)

• x: The input to the activation function.

• σ(x): The sigmoid function applied to x, defined in (1.3).

• The function smoothly increases and combines properties of both
ReLU and sigmoid.

σ(x) =
1

1 + e−x (1.3)
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• x: Input to the sigmoid function.

• e: Euler’s number, approximately equal to 2.718.

• This function maps any real-valued input to a range between 0
and 1, making it suitable for binary classification.

tanh(x) =
ex − e−x

ex + e−x (1.4)

• x: Input to the activation function.

• ex and e−x: Exponential functions, where e is Euler’s number.

• This function outputs values in the range [−1,1], centered at 0,
which helps in reducing bias in activations.

1.5.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are motivated by the
mammalian visual cortex and are broadly utilized in computer vision.
The center operation in CNNs is convolution, where parts prepare
the input, and a nonlinear activation function makes an outline. Not
at all like flag handling, these parts are learned amid preparation.
CNNs utilize weight sharing and sparse associations, requiring fewer
parameters than completely associated systems. Each unit in a
convolutional layer interfaces to a small locale of the previous layer,
known as the receptive field. Different convolutional layers are stacked
to permit higher-level layers to memorize more global features [50].

The processing flow of a Convolutional Neural Network (CNN) is
illustrated in Figure 1.6.

Figure 1.6: Example of a CNN architecture
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1.6 Conclusion

In this chapter, we centered on the concept of biometric
acknowledgment and its fundamental part in present-day innovation,
emphasizing its significance in a few areas, as the ear has risen
as a promising choice compared to other biometric features, much
appreciated for its steadiness over time, the risk of fraud, and ease of
recognition.

We also revealed the challenges facing ear recognition systems,
including a lack of data, similarity between ears, and the impact of
some environmental conditions on classification accuracy. We also
reviewed the role of deep learning, especially convolutional neural
networks (CNNs), due to their superior ability to extract automatic
features and deal with complex data, and their impact on performance
and evaluation.

With the continuous progress in artificial intelligence (AI)
technologies, the ear may become one of the main features in future
biometric verification systems, which opens the way for further
development in this field. In the next chapters, we will discuss the
methodology followed in this research, focusing on addressing the
identified gaps, and we will propose an effective approach to enhance
the accuracy and efficiency of the earprint recognition system.
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State of the Art

2.1 Introduction

In recent years, biometric identification has picked up impressive
interest, with ear recognition acknowledgment standing out as a
promising strategy due to the distinctive and stable anatomical
features of the human ear. This chapter presents an in-depth review
of some existing work within the field of ear recognition, covering both
early approaches based on geometric and handcrafted features, and
more recent strategies that use machine learning and deep learning.

The objective of this chapter is to follow the advancement of
techniques utilized in ear recognition, discuss their advantages and
limitations, and review the current research within this context. In
addition to looking over the literature, this chapter also outlines the
evaluation strategies utilized in our work. Particularly, we present the
performance metrics utilized, such as accuracy, recall, precision, and
F1-score, to assess the effectiveness and reliability of our proposed
approach. These evaluations give a quantitative basis for comparison
with previous methods and help validate the contributions of this
thesis.

2.2 Traditional Approaches in Ear Recognition

These methods rely on manual feature extraction without machine
learning or deep networks.

1. [22] did one of the first ear studies with ear identification, taking
measurements of ear dimensions (length, width, and angles of
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biological landmarks) by hand as well. He was not computerized
and did not publish any accuracy statistics or standardized
datasets. This study did show the potential for ear biometrics to
be individual biometrics for identification purposes and provide
a basis for future research. Given that the study is dated and
original resources may be limited in previous literature, full
details and original data are not readily available.

2. [12] employed Principal Component Analysis (PCA) in one
of the earliest experiments in ear recognition to represent the
most variance and to reduce the dimensional complexity of
ear images. They performed classification using the Euclidean
distance between feature vectors. While the technique provided
a basis for ear biometrics research and demonstrated its utility
on very small, controlled datasets, the method is sensitive
to variations in pose and lighting, which impacts its general
applicability and necessitates more robust methods for feature
extraction in unconstrained environments.

Table 2.1: Traditional Techniques in Ear Recognition Studies
Author(s) Year Feature

Extraction
Classifier Dataset Accuracy

Iannarelli [22] 1989 Manual
Measurements

Manual
Matching

Not available Not available

Chang et al.
[12]

2003 PCA (only) Euclidean Dist. Custom Not available

2.3 Machine Learning Based Ear Recognition
Methods

Below are key machine learning techniques used in ear recognition:

1. [1] suggest centered ear images can be represented using
handcrafted features - specifically, Local Binary Patterns
(LBP)—and then subsequently classify these extracted features
using a Support Vector Machine (SVM). This feature
extraction method produced decent accuracies when tested
with well-aligned ear datasets, and accuracy was better when
the illumination was well controlled. They also noted that
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when ears were misaligned or partially obstructed, performance
significantly degraded. The results illustrate the advantages
of local texture descriptors in biometric recognition and their
limitations.

2. [30] extracted texture features from ear images using Gabor
filters that encode both the spatial frequency and orientation
information and then classified the texture features in the ear
images using a Support Vector Machine (SVM). Their work
achieved an accuracy of 92.7% on the IIT Delhi dataset. Image
acquisition quality was an important variable in the performance,
specifically alignment and lighting. The author’s work illustrates
the difficulties introduced in the aural condition of acquisition
and the usefulness of Gabor filters in extracting ear features.

• In table 2.2, we compare different machine learning methods for
ear recognition with different datasets from previous years.

Table 2.2: Other Studies Using Machine Learning
Author(s) Year Feature

Extraction
Classifier Dataset Accuracy

Hurley et al. [1] 2005 Force Field
Transform

k-NN XM2VTS 91.5%

Kumar and Wu
[30]

2012 Gabor Filters SVM IIT Delhi 92.7%

Victor et al. [1] 2002 Geometric
Features

Decision Tree Custom 84.6%

Abaza et al. [1] 2010 LBP SVM Well-aligned
datasets

Not specified

2.4 Deep Learning-Based Ear Recognition
Methods

Below are deep learning approaches commonly used in ear
recognition:

1. [54] developed a convolutional neural network (CNN) to
automatically learn robust and reliable representations of ear
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images. They employed the Annotated Web Ears (AWE)
dataset, which consists of ear images with variations in lighting,
pose, and occlusions, to train and test their model. Although
the AWE dataset presented a number of challenges in terms of
variations in ear images, the CNN-based approach demonstrated
a higher degree of robustness and generalization than typical
handcrafted feature-based methods, with promising recognition
results. Thus, this study demonstrated the potential of deep
learning approaches to push the boundaries of ear recognition
beyond conventional methods.

2. [47] presented a transfer learning method for ear recognition
employing convolutional neural networks, including Residual
Network 50 (ResNet50), that have been pre-trained on
millions of images. Their approach involved fine-tuning
some of the final layers on an ear image dataset (AWE),
reducing the time and amount of data needed for training
significantly. Out of the models they tested, Resnet50 had
the greatest recognition accuracy. The researchers noted the
potential for transfer learning techniques in biometric recognition
applications, especially when dealing with small datasets.

• In table 2.3, we compare different deep learning methods for ear
recognition with different datasets from previous years.

Table 2.3: Other Studies Using Deep Learning
Author(s) Year Architecture Dataset Transfer

Learning
Accuracy

Zhang et al. [62] 2018 VGG16 USTB Ear No 88.4%

Xu et al. [56] 2024 Mean-CAM-CNN AWE Yes 76.25%

Resmi & Raju [47] 2021 ResNet50 AWE Yes 92.1%

Alshazly et al. [4] 2020 Ensemble of
ResNeXt101

EarVN1.0 Yes 95.85%

Emeršić et al. [54] 2017 CNN AWE - -

2.5 Ear Biometric Recognition Studies

Although there have been notable advancements in earprint
recognition technologies, both technical and practical challenges
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continue to hinder the performance and applicability of these systems.
These challenges can be broadly categorized as those observed in past
research studies and those generally inherent to the domain of ear
biometrics.

Several studies have reported limitations in recognition
performance due to environmental and data-related factors. For
instance, the PCA-based approach [12] was found to be highly
sensitive to changes in lighting and head pose, restricting its
effectiveness in uncontrolled environments. Similarly, work by other
researchers [30] showed that poor image quality—particularly in
terms of misalignment and illumination—had a considerable impact
on recognition accuracy, which poses a challenge in real-world
acquisition scenarios. Deep learning techniques such as CNNs have
improved recognition performance [54]; however, these models remain
vulnerable to pose variations and occlusions from elements like hair or
earrings, limiting their robustness in real-world conditions. Moreover,
although transfer learning techniques on datasets such as AWE have
shown promise [62], the limited size and diversity of the dataset often
lead to overfitting, as the models fail to capture realistic inter-subject
and intra-subject variations. Another study [47] pointed out that
even when high accuracy is reported, the small training sample size
can undermine the generalizability and reliability of the system in
broader applications.

In addition to the issues identified in previous research, ear
biometric systems face general challenges that are common across
the field. A major concern is the limited availability of high-quality
and diverse datasets. Most existing datasets are either small or
collected under controlled laboratory settings, which impedes the
development of models that generalize well to real-world conditions.
Furthermore, the lack of consistent evaluation protocols—such as
differing dataset splits or performance metrics—makes it difficult
to conduct fair comparisons across studies. From a computational
standpoint, deep learning-based systems often demand significant
memory and processing power, which restricts their deployment in
real-time or mobile applications. Another overlooked issue is the
reliance on unilateral ear images, typically focusing only on the left
ear, raising doubts about whether the trained models can generalize
effectively when encountering the right ear.
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2.6 Evaluation Metrics

Evaluating the quality of a deep learning or machine learning
model during training is essential, and there are a number of ways to
do this. We use accuracy, F1-score, recall, and precision as evaluation
metrics for our ear print recognition model.

• Accuracy: In common, the accuracy metric measures the
proportion of correct predictions over the entire number of
instances evaluated [19]. Its formula is :

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

• Precision: Out of all the expected patterns in a positive class,
precision is used to quantify the number of accurately predicted
positive patterns [19]. Its formula is :

Precision =
TP

TP + FP
(2.2)

• Recall: The percentage of positive patterns that are accurately
classified is called recall [19]. Its formula is :

Recall =
TP

TP + FN
(2.3)

Where :
_ TP: the number of true positives in the dataset.
_ TN: the number of true negatives in the dataset.
_ FP: the number of false positives in the dataset.
_ FN: the number of false negatives in the dataset.

• F1-Measure This measure is the harmonic mean between the
precision and recall values [19]. Its formula is :

F1 =
2 · Precision · Recall
Precision + Recall

(2.4)

2.7 Discussion

We present a systematic comparison of studies in ear biometric
recognition using Classic, Machine Learning, and Deep Learning
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approaches. The studies presented demonstrate the evolution
of various strategies in feature extraction, classification, dataset
selection, and performance analysis over time.

In previous methods, early work, for example, [22] and [12], was
primarily a manual or statistical process, predominantly using the
Principal Component Analysis (PCA) method of feature extraction.
These early methods provided first forethoughts of what is different
and what is unique about the ear, but the early methods did not add
fidelity to performance in the real world (increased variability in terms
of lighting and pose) nor report adherence to standardized methods
(for accuracy) or use standardized datasets.

Machine learning approaches provided some solutions to some
of these problems - for example, the addition of handmade features
such as Local Binary Patterns (LBP) and Gabor filters, alongside
classifiers such as Support Vector Machines (SVM), Decision Trees,
and k-Nearest Neighbors (k-NN). An example of this is [30], where
Gabor filters applied to good-quality datasets such as IIT Delhi
achieved high account recognition accuracy (up to 92.7%). Still, there
were problems regarding the quality and alignment of images, which
impacted performance, and identifying similar features to generalize
to other datasets remained a challenge.

The use of deep learning technology for ear recognition research
brought in a new phase. The work using Convolutional Neural
Networks (CNN) and the development of transfer learning (TL)
architectures, such as ResNet50 and Visual Geometry Group
16 (VGG16) Network, resulted in substantial improvements and
accuracy rates of over 92% ([47] ; [4]). These models were not as
affected by occlusions, changes in lighting, or angles. Transfer learning
had distinct benefits in limiting data, providing convenience for
biometric problems with limited datasets. However, they continued
to suffer from the problems of overfitting in the cases of small training
sets, vulnerability to occlusions due to hair and accessories, and the
resources needed for processing and training.

Accuracy seems to be the standard measure of performance that is
reported, although researchers are also reporting precision, recall, and
F1-score to assess models more fully. Evaluations across the studies
exhibit an alarming lack of conformity in evaluation methods and
dataset splits, making it impossible to compare performance across
studies in a direct fashion.
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In conclusion, although progress has been made in ear biometric
recognition, particularly using deep learning algorithms, there are
still some remaining challenges with data availability, evaluation
approaches, and specific applicability in the existing literature. Our
study builds upon the progress made by the previous studies, which
will center around the evaluation of state-of-the-art deep learning
architectures and their performance on some of the existing datasets
used in the literature. Our aim with this study is to take some
known models, establish performance benchmarks, and verify their
robustness under a controlled experimental setting. We are not
creating a new technique so much as we are verifying performance
and possibly exceeding the benchmarks established in the literature.

2.8 Conclusion

This chapter has given a comprehensive overview of the
advancement of ear recognition techniques, beginning from traditional
approaches based on handcrafted features to the more recent machine
learning and deep learning methods. Early studies fundamentally
relied on manual measurements and simple feature descriptors,
which laid the foundation for automated ear recognition systems.
With the appearance of machine learning, more strong and scalable
classification techniques were developed, upgrading recognition
accuracy. The development of deep learning further revolutionized
the field by empowering end-to-end learning directly from raw
picture data, accomplishing remarkable performance in unconstrained
environments. In any case, challenges such as variations in pose,
lighting, occlusion, and limited availability of large annotated datasets
continue to hinder the development of universally reliable systems.

To assess and compare the effectiveness of the discussed methods,
we have moreover reviewed widely utilized evaluation metrics, such as
accuracy, precision, recall, and F1-score. These measurements were
utilized in our experimental evaluations and gave us a quantitative
insight into our model’s performance. The experiences presented in
this chapter give a strong basis for the experimental analyses and
methodological choices covered in the thesis’s subsequent sections.
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Chapter 3

System Design and Methodology

3.1 Introduction

This chapter presents the plan and technique received for creating
an earprint recognition system. Starting with problem definition to
model deployment; we begin by formalizing what the research is about
(scope) and the objectives of the research, emphasizing accuracy,
robustness, and scalability and being able to handle bigger challenges.
Next, we introduce the datasets (AWE, AMI, IIT Delhi) and describe
the preprocessing methods (normalization, augmentation) aimed at
coping with real-world variability in ear images, hence leading to
a more efficient training process and enhance the adaptability of
the model. We focus in this chapter primarily on selecting the
appropriate model. We explain the reasons for receiving deep learning
architectures such as CNN and ResNet and outline a plan for building
a framework that can be scaled up in the future. By combining these
components, we aim to achieve an effective, high-performance ear
recognition system.

3.2 Dataset Collection and Preprocessing

3.2.1 Overview of ear datasets

There are many well-known ear recognition datasets that might
be utilized for our problem, but three are more well-known and have
been used extensively in this field; for this reason, we will present
them by providing an overview of each one before choosing which to
employ in our work.
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• AMI Ear Database : The AMI Ear Database comprises 700
images from 100 individuals, aged between 19 and 65 years. Six
pictures of the right ear (taken from various perspectives: right,
left, up, down, forward, and a zoomed view) and one picture
of the left ear are included for each individual. All of these
high-resolution  photos (492 x 702 pixel) were taken using a
Nikon D100 camera in a controlled indoor environment [34].

• IITD Ear Database : The IIT Delhi Ear Database is listed in the
Biometric and Forensic Research Database Catalog maintained
by the National Institute of Standards and Technology (NIST).
It includes 471 grayscale ear images in total, taken from 125
individuals, with at least three photographs from each subject.
The pictures were taken inside in a controlled environment using
a contactless imaging setup, and they were saved in JPEG format
with a pixel resolution of 272 × 204. The database also contains
automatically cropped and normalized 50 × 180 pixel versions of
the ear images. Upon request, a more extensive dataset of 754
photos from 212 people is also made available [36].

• AWE Ear Database : The Annotated Web Ears (AWE) dataset
contains 1,000 manually selected ear images of 100 subjects,
with 10 diverse images per subject collected from the web. The
majority of the subjects were popular personalities, including
politicians and actors, and a specially designed web crawler
that targeted Google Image Search was used to retrieve the
photographs. No automatic filtering was used in order to
maintain natural variability. The collection consists of closely
cropped ear pictures with an average size of 83×160 pixels and a
range of sizes and quality from 15×29 to 473×1022. It functions
as a demanding standard for unrestricted ear recognition [13].

3.2.2 AMI Ear Database

In this section, we’re presenting the dataset used to train the
model of the proposed system.

Data Collection

The AMI Ear Database was created by the Image Technology
Center (CTIM) at the University of Las Palmas de Gran Canaria.
A Nikon D100 digital camera was used to take the pictures in a
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controlled indoor setting with consistent background and lighting.
One hundred people, with ages ranging from 19 to 65, participated
in the purchase. Each participant’s ears were captured with their
faces neutral and at a fixed distance from the camera. Six different
perspectives were used to record the right ear: front (forward), top,
bottom, left, right, and close-up. Additionally, each participant had a
single photograph of their left ear taken. The goal of this multifaceted
approach was to ensure a controlled data gathering environment while
incorporating variation in natural poses.

Figure 3.1: Representative samples from AMI dataset

As illustrated in Figure 3.1, the AMI dataset includes one left ear
image and multiple right ear images for each subject.

Data Structure

There are 700 high-resolution (492 × 702 pixel) photographs in
the AMI database, all of which are saved in JPEG format. There
are seven pictures for every 100 participants: one of the left ear and
six of the right ear taken from various perspectives. The images are
neatly organized by subject and viewing angle, which makes it easier
to handle them during preprocessing and model training. Thanks to
the consistent image size and simple, uniform background, the dataset
is particularly well-suited for experiments involving deep learning,
where clean and standardized input data is important for achieving
good recognition performance.

Data Augmentation

In order to generalize better and to prevent overfitting, we
augmented the input images during training. Training images
were augmented randomly, including scaling, cropping, horizontal
flipping, rotation, and color jittering. These enhancements
artificially increased the diversity of the training samples by adding
some synthetic differences which simulate the actual variations in
the real world such as position, orientation, and illumination.
Transformations were applied by ”torchvision.transforms” module as
follows:
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• ”Resize(256)”: Ensures a consistent input size; all input images
are resized by this transformation to 256 pixels for their shorter
side, maintaining aspect ratio. Important for preparing the
pictures for the next cropping (RandomResizedCrop) and to
meet the required size of pre-trained models, in our case the
ResNet50.

• ”RandomResizedCrop(224)”: This option crops a proportion of
the resized image randomly, and resizes it to 224×224 pixels.
it provides different views of the object with a random crop
scale(usually between 80% – 100% of the original area). It helps
the model in being robust to different ear placements in the
photo, and it’s important for training models like ResNet, which
expect 224×224 pixels input.

• ”RandomHorizontalFlip”: Randomly flips the image horizontally
(Simulates mirror images) with a default probability of 0.5 (50%),
that’s useful in our subject sinse ears can appear on either side.

• ”RandomRotation(15°)”: Makes a random rotation within ±15
degrees to the picture. Helps the model handle slight rotations
of the head or variations in camera angle and it’s important
in ear recognition where image capture conditions may differ in
surveillance or real-world settings.

• ”ColorJitter”: Applies random changes in brightness, contrast,
and saturation within a small range. Simulates varying lighting
conditions during image capture, teaching the model to focus on
ear structure, not lighting.

• ”Normalize”: Normalizes the RGB channels of the image by
subtracting the mean and dividing by the standard deviation
of ImageNet dataset values. Matches the input distribution
expected by pre-trained models (like ResNet50 trained on
ImageNet), that’s why it’s important for our model since we use
transfer learning with ImageNet weights.

These augmentations were used only during the training phase. To
guarantee consistent and fair evaluation, a more straightforward and
deterministic transformation pipeline utilizing Resize, CenterCrop,
and Normalize was employed for testing.

Data Separation
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For reliable performance evaluation of the model, the data was
divided into two disjoint parts; 80% was used for training and 20%
for testing. This split was stratified so that class distribution is
preserved in both sets and each identity is equally represented. With
stratification based on class labels, it has been implemented using
the train_test_split function of the sklearn.model_selection
package.

The parameters of the model were established by the training
dataset, while the test dataset is used to assess the model’s
generalization to previously unidentified data. In order to prevent
data leaking, no pictures from the test set were used in the training
method. Further, validation was also done within the test loop of each
epoch to compute performance and dynamically adjust the learning
rate with a scheduler based on validation accuracy.

This technique allows the metrics that we consider to provide an
accurate estimate of performance on holdout, unseen data.

Figure 3.2 illustrates how the AMI dataset is divided for training,
validation, and testing, leading to classification as known or unknown.

Figure 3.2: Structure of data splitting and ratios

3.3 Model Selection and System Architecture

3.3.1 Criteria for Model Selection

The success of ear print recognition systems in practical
applications relies primarily on the selection of an appropriate deep
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learning model. This choice is based on various critical factors such as
the accuracy of the model, generalization capability on new datasets,
computational complexity, and its capability to deal with complicated
ear anatomies and variations [14].

Finding the ideal balance between efficiency, accuracy, and
adaptability to various ear images and acquisition conditions is the
aim.

Model complexity and performance

Convolutional neural networks (CNNs) are widely used in
ear print recognition systems due to their efficiency in extracting
spatial features from images. These networks offer strong performance
on basic tasks, typically achieving accuracy between 85% and 92%,
thanks to their ability to extract subtle anatomical features of the ear,
such as the helix and antihelix. These are the characteristics required
to differentiate between people, even between twins. But standard
CNNs lack the ability to learn abstract and complex hierarchical
patterns in ear anatomy as they are shallow. So deeper architectures
with a higher capacity to represent abstract and complex features,
like ResNet and VGG, are being employed.

The selection of these models depends on achieving a balance
between available computational resources and the model’s ability to
generalize when applied to new data. This enhances the transfer of
features through deeper layers and increases training efficiency and
model accuracy [49] [18].

Training Time and Availability of Resources

Usually, the training procedure could be highly computation
demanding when dealing with very large models like VGG16
or ResNet50, and hence making them quite challenging to use
practically. On one hand, these models contain tens of millions
of parameters that should be optimized, thereby demanding large
storage capacity and increased processing speed. On the other hand,
these models consume huge amounts of GPU memory and require
long training times, which can reach 8–12 hours on advanced graphics
cards such as the V100 GPU. In these cases, a simpler CNN model is
suitable for faster conversion and lower resource consumption [61].

Moreover, the starting of a very complicated model from scratch
may lead to overfitting in the case of a small dataset, which is often
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the case with biometric features such as ear prints. In these cases, it is
necessary to carefully control model complexity to achieve a balance
between performance, accuracy, and generalizability.

Generalization and Transfer Learning

Models like ResNet and VGG are extremely effective, especially
in the field of transfer learning. They can easily adapt pre-trained
models from large databases like ImageNet to small datasets, a
common technique in this field. This technique often involves freezing
the first layers responsible for capturing general features, and then
retraining the last layers to match available earprint data. This
method improves performance and reduces training time compared to
starting from scratch. Research has shown that using a pre-trained,
custom-tailored ResNet50 model can improve model accuracy by up
to 12%, even when training images are scarce [58].

3.3.2 Deep Learning Models for Ear Recognition

Ear-detection technology has received considerable attention
because of the unique and stable anatomical structure of the human
ear. Deep learning models, especially convolutional neural networks
(CNNs), with their powerful ability to extract and classify features,
have proved particularly effective in this task, even under demanding
conditions such as lighting, occlusion, and resolution. Among the
most widely used architectures for ear recognition are ResNet50,
VGG16, Efficient Convolutional Neural Network(EfficientNet),
AlexNet , and DenseNet121, despite the availability of many other
deep learning models.

• ResNet50 (50-layer deep neural network) uses residual
connections to learn complex hierarchical properties without
performance degradation, making it an excellent choice for deep
network training without scaling problems. In addition, it is very
efficient in the application of transfer learning techniques and has
a high sensitivity to changes in illumination and partial image
noise, which makes it suitable for working with small datasets
such as ear impressions. The ResNet50 is a popular choice
for biometric systems as it also strikes a good balance between
depth, accuracy, and generalization capability [18].

• VGG16 (16-layer deep architecture model) based on a simple
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structure that stacks convolutional layers sequentially without
the need for complex techniques such as residual links or detailed
convolutions, making it easier to understand and modify than
more complex models. Despite its high resource consumption,
it still delivers consistent and reliable performance in image
classification, including ear print recognition. It is also popular
in academic research, particularly in applications that study the
effects of age or subtle changes in ear shape [49].

• EfficientNet is known for striking a great balance between
performance and efficiency. What makes it stand out is its smart
scaling method, which adjusts the model’s depth, width, and
resolution all at once to get the most out of each layer, helping
it to perform strongly without the need for heavy computing.
It has achieved state-of-the-art results, including up to 98.45%
accuracy in ear recognition tasks. Thanks to its efficiency, it is
well-suited for real-time applications and systems with limited
hardware capabilities [51].

• AlexNet was one of the first deep convolutional neural networks
that demonstrated the success of deep learning for large-scale
image classification. With five convolutional layers and three
fully connected layers, this architecture relied on the use of
ReLU activations to increase training speed. While it is quite
primitive compared to other models, AlexNet can still be used for
classification problems such as ear print classification. Dropout
and data augmentation were used to reduce overfitting, and so
it is okay to utilize them with smaller datasets. AlexNet is so
historically important and easy to replicate that it is often used
as a baseline benchmark for all biometric recognition research
[29] [26].

• DenseNet121 utilizes a feed-forward connection to connect each
layer to all succeeding layers to maximize feature reuse and
maintain efficient gradient flow. This allows it to request fewer
parameters while providing more accuracy and memory utility.
Densely Connected Network 121 (DenseNet121) is successful
in ear print recognition, as it can extract fine-grained features
needed to differentiate subtle ear structures. Utilizing mixed
precision, a learning rate schedule, and Mixup augmentation,
DenseNet121 regularly improves robustness and generalizes
capacity while performing biometric recognition tasks [20] [59].
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These models provide a solid basis for designing working models.
Optimal selection is determined by variables such as the data set size,
the available computing power, and the required level of precision.
Other methods, such as regularization and transfer learning, are also
used to enhance productivity.

Table 3.1 provides a comparative overview of VGG, ResNet, and
EfficientNet based on key characteristics relevant to ear recognition.

Table 3.1: Comparison of Strengths and Weaknesses of VGG, ResNet, and
EfficientNet in Ear Recognition
Feature VGG [49] ResNet [18] EfficientNet [51]
Innovation 3×3 conv layers Skip connections

(residual blocks)
Compound model
scaling

Depth 16–19 layers 18–152 layers B0–B7 variants
Strengths - Simple,

interpretable
architecture

- Solves vanishing
gradients

- Optimal
accuracy-efficiency
trade-off

Weaknesses Computationally
heavy

Higher resource
needs than
EfficientNet

Complex scaling
requires tuning

Performance ∼93% accuracy
(IIT Delhi)

∼97% accuracy ∼98% accuracy

Computational
Cost

High (138M
params)

Medium (25.5M
params, 50-layer)

Low (5.3M params)

Best Use
Case

Baseline
comparisons,
small datasets with
simple features

High-accuracy
systems with GPU
support

Real-time
applications
(surveillance,
mobile)

Transfer
Learning

Moderate High Very High

3.3.3 Proposed System Architecture

We have chosen ResNet50 as the backbone of our deep learning
network, as it achieved the highest recognition accuracy among
the tested models. We have employed transfer learning, leveraging
pre-trained weights, initiated on the ImageNet dataset. This was a
good baseline, especially since our dataset (ear prints) is considerably
smaller than ImageNet.

We split the architecture into two parts. The feature extractor

34



Chapter 3. System Design and Methodology

is the first part. Here, we used ResNet50’s convolutional layers with
minimal changes. We froze the beginning layers so that the overall
visual features they had learned can be preserved, and fine-tuned only
the deeper layers. This saved training time as well as the chance of
overfitting.

The second part is the classifier head, which we modified to fit our
task. We removed the first fully connected layer and placed our own:
one linear layer to reduce dimensionality, then batch normalization,
a SiLU activation, and dropout to regularize. Then the features are
mapped to the number of classes in our dataset, one to each person.

We also included some data augmentation techniques at training
time to make the model more robust. Random flips, rotations, and
mixup were some of the things that we used to enable generalization
by the model. Finally, to squeeze out a bit of additional accuracy
when testing, we used Test-Time Augmentation (TTA), effectively
averaging predictions across multiple transformed versions of each
image.

In general, this setup gave us a model that is both efficient and
accurate, especially for the biometric process of identifying people
using ear prints.

3.3.4 Model Architecture

In this subsection, we will explain the functionality of each layer
type employed in the architecture of our CNN model.

The following diagram (Figure 3.3) presents the architecture of the
ResNet50-based model employed in this work, distinguishing between
the feature extraction layers and the classification layers.
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Figure 3.3: ResNet50 Model Architecture

• Input Image (224×224×3 RGB): The model gets a color
image of 224×224 pixels with 3 color channels associated with
red, green, and blue. This image size is standard because of how
the typical pretrained model, ResNet, is designed.

• Initial Conv + BatchNorm + ReLU + MaxPooling: In
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this layer, a 2D convolution will extract low-level features such as
edges. The layer also performs batch normalization, which will
allow weights to train closer together and help stabilize learning.
With ReLU, the layer is non-linear. And then performs max
pooling to down-sample spatial dimensions while maintaining key
features of the output.

• Layer1 (conv2_x) – Residual Block Group: The first
residual block group takes those initial features and refines them
with skip connections in the layers, which allow gradients to flow
and try to avoid vanishing gradient problems, allowing deeper
networks.

• Layer2 (conv3_x) – Residual Block Group: This block
increases the volume of pure feature maps and decreases the
spatial dimension of the feature maps. It is able to learn more
abstract patterns and aids in the generation of more high-level
visual representations of the input image.

• Layer3 (conv4_x) – Residual Block Group: Layer3
continues the feature abstraction by stacking more and more
residual blocks. The network will start to generate complex
features, features such as parts of an object or texture, but more
importantly are still using identity mappings which allows for
stronger training.

• Layer4 (conv5_x) – Residual Block Group: Based on the
known residual block configuration of models, the final group of
residual blocks extracts the most abstract features while ensuring
that they are semantically rich features important for the final
classification task. This section of the network is going to output
high-dimensional feature maps that will provide the final feature
maps for the fully connected layers.

• Adaptive Average Pooling: The global average pooling layer
takes the average of every feature map and reduces the spatial
dimension to 1×1 regardless of the input size. This layer provides
a 2048-d output that is a fixed size that can be passed into fully
connected layers.

• Linear (2048 → 512): We then have a fully connected layer
that reduces the 2048-d feature vector into a 512-d feature vector
representation, which acts as a compact embedding of the input
image.
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• SiLU Activation: We applied the Sigmoid Linear Unit (SiLU)
activation function as it includes nonlinearity and smoothness;
it helps improve the learning dynamics and performance of the
model if the feature map has a small gradient that can be
propagated through.

• Dropout (p = 0.5): We applied a dropout layer with a
probability of 0.5 during training, dropping half of the neurons
randomly. This layer acts as a regularization technique to help
mitigate overfitting and force the network into learning more
robust and general features.

• Linear (512 → 100): This last dense layer maps the
512-dimensional features to 100 outputs. Each output
corresponds to one class and reports raw logits prior to Soft
Maximum (softmax) classification.

• Output Logits (100 Classes): The output of the model is
100 class logits. These logits represent unnormalized scores for
indicating how confident the model is in making a prediction in
each class prior to applying the softmax function.
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3.3.5 System Architecture Diagrams

Figure 3.4: Earprint Recognition Pipeline Using Deep Learning

Figure 3.4 illustrates the various steps of the ear print recognition
process based on the ResNet50 deep learning model. The process
starts from database selection and terminates at final ear recognition.
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Figure 3.5: Outline of the ResNet50-based transfer learning workflow

Figure 3.5 describes the outline of the ResNet50-based transfer
learning workflow utilized in our human ear print recognition system.
Only the fully connected layers (demonstrated by the dashed box)
are trained, whereas the convolutional layers are initialized with
pre-trained ImageNet weights. The model processes augmented ear
pictures from the training set and outputs identity predictions based
on posterior probabilities.

3.4 Conclusion

In this chapter, a comprehensive approach for designing an
effective earprint recognition system is presented. starting with
preparing AMI dataset, all the way to underlying the importance
of choosing a deep learning model that strikes a balance between
accuracy and computational power.

The CNN-based model is very effective for detecting earprints,
ResNet50 excels at capturing fine details, EfficientNet is well suited
for resource-constrained environments, and VGG16 remains a strong
choice for educational and research purposes. To improve performance
and avoid overfitting, the final system was built on transfer learning
using ResNet50, combined with techniques such as augmentation and
regularization.
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This chapter determines a framework for useful and flexible
recognition systems. This is further confirmed by the experimental
results in the next chapter.
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Results and Evaluation

4.1 Introduction

This chapter presents a summary of the ear print recognition
system we created. It starts with the training of the model and
after that we will provide an overview of optimising the model,
including hyperparameter tuning and regularisation for preventing
overfitting. We will evaluate the performance of the model using
accuracy, precision, recall, and F1 score. We will also present
comparison statistics to existing ear recognition systems. Our ability
to evaluate the real-world application will come from ear print data
that we will collect under different lighting and angles. This chapter
has final summary section of results and suggested improvements we
could have made. This will demonstrate the potential of our model
to be applied in real-world biometric applications.

4.2 Implementation Framework

In this section we will describe the technical environment in
which our system was built and executed, including the programming
language, development tools and libraries used throughout the
implementation.

4.2.1 Hardware Configuration

To implement our system, we use a laptop personal computer that
had the following parameters(Table 4.1) :
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Table 4.1: Laptop hardware specifications.
Personal Computer Dell Latitude 7490
Processor Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz 1.90 GHz
RAM 16.0 GB
Hard Drive 256GB SSD
Operating System Windows 10 Professionnel

To train our model, we first used a Jupyter notebook inside
anaconda platform, to develop and test the code, once the code is
well done and gives good results, we moved it to Google Colab, a
cloud-based platform for executing Python scripts. We were able to
train our deep learning model successfully and efficiently by utilizing
Colab’s computational resources. furthermore, we store and access
our dataset using Google Drive, which we then import and mount
in Colab for use in the training phase. We were able to train our
model on the cloud without using local storage because of the smooth
integration of our data with the Colab environment.

We have to mention that the free GPU usage in Colab have limits
and there is a maximum running time for a session which can be an
issue for longer training periods or with larger datasets.

4.2.2 Development Language and Tools

This section outlines the programming language and tools used to
implement and evaluate the proposed ear recognition system.

Python
Python is a high-level, object-oriented, interpreted programming

language, and  has dynamic semantics, was first released in 1991. It is
extremely attractive for Rapid Application Development and for usage
as a scripting or glue language to join pre-existing components because
of its high-level built-in data structures, dynamic typing, and dynamic
binding. Python’s easy-to-learn syntax prioritizes readability, which
lowers software maintenance costs [45].

Python’s strengths for machine learning are its readability,
simplicity, and abundance of libraries. With frameworks like
scikit-learn, TensorFlow, and PyTorch, Python makes it simple
to implement complex machine learning algorithms, and its rich
ecosystem of data manipulation and visualization tools (like Pandas
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and NumPy) speeds up model development and experimentation.
Additionally, Python has a robust community that ensures ongoing
innovation and resources for addressing a variety of machine learning
problems.

Figure 4.1: Python Logo

Anaconda
Anaconda is a complete platform for data science and statistical

analysis that includes Python along with a number of libraries and
tools for data analysis, MLOps, model management, and software
development, including Jupyter notebook that require no prior setup,
which is the reason that took us to use anaconda [7].

Figure 4.2: Anaconda Logo

Google Colaboratory
Google Colaboratory (Colab) is a cloud-based platform

provides a free Jupyter Notebook environment where machine
learning codes can be executed and shared. It offers free access to
Computer Resources such as Graphics Processing Units (GPUs) and
Tensor Processing Units (TPUs), which greatly accelerate the training
procedure, and doesn’t require any setup. collab is ideal for data
Science, Education and machine learning. Using Colab is free, but
its resources are not unlimited and access is not guaranteed. Colab
is perfect for creating and training deep learning models because
it comes with pre-installed libraries like TensorFlow, Keras and
PyTorch. Moreover the usage of a GPU in a session has a maximum
running time, which can be a problem for large data sets or longer
training time [16].
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Figure 4.3: Colab Google Logo

Google Drive
Google Drive is also a cloud-based platform for storage and

collaboration, which Google also developed. Users can create, edit,
and share files in a centralized digital environment by utilizing
Google Docs, Sheets, and Slides as productivity tools within Google
Workspace. Its main goal is enabling effective file management,
real-time teamwork and smooth document access to across several
devices [17].

Figure 4.4: Google Drive Logo

PyTorch
PyTorch is an open-source deep learning framework, was created

by MetaAI. it offers a versatile and efficient platform for creating and
training neural networks with the help of dynamic computation graphs
and powerful GPU acceleration. PyTorch’s performance and ease of
use are contributing to its adoption in both academia and industry
[38].

Torchvision
Torchvision is an official PyTorch package that offers model

architectures (like ResNet), image transformation tools,and datasets
designed to computer vision applications. It makes loading,
preprocessing, and augmenting data easier [46].

PIL (Python Imaging Library)
PIL (Python Imaging Library) is the initial Python library
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for opening, modifying, and storing a wide variety of image file types
[40].

Pillow
Pillow is a modern fork of the original Python Imaging Library

(PIL), providing extensive support for image processing operations
such as loading, manipulating, and saving images in various formats.
It is compatible with Python and integrates easily with popular
libraries like NumPy and PyTorch [40].

NumPy
NumPy is an open source project, makes it possible to use

Python for numerical computation. It was developed in 2005,
expanding upon the Numeric and Numarray libraries’ earlier work.
By consensus of the NumPy and larger scientific Python community,
NumPy is developed publicly on GitHub [37].

Sklearn
One of the most useful machine learning packages in Python is

the Sklearn library, which offers a variety of potent methods for
statistical modeling and machine learning. Regression, classification,
clustering, and dimension reduction are some of these methods [39].

4.3 Training and Optimization

4.3.1 Model Training Process

In this work, we trained an ear print recognition model using the
AMI dataset. The data was split into two sets, 80% for training
and 20% for testing, while maintaining a balanced distribution of
classes using stratification. A set of data augmentation techniques was
applied to the training images, including random image rotation (±45
degrees), random cropping (85% to 100% of the original image area),
horizontal and vertical flipping, affine transformations, perspective
distortion, Gaussian blur, random erasing, and normalization, to
improve the model’s generalization ability.

Our system was built by using a pre-trained ResNet50
model (using the IMAGENET1K_V2 weights), with its powerful
image-processing layers left intact (thereby preserving their 23.5
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million learned parameters). To process high-dimensional features,
a custom classification head was developed to reduce and regularize
the feature space. First, the architecture starts with a linear layer
that downscales the input representation to 2048 units, followed by
batch normalization, a SiLU activation function, and a dropout layer
(rate = 0.5) to reduce overfitting. Usually, the second linear layer was
reducing the feature space to 1024 units using batch normalization,
SiLU activation, and a lower dropout factor of 0.3 to achieve a
balanced standardization. For the classification of individuals in the
data set, the output layer finally projects the processed characteristics
on a necessary number of classes.

Training was accelerated using GPU processing and mixed
accuracy (via torch.cuda.Amp) to improve memory efficiency and
speed. This model was trained using 10 epochs using Adaptive
Moment Estimation with Weight (ADAMW) optimizer at different
learning rates for different parts of the network (deep layers fine-tuned
at lower rates). A OneCycleLR Learning Rate Controller controlled
the learning dynamics during training. We also used a mix-up
augmentation, combining labels using two images and a beta
distribution. This will tune the model by encouraging the model to
predict soft labels and improve robustness.

4.3.2 Hyperparameter Tuning

To optimize our ear recognition model, fine-tuning of some
important hyperparameters was carefully considered to ensure the
best possible performance. Different parts of the network were
assigned to different learning rates (for example, lower rates for
pre-trained backbones). This allowed the model to make larger
weight adjustments at the beginning of the training and smaller,
more refined adjustments as the training progressed, thereby ensuring
a more effective weight optimization and a better generalization
of the training. These rates were automatically adjusted during
training using the OneCycleLR scheduler, which helped balance
rapid convergence with final model accuracy.

We tested a number of options before deciding on a batch
size of 32. This allowed us to effectively use GPU memory while
maintaining excellent training stability. Although it resulted in longer
training times, a smaller batch size improved generalization, while a
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larger batch size accelerated learning but used more memory. The
selected batch size provided the perfect balance to ensure effective
and seamless training. We used AdamW to optimize different
parts of the network. Weight decay was used to regularize this
optimizer. This is an extension of Adam and helps prevent excessive
adaptation. AdamW was chosen because of its efficiency, reliability,
and adaptability.

4.3.3 Regularization Techniques

To keep our ear print recognition model from overfitting the
training set, we used several techniques to enhance its generalization
to new, unseen data. We also used mix-up augmentation, which
blends image pairs and their labels using a beta distribution.
Overfitting is a common problem in deep learning, where the model
becomes too tuned to the training data and performs poorly on other
data. For example, cropping, rotating, or turning over horizontally.
This model was able to identify important characteristics that were
not connected to a particular image version by being exposed to a
wider variety of images. This technique has increased the flexibility
of the model and reduced the possibility that it would memorize the
training data.

We also used dropout in the classification part of the model.
Dropout works by ”dropping” several neurons during training to
ensure that the model does not become too dependent on neurons.
encourages more creative and flexible learning. This makes it more
difficult for the model to find multiple paths to the same end result,
preventing it from becoming stuck using a single strategy. To regulate
the training dynamics, we employed a learning rate scheduler, more
precisely the OneCycleLR scheduler, which modifies the learning
rate in a cyclic manner. If the validation accuracy stopped improving
after a few epochs, the scheduler would reduce the learning rate. This
approach helped prevent overfitting by giving the model more precise
fine-tuning capability during the final stages of training.

Finally, we integrated weight decay (L2 regularization) using
the AdamW optimizer. By punishing heavy weights, this method
encourages the model to maintain a smaller, more balanced weight.
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4.4 Performance Evaluation

This subsection presents a careful evaluation of the proposed
ResNet50-based model, evaluating its performance through standard
metrics and training behavior. It advance incorporates comparative
analyses with other well-known deep learning models implemented
in this work, such as VGG16, EfficientNet-B0, AlexNet, and
DenseNet121. At last, a comparison with existing state-of-the-art
models from the literature is given to highlight the effectiveness
and competitiveness of our approach within the context of ear print
recognition.

4.4.1 Performance Evaluation of the Final ResNet50-Based
Model

To evaluate the viability of the proposed ear recognition system,
we prepared and evaluated our improved ResNet50-based model on
the AMI Ear Dataset. This section presents the ultimate performance
metrics, visual examinations, and experiences with the model’s
generalization capabilities on the held-out test set. These results
reflect the final performance after applying all architecture-level
improvements, including a custom classification head, advanced data
augmentation methodologies, mixup regularization, post-training
weight averaging, and test-time augmentation. The objective
was to maximize execution potential while maintaining robust
generalization.

Accuracy and Performance

With our best model checkpoint (before averaging), the model’s
final test accuracy was 99.29%. demonstrating the model’s robustness
and ability to generalize. Given the ear print dataset’s relatively small
size and intra-class variation, these results are quite promising.

Table 4.2 presents the main training metrics used in our model
evaluation.
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Table 4.2: Model Training Metrics
Metric Value
Best Validation Accuracy 99.29%
Number of Epochs 10
Batch Size 32
Optimizer AdamW
Learning Rate Strategy OneCycleLR
Mixup Alpha 0.4
Label Smoothing 0.1

Training and Validation Curves

We illustrated the accuracy of both training and validation over
epochs to track convergence and training stability. When label
smoothing, mixup, and dropout are applied, the model shows smooth
convergence and astonishingly little overfitting, as seen in Figure 4.5
below.

Figure 4.5: ResNet50-model Training and Validation Accuracy plots

The validation accuracy closely resembles the training accuracy,
showing that the model should generalize well to unknown data.
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Figure 4.6: ResNet50-model Training and Validation Loss plots

As seen in Figure 4.6, the validation loss closely follows the
training loss, diminishing steadily and converging similarly. This
consistent descending trend without significant divergence shows the
model is learning effectively without overfitting.

4.4.2 Comparison of the obtained results

This subsection evaluates the performance of the ResNet50-based
model by comparing it with other popular deep learning models,
such as DenseNet121, VGG16, EfficientNet-B0, and AlexNet. The
fact that each model was trained and evaluated under the same
conditions allowed for a fair comparison that shows the advantages
and disadvantages of each approach in the ear print recognition test.

Training and Evaluation of VGG16 Model

We utilize a pre-trained VGG16 convolutional neural network to
put together a human ear recognition system that has been fine-tuned
to the AMI Ear Dataset.

The process begins with setting data augmentation schemes for
training and standardized preprocessing for testing. We split the data
into the training and test sets and create data loaders. We loaded
a slightly modified version of VGG16 that has been trained with
ImageNet parameters, ”freezing” the layers that perform low-level
feature extraction.

The classifier portion is removed and replaced with a custom
classifier head, specific to the number of ear classes (100). The
model is trained using mixup augmentation, label smoothing, and
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mixed-precision training to help aid generalization and reduce training
time.

A OneCycle learning rate and AdamW optimizer improve
convergence during training. After the model is trained, the model
with the highest validation accuracy is saved based on performance on
the validation set, and we performed an additional averaging step to
the parameters to smooth the weights, which is helpful for robustness.

Finally, we performed test-time inference with no augmentation
and calculatedthe final accuracy. During training, we tracked loss and
accuracy metrics for both training and validation and viewed them
(Figure 4.7).

Figure 4.7: VGG-Model Training vs Validation Accuracy

Figure 4.8: VGG-Model Training vs Validation loss

As illustrated in Figure 4.8, training and validation accuracy
increase steadily.

Training and Evaluation of EfficientNet-B0
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We employed a deep learning pipeline using the EfficientNet-B0
architecture. The model is first initialized with pre-trained weights
from ImageNet. Next, the backbone feature extraction layers were
frozen to extract the knowledge in the network. Then several layers
were constructed using a custom classifier head for the number of ear
print classes in the dataset.

After the dataset is split into train and test sets (80/20), we
then used other appropriate data augmentation methods on the
training data; we applied normalization and testing transformations
to the validation and test sets. The model was constructed
using several advanced methods to improve performance and
efficiency. These methods included label smoothing, use of the
AdamW optimizer, the OneCycle learning rate schedule, and use of
automatic mixed-precision training to speed up computations; mixup
augmentation was also used during training to improve generalization.

Then the model was evaluated after each epoch using the
validation set, and we kept a copy of it, then post-processed by
averaging together the last model we trained and the one that had the
best validation accuracy to try and stabilize final model performance.

During training, we tracked loss and accuracy metrics for both
training and validation and viewed them.

Figure 4.9: EfficientNet-B0-Model Training vs Validation Accuracy

As depicted in Figure 4.9, training and validation accuracy
increase steadily, reflecting stable and effective learning..
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Figure 4.10: EfficientNet-B0-Model Training vs Validation Loss

Figure 4.10 presents a decreasing trend in training and validation
loss, indicating good model convergence.

Training and Evaluation of AlexNet

We try to apply AlexNet architecture on our task which is human
ear recognition. In the first step, we applied augmentations for
the training dataset, which included resizing, random cropping, and
random horizontal flipping, to facilitate generalization in the model.

The validation dataset went through fewer and less varied
augmentations. The AlexNet architecture was taken from TorchVision
and is pre-trained on ImageNet; the model and learned weights
were downloaded. The classifier mechanism was modified for a
classification problem with 100 classes output.

To minimize overfitting and achieve better performance, dropout,
batch normalization, and SiLU activations were added. Additionally,
the convolutional layers of AlexNet architecture were frozen so that
the learned features from the original training from ImageNet could
also be fine-tuned and used in our study. Utilizing the Mixup
method for augmentations of image-label pairs during training not
only regularized the model but also enhanced the robustness of the
model. Training the model utilized automatic mixed precision (AMP),
optimized for packaged acceleration and reduced memory utilization.

The AdamW optimizer with weight decay was utilized in
conjunction with a OneCycleLR learning rate scheduler. During each
epoch, training and validation losses and accuracies were recorded,
and model weights were saved progressively. Subsequently, model
averaging was applied by averaging the final weights of the model
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with the weights from the best checkpoint to further optimize
generalization. Test-Time Augmentation (TTA) and accuracy,
precision, recall, and F1 score metrics were used for model evaluation.

Training dynamics were visualized by plotting loss and accuracy
as a function of epoch. This rudimentary and efficient TTA pipeline
allows for training, evaluation, and deployment of an ear biometric
recognition system using a fine-tuned AlexNet model on the AMI
dataset.

Figure 4.11: AlexNet-Model Training vs Validation Accuracy

According to Figure 4.11, accuracy improves steadily during
training and validation.

Figure 4.12: AlexNet-Model Training vs Validation Loss

As shown in Figure 4.12, the plot illustrates a consistent decrease
in loss, indicating stable model convergence.

Training and Evaluation of DenseNet121

55



Chapter 4. Results and Evaluation

The DenseNet121 model was trained using PyTorch for the
classification of ear prints with the AMI Ear dataset. The dataset was
loaded via the ImageFolder class and divided into 80% for training and
20% for testing. Data augmentation techniques were used to increase
the generalization of the model. The DenseNet121 model pre-trained
on ImageNet was used as a feature extractor by freezing convolutional
layers and then replacing the classifier with a new, fully connected
layer suitable for our dataset.

The OneCycleLR scheduler was used to update the learning
rate throughout the training, with AdamW as an optimizer in the
model training. For decreasing memory consumption and speeding
up training, we went for an automatic mixed precision approach.
Mixup data augmentation was applied during random mixing training
with ground truth mixed accordingly as supervision signals to increase
robustness in the training process. After each epoch, the precision,
recall, and F1 scores were calculated, along with a mean evaluation
of the model in the validation set.

The best model was selected on the basis of the highest validation
accuracy. Thus, the training versus validation accuracy and loss
were plotted to better understand the training progress. Test-time
augmentation was then used during the inference stage to help
improve the model’s performance. Then, all performance metrics,
such as precision, recall and the F1 score, were calculated for
the training and validation datasets, providing a comprehensive
evaluation of the effectiveness of the model.

Figure 4.13: DenseNet121-Model Training vs Validation Accuracy

According to Figure 4.13, the training and validation accuracy
curves demonstrate consistent improvement over epochs, indicating
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effective learning.

Figure 4.14: DenseNet121-Model Training vs Validation Loss

As shown in Figure 4.14, the loss steadily decreases during
training, reflecting stable model convergence.

Comparison of ResNet50-Model with
implemented architectures

We compared our ResNet-Model with other architectures
implemented in our experiments, include DenseNet121, AlexNet,
VGG16, and efficienNet-B0. We evaluated and compared each
model’s performance using a variety of metrics, including F1-score,
recall, accuracy, and precision. We analyzed the outcomes to see
which design performed the best in terms of correctly recognizing and
predicting individuals. We take into account variables like training
time and model complexity.

Table 4.3 provides a summary of the evaluation outcomes of
several models and techniques:

Table 4.3: Comparison of the proposed ResNet50 model with other implemented
models.

Method Accuracy Precision Recall F1 Score

ResNet50 (Proposed) 99.29% 0.9957 0.9929 0.9930

VGG16 97,86% 0.9811 0.9730 0.9722

EfficientNet-B0 96.43% 0.9600 0.9600 0.9600

AlexNet 69.29% 0.7518 0.6929 0.6780

DenseNet121 74.29% 0.8512 0.7429 0.7414

57



Chapter 4. Results and Evaluation

Based on the evaluation measurements, the proposed
ResNet50-based model illustrated the strongest performance,
accomplishing an accuracy of 99.29%, with a precision of 0.9957,
a recall of 0.9929, and an F1-score of 0.9930. These results
clearly show that the model is profoundly competent in recognizing
between-person ear prints with great generalization. Additionally,
despite how profound it is, ResNet50 remains generally effective due
to residual connections, which ease the training process and reduce
degradation.

In comparison, VGG16 performed well also with an accuracy of
97,86%, precision of 0.9811, recall of 0.9730, and F1-score of 0.9722.
Whereas VGG16 is known for its simplicity and solid representational
control, it is computationally heavier and slower to train due to its
profound consecutive architecture and need for shortcut connections.

EfficientNet-B0 appeared to have balanced metrics, too, coming
to 96.43 accuracy, and uniformly scoring 0.96 in precision, recall,
and F1-score. EfficientNet is known for its optimized scaling of
depth, width, and resolution, which can be useful for deployment in
low-resource environments. However, in this case, ResNet50 slightly
beat it in both accuracy and precision.

The execution of AlexNet was essentially lower than the others,
with an accuracy of 69.29%, precision of 0.7518, recall of 0.6929,
and F1-score of 0.6780. This outcome is expected as AlexNet is
an older architecture that needs depth and complexity to manage
fine-grained biometric recognition assignments. At last, DenseNet121
accomplished 74.29% accuracy, with a precision of 85.12%, recall
of 74.29%, and F1-score of 74.14%. Whereas DenseNet exceeds
expectations at feature reuse through its dense connections, its
generally low accuracy and recall in this task suggest it may not be as
well-suited to ear print recognition without extra tuning or training
data.

Overall, ResNet50 is a solid and reliable option for biometric
identification utilizing ear prints since it not as it were accomplished
a great adjust between accuracy and computational efficiency, but
it too for the most part gotten the most excellent performance
measurements. ResNet50 is the foremost effective model among
those evaluated when the trade-offs between model complexity,
performance, and flexibility are taken into consideration.
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Figure 4.15 presents a comparative analysis of model performance
based on classification accuracy.

Figure 4.15: Classification accuracy of evaluated models

4.4.3 Comparison of ResNet50-Model with Existing works

In this subsection, we compare the performance of our ResNet-50
model on the AMI dataset with several existing models evaluated on
the same dataset, which contains 100 samples. Table 4.4 presents a
comparative analysis of our ResNet-50 model against other existing
approaches. While CFDCNet achieves the highest accuracy of 99.7%,
our ResNet-50 model also performs strongly with an accuracy of
99.29%, demonstrating its effectiveness in ear recognition.
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Table 4.4: Comparison of our ResNet50 model with existing models
Model Architecture Preprocessing Technique Accuracy (%) References
EfficientNet B7 Data Augmentation (DA-S) 99.3% [34]
MobileNet Data Augmentation (DA-S) 96.4% [34]
ResNet152 Ensemble Fine-tuning with Ensembles 99.64% [6]
VGG-13-16-19 Ensemble Fine-tuning with Ensembles 97.5% [5]
ResNet50 Fine-tuning 98.66% [52]
VGG16 Fine-tuning 96.07% [52]
MobileNetV2 Data Augmentation 94.0% [28]
VGG19 Data Augmentation 92.22% [28]
DenseNet-121 Feature Fusion 97.0% [60]
CFDCNet Feature Fusion 99.7% [60]
DeepBio (CNN + Bi-LSTM) Data Augmentation 98.57% [10]
ResNet50 Data Augmentation 99.29% Our work

In comparing our ResNet Model to existing models, we have
accomplished notable results and made significant contributions in
addressing the challenge of human ear print recognition. Our
ResNet-Model illustrated an accuracy of 99.29%, with a precision
of 99.57%, a recall of 99.29%, and an F1 score of 99.30%. These
measurements demonstrate the model’s capacity to precisely identify
individuals.

We outperformed the ResNet50 model with fine-tuning with our
ResNet50-based model, by achieving 99.29% accuracy, compared
to the accuracy of 98.66% achieved by fine-tuned ResNet. This
improvement comes as a result of our extra enhancements, which
boosted the model’s capacity to generalize. Layer freezing, a custom
classifier head, and advanced augmentation techniques like Mixup and
TTA were some of these enhancements.

In comparison to EfficientNet B7, which accomplished 99.3
accuracy, our model performs nearly identically. This result
is particularly notable considering EfficientNet’s computational
complexity compared to our streamlined ResNet50-based architecture.

Additionally, our model outperformed MobileNet, which achieved
an accuracy of 96.4%, demonstrating the significance of our
fine-tuning strategy and deeper residual connections on the ear print
dataset.
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Additionally, our model outperformed MobileNet, which achieved
an accuracy of 96.4%, demonstrating the significance of our method
of selective layer adaptation in conjunction with targeted data
augmentation on the ear print dataset.

When assessed against the ResNet152 Ensemble, which comes to
a slightly higher accuracy of 99.64%, our model remains competitive
while maintaining a strategic distance from the computational
overhead presented by ensemble strategies.

Compared to the VGG-13-16-19 Ensemble (97.5%), VGG16
(96.07%), and VGG19 (92.22%), our model showed essentially
way better performance, assist approving the superiority of our
model in extracting discriminative features significant for biometric
identification.

Our model illustrated a critical accuracy gain when compared
to MobileNetV2 (94.0%) and DenseNet-121 (97.0%), proposing that
our training pipeline and architectural adjustments resulted in more
successful learning from the limited data accessible.

Lastly, even though CFDCNet somewhat beat our model with
an accuracy of 99.7%, our approach remains highly competitive
and simpler to implement and replicate utilizing standard tools and
architectures.

Overall, our ResNet50-based model performs well and passes
the results of the well-known deep learning models that we
implemented. our model achieves a very good accuracy and
exceptional precision, recall, and F1-score values. These results
illustrate the model’s potential for practical biometric applications
by highlighting its reliability and effectiveness for human ear print
recognition. The comparison study confirms that our training
strategies and architectural choices significantly upgrade the quality
of its performance.

4.5 Evaluation in Real-World Scenarios

4.5.1 Real-World Ear Print Data Collection

We tested our ear print recognition system on the AMI dataset,
which was chosen due to its real-world variability. Unlike controlled

61



Chapter 4. Results and Evaluation

datasets used for training, AMI features ear images from public
websites, with differences in lighting, head pose, camera angles,
and occlusions caused by hair or accessories—very near real-world
conditions.

We employed a bespoke PyTorch data loader to eliminate
damaged files and provide clean inputs for testing.

This approach allowed us to gauge how effectively the model
generalizes outside controlled conditions, providing a glimpse into its
real-world performance.

4.5.2 Performance Under Challenging Conditions

This section contains some real examples of situations where we
tested the ResNet50 model with images from the AMI dataset where
we found images of the ear in challenging lighting conditions, objects
(in some cases representing accessories), or images of the ear using
off-axis shooting angles.

1. Lighting Conditions
In this instance, the model was fed an image that was not well
lit. Shadows or dim lighting presented a visual challenge, but the
model was able to identify the subject with a respectable level of
accuracy.
Figure 4.16 shows the tested ear that is exposed to strong
lighting.

Figure 4.16: Example of light conditions image

2. Angle and Ear Orientation
The case here shows an image of an ear taken from an oblique
angle. This type of angle can be difficult for the model;
nevertheless, the experiment showed reasonable recognition.
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Figure 4.17 shows the ear used for testing, which was taken at
an oblique angle.

Figure 4.17: Example of Angle and Ear Orientation image

3. Accessories and Occlusions
An ear with earrings and some hair covering it is seen in the
following picture. The model was able to identify and distinguish
it in spite of this partial obstruction.
Figure 4.18 shows the tested ear, partially covered by hair and
adorned with earrings.

Figure 4.18: Example of ear image with Accessories

4.5.3 Accuracy of the Ear Recognition Model Under
Challenging Real-World

In Table 4.5 below, we present a summary of the model’s
performance with respect to various real-world conditions (e.g., low
light, with or without accessories, orientations of the ears). These
results were based on a small, manually specified sample from
the AMI dataset and are not intended for statistical performance
interpretation; they are intended to give some indication of
performance.

• The accuracy values are based on a small manually selected
sample and are indicative, not statistically significant.

63



Chapter 4. Results and Evaluation

Table 4.5: Model performance under different test conditions.
Condition Number

of Test
Images

Correct
Predictions

Accuracy
(%)

Observations

Low Lighting 5 3 60% Overall, a satisfactory
performance, but the images are
rather dark.

Accessories
(Earrings,
Glasses)

5 4 80% The model successfully
accommodated partial occlusions
due to earrings and glasses.

Different
Angles

5 4 80% A slight drop in accuracy when
the ear was partially angled.

4.5.4 Generalization Capability and Real-World Simulation

The model’s generalization ability was evaluated with the AMI
dataset and with ear images acquired more naturally, with less
controlled parameters by the human subjects themselves. Especially
with regard to the variation of features such as lighting variations,
ear angle/orientation differences, personal accessories that could vary
whether or not they pose a challenge under the authentication of
individuals, and partial occlusions such as hair placement. While
the model was only conducted on the AMI dataset, it was able to
show a good prospect and ability to be able to recognize individuals
given these variations. This evaluation shows some potential ability
for the model to interact in these circumstances, like an everyday
scenario using security systems, while things like distance to the
camera and movement were not evaluated in the current context.
The current evaluation offers support for the model to be resilient to
moderate variations and everyday outdoor natural settings. Future
opportunities may include additional testing and field studies to
further these assertions.

4.5.5 Limitations and Observations

The model performed well, achieving a strong accuracy of 99%
under scenarios that were similar to its training data. It was able to
reasonably generalize to other situations where there were moderate
differences, for example, lighting conditions, camera angle, and partial
occlusion. While the model was trained on a single dataset, the
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performance was consistent in all ’real-life’ situations.

Limitations

• The system was trained and tested on the same dataset, which
could limit the generalisation to other datasets.

• The model was not tested in real-time or deployment situations
where users may change their distance, move around, or use the
system live.

• The model was not tested in varying backgrounds that may
influence performance in uncontrolled or dynamic environments.

4.6 System Interface

The main page of the developed GUI is shown in Figure 4.19.

Figure 4.19: Home Page

The graphical user interface (GUI) of our Ear Recognition System
is planned to be simple, instinctive, and user-friendly. It permits users
to interact with the model effectively for real-time ear recognition.
The interface comprises of the following main components:

1. Title Display (Label 1): Situated at the top of the window,
the title “EAR Recognition SYSTEM” clearly distinguishes the
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purpose of the application. It gives users with immediate context
about the system.

2. Image Selection Button (Label 2): The button labeled
“SELECT EAR IMAGE” permits the user to browse and upload
an picture of an ear from the local machine. This triggers the
recognition process by passing the chosen picture through the
trained model.

3. Image Display Area (Label 3): After a picture is chosen, it is
displayed within the center of the interface. This visual feedback
ensures the client that the right picture has been loaded into the
system.

4. Prediction Result (Label 4): Once the picture is processed,
the predicted identity is shown in green text below the picture
region, such as “Person:023.” This demonstrates the recognition
result based on the model’s prediction.

The framework’s primary functions—picture selection, display, and
recognition—are condensed into a simple and easily usable interface.
Even for non-technical people, the simplicity ensures ease of use.

4.7 Conclusion

In this chapter, we have provided a detailed assessment of the
ear print recognition system that we proposed. Upon training and
optimizing, the model reached a high percentage of 99,29% accuracy,
which shows that we had significant success both with conscious
selection of architecture and with the training methods we discussed.
We relied on standard performance metrics of precision, recall, and
F1-score to evaluate our proposed system, all yielding a good level of
accurate individual differentiation capacity.

In spite of the encouraging results from our study, more ongoing
work is needed to ensure robustness in more challenging, dynamic
situations or variable distances from the camera. Overall, the
system showed strong reliability and accuracy, making it a promising
biometric solution in the real world.
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Conclusion and Perspectives

In this thesis, we performed a thorough investigation of ear print
identification, which has been viewed as a future advanced biometric
technique. Our goal was to solve the problems associated with
biometric identification with great precision in identity confirmation.
We implemented an effective system using deep learning algorithms.
We commenced our research with an extensive literature review to
explore the importance of ear biometrics and its characteristics and
the challenges and research needs essential to develop more accurate
and dependable models.

Our system used the AMI database, which consists of images
depicting the type of the problems with the diverse ears, different
light conditions, existence of the occlusion, and the varying ear
orientation, and its imagery was similar to a realistic test condition.
For the best performance, we used the ResNet50 model as the base
model and implemented transfer learning in order to retain prior
knowledge. We proposed augmentation and regularization for this
purpose and realized performance improvements. We compared
our method systematically with other deep learning models such
as the VGG and the EfficientNet. In our work, we observed that
ResNet50 provides the best trade- off between classification accuracy
and computational cost, achieving 99.29% accuracy, which is higher
than the results reported in earlier studies.

Our system demonstrated high resilience to real-world challenges
such as different shooting angles and non-ideal lighting, demonstrating
the model’s robustness and applicability in diverse practical
environments. However, we acknowledge that our study was limited
to high-quality data, and we have not yet tested the system in motion
scenarios or highly variable shooting conditions such as long distances.

As future work, we suggest augment the database with additional
earprint images under realistic conditions (with respect to motion
blur, low resolution, and distance) to better prepare the model
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for robustness and generalizability to different conditions. We also
want to experiment with advanced deep-learning architectures like
Vision Transformers and the optimization of the model for use on
constrained devices. We will also consider hardware differences and
real-time performance, and we will evaluate the system in practical
applications to further strengthen its reliability and efficiency in
real-world environments.
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