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Abstract

Soil quality prediction (SQP) plays a crucial role in agriculture, environmen-
tal management, and civil engineering. Traditional assessment methods, such
as laboratory analyses and field surveys, are often time-consuming, costly, and
limited in spatial coverage. This work aims to develop an intelligent system for
predicting soil quality and recommending suitable crops using machine learn-
ing and geospatial data. To achieve this, two key experiments were conducted.
In the first experiment, four models (RBFN, Light GBM, XGBoost, and DNN)
were applied to SoilGrids data, including physical and chemical characteristics
of the soil. The XGBoost model achieved the best performance R? = 0.98, re-
asserting its suitability for SQP tasks. The second experiment used a two-stage
prediction architecture. The first stage trained 36 separate regressors to pre-
dict soil and environmental conditions from geolocation data. These predictions
were then used in a Random Forest model to estimate the Soil Quality Index
(SQI). The second stage employed a cosine similarity-based method to recom-
mend the most suitable plant species based on the predicted site conditions.
The entire system was deployed as an interactive web application, where users
can query real-time SQI maps and receive personalized crop recommendations.
Future enhancements include incorporating more localized data, particularly

from Algeria, and expanding the spatial coverage of the system.

Keywords: Soil Quality Prediction, Machine Learning, Geospatial Modeling, Plant
Suggestion System.



Résumé

La prédiction de la qualité du sol (SQP) joue un role crucial dans 'agriculture, la
gestion de I'environnement et le génie civil. Les méthodes traditionnelles d’évalua-
tion, telles que les analyses en laboratoire et les enquétes de terrain, sont souvent
longues, cotiteuses et limitées en couverture spatiale. Ce travail vise a développer
un systeme intelligent capable de prédire la qualité du sol et de recommander des
cultures adaptées, en utilisant ’apprentissage automatique et les données géospa-
tiales. Pour cela, deux expériences principales ont été menées. Dans la premiere
expérience, quatre modeles ont été testés : RBFN, Light GBM, XGBoost et DNN,
en utilisant les données de SoilGrids contenant des caractéristiques physiques et
chimiques du sol. Le modele XGBoost a obtenu les meilleurs résultats avec un
score de RZ = 0.98, confirmant son efficacité pour les tdches de SQP. La deuxiéme
expérience repose sur une architecture de prédiction en deux étapes. La premiere
consiste a entrainer 36 régressions indépendantes pour prédire les caractéristiques
du sol et de 'environnement a partir des coordonnées géographiques. Ces prédic-
tions sont ensuite utilisées dans un modele Random Forest pour estimer I'indice de
qualité du sol (SQI). La deuxieme étape applique une méthode basée sur la Cosine
Similarity afin de recommander les plantes les plus adaptées en fonction des con-
ditions environnementales prévues. Le systeme final est déployé sous forme d’une
application web interactive permettant d’accéder a des cartes SQI en temps réel
ainsi qu’a des recommandations personnalisées de cultures. Les améliorations fu-
tures incluent 'intégration de données locales, notamment en provenance d’Algérie,
et 1’élargissement de la couverture spatiale du systeme.

Mots clés: Prédiction de la qualité des sols, apprentissage automatique, modéli-
sation géospatiale, systeme de suggestion de plantes.



Contents

[List of Figures| xi
[List of Tables| xii
[List of Acronyms| xiii
Introductionl 1
(1 Basic Concepts| 2
(L1 TIntroductionl. . . . . . . . . ... 2
(1.2 Soil Quality| . . . . . . . . .. 2
1.2.1 il Indicatorsl . . . . . .. ... 2

(1.2.2  Soil Quality Index| . . . . ... ... ... .. ........ 3

[1.3  Geographical Information Systems (GIS)[. . . . .. ... ... ... 5
[1.3.1  Geo-Spatial data analysis techniques| . . . . . . . .. .. .. 5

[1.3.2  Machine Learning techniques for geospatial analysis| . . . . . 6

(.4 Machine Learning (ML)| . . . . ... ... ... ... ... ..., 6
1.4.1 ndom Forest| . . . . . . ..o 7

[1.4.2  XGBoost (Extreme Gradient Boosting) . . . . .. .. ... 8

[1.4.3 Radial Basis Function Network (RBFN)| . . . ... ... .. 8

[1.4.4  Deep Neural Networks (DNNs)| . . . . ... ... ... ... 9

[[.5_ Conclusionl . . . .. . . . . . ... 10
2_State Of The Artl 11
2.1 Introductionl. . . . . . ... o 11
2.2 Traditional Methods . . . . . . .. . ... 0oL 11
[2.3  Machine Learning methods| . . . . . .. ... ... ... ... ... 12

viil



Contents

2.4 Deep Learning Methods| . . . . . . ... ... ... ... ... ..
2.5 Conclusion| . . . .. .. ...

B Introductionl. . . . . . .. ... ..
(3.2 Experiment I: Mapping SQI using best regressor|. . . . . . . . . ..
I;i;z;l Dgllil:sg:t !:g!llgzg:lig!lﬂ ------------------------
[3.2.2  Preprocessing| . . . . ... ... .o oL
[3.2.3 Modelingl . .. ... ...
[3.2.4 Results and Discussionl . . . . . . ... .. ... ... .. ..

[3.3  Experiment II: extending SQI Mapping with Plants Suggestion|
1 D llection| . . . . . . ...
3.3.1.1 FEnvironmental Datal . . . . ... ... ... ... .
3.3.12 Plant Norm Datal . . . . ... ... ... ... ...
[3.3.2  Preprocssing| . . . ... ... o0
[3.3.3 Modelingl . .. ... ... ...
[3.3.3.1  Fertility Analysis| . . . . . ... ... ... ... ..
[3.3.3.2  Plant Suggestion| . . . . . ... ... ... ... ..
[3.4  SoilTech web application| . . . . . . .. ... ... ... .. ... ..
|$‘i|5[i E:szlls:l!l;iigllll -------------------------------

[Conclusion and Perspectives|

[References|

[A° Annex : Deposit license certificate

ix

16
20

22
22
22
22
23
24
25

29
29
29
29
33
33
35
37
42

44

45

48



List of Figures

.1 Different Soil quality indicators EI Behairy et al] (2024a)] . . . . . . . . 3
[L.2 General architecture of a Random Forest| . . . ... ... ... .. 8
[L3 Structure of RBF modell. . . . . . . . . .. ... ... ... ..... 9
2.1 _Architecture of the multi-task network) . . . . . . . . ... ... ... 17
[2.2  Examples of soil image used to develop Al program for soil classifi- |
[ cafiond . . . . . L. 18
[2.3  Image of model’s multi-layer structure| . . . . . ... ... ... .. 19
[3.1 The pertormed SQP pipeline|. . . . . . . ... ... ... ... ... 23
[3.2  Architecture of the LightGBM model| . . . . . ... ... .. ... . 24
3 Archi re of the XGB modell . . . .. ... 24
13.4  Architecture of the Radial Basis Function Network (RBFN)[ . . .. 25
13.5  Architecture of the Deep Neural Network (DNN)[ . . . ... .. .. 25
[3.6  Soil Quality Index Map.| . . . . ... ... ... .00 26
[3.7  Pipeline for identifying and mapping optimal plant species| . . . . . 28
[3.8  Comparison of soil pH maps before and after imputation| . . . . . . 30

[3.9  Screenshots of the resulting datasets after the complete preprocessing| 32

[3.10 Feature Regressor architecturel. . . . . . . . . .. .. ... ... .. 33
[3.11 SQI Regressor architecturel . . . . . . . . . ... ... ... ..... 34
312 R and RMSE curves| . . . . . . .o vvvi 34
13.13 Interactive Soil Quality Index (SQI) Map|. . . . . . . . ... .. .. 35

[3.14 Interactive SQI and plant-suggestion map implemented with Leaflet.| 37

13.15 Alert shown when the selected point lies outside the study area (no |

| data available)| . . . . . . .. . 37
[3.16 About us section| . . . . . . . .. 38
[3.17 Plans sectionl . . . . . . . . ... 38



List of Figures

18 Team 0 1 39
[3.19 Support contact section| . . . . . . ... ... L. 39
[3.20 Login section| . . . . . . . ... ... 40
[3.21 Free plan: interactive map displaying only the W-SQI heatmap.| . . 40
[3.22 Advanced plan: interactive map with coordinates, soil parameters, |

[ NPK, W-SOI. and limifed plant suggestions] . . . . . . . . ... .. 41
[3.23 Ultra plan: full interactive map interface.. . . . . . . .. .. .. .. 41
[3.24 Ultra plan: example popup showing coordinates, soil data, W-SQI, |

and plant suggestions] . . . . . . . . ... 42

xi



List of Tables

(1.1  Comparison of A-SQI and W-SQI methodologies|. . . . . . . . . .. 4

2.1 Recap. of the literature review on Soil Quality Prediction (sorted by |

AL . . . . e e e e 20

[3.1 Soil features description.| . . . . . . ... ... ... L. 23
[3.2  Comparison of the tour models based on execution time, RMSE, and |

[ R2scarel . . . . . .. 26
[3.3 Plant species and their growing requirements|. . . . . . . . . .. .. 29

4 __Environmental riables . . . .. ... oo 31

Xii



List of Acronyms

A-SQI Additive Soil Quality Index

CNN  Convolutional Neural Network

DNN Deep Neural Network

GIS  Geographical Information System
HLSF Homothetic Linear Scoring Function
IDW Inverse Distance Weighted

Light GBM Light Gradient Boosting Machine
ML  Machine Learning

PCA Principal Component Analysis

R?  Coefficient of Determination

RBFN Radial Basis Function Network

RF  Random Forest

RMSE Root Mean Square Error

SQ  Soil Quality

SQI  Soil Quality Index

W-SQI Weighted Soil Quality Index

XGBoost eXtreme Gradient Boosting

xiil



Introduction

Soil quality is not merely at the heart of farm performance but also of envi-
ronmental sustainability. Good soil quality assessment guides decision-making in
crop selection, fertilizer use, and sustainable land management. Conventional ap-
proaches, however, are based on extensive field sampling with subsequent laboratory
analysis that is resource-consuming, time-consuming, and spatially limited.

With the recent expansion in the availability of geospatial and environmental
data, an increasing emerging application of data-intensive approaches has appeared.
Among them, machine learning (ML) methods have been promising in providing
automated Soil Quality Prediction (SQP). Despite this, practical solutions that
integrate ML with spatial modeling for SQP are rare, especially localized, scalable,
and simple-to-use decision-making tools.

This study investigates the application of four machine learning models—Ra-
dial Basis Function Networks (RBFN), LightGBM, XGBoost, and Deep Neural
Networks (DNN)—to predict soil quality from geospatial information. Nine ma-
jor soil parameters—pH, nitrogen (N), phosphorus (P), potassium (K), clay, silt,
sand, bulk density, and organic carbon—are covered in the dataset that is derived
from SoilGrids. The models are compared to identify the best performing in the
prediction of soil traits at a broad range of locations.

Based on this, a two-stage artificial intelligence pipeline is suggested. The
highest performing model in stage one predicts environmental and soil features from
geographic coordinates. The predictions are used to estimate the Soil Quality Index
(SQI) through a Random Forest Regressor. In stage two, a recommendation system
employs cosine similarity to pair site conditions with plant growth requirements and
supply appropriate crop recommendations.

The system is designed as a web application offering soil analysis and plant
recommendations. The aim of this work is to provide an extensible and adapt-
able solution to assist farmers, agronomists, and decision-makers in improving farm
planning and land management.

The remainder of the thesis is structured as follows: Chapter [1] introduces
the background ideas on soil properties, geospatial modeling, and algorithms uti-
lized. Chapter 2] is an overview of prior relevant work in soil prediction and plant-
environment compatibility. Chapter [3| talks about experimental method, system
design, and testing and then current limitations and future trends.



CHAPTER 1

BASIC CONCEPTS

1.1 Introduction

This chapter is dedicated to the background of soil quality, Geospatial Infor-
mation System (GIS) as an important tool of mapping, MLs techniques used to
study the soil quality.

1.2 Soil Quality

The quality of soil plays a fundamental role in multiple aspects of life, partic-
ularly in agriculture, environmental sustainability, and land management.Sumathi
et all (2023)). As originally proposed in the early 1990s, soil quality refers to the
ability of a soil to perform its functions. More precisely, according to the USDA
(1994)7 soil quality is defined as the capacity of a specific type of soil, within its
natural or managed ecosystem boundaries, to sustain plant and animal productivity,
improve or preserve air and water quality, and support human health and ecosys-
tems. Soil fulfills five vital functions: it sustains plant and animal life, regulates
water flow, filters and breaks down contaminants, recycles nutrients, and provides
structural support. [Sepehya et al.| (2024)

1.2.1 Soil Indicators

Over the past three decades, the concept of soil quality (SQ) has evolved to
reflect the soil’s ability to perform essential ecological functions. It is determined
by the integration of physical, chemical, and biological characteristics, though it
cannot be directly measured. Instead, SQ is inferred through a range of indicators
that respond to environmental changes and land management practices. These
include commonly assessed properties which are illustrated in Figure(l.1|such as pH,
electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter

LUSDA: United States Department of Agriculture



Chapter 1. Basic Concepts

(SOM), and nutrient levels (N, P, K), all of which influence fertility, structure,
porosity, and ecosystem services.

- . * Soil texture, Soil depth, Soil structure
SO" p hy s'cal * Bulk density, Hydraulic conductivity, Porosity

properties * Saturation percentage, etc.

* Soil reaction (pH), Electrical conductivity

* Calcium carbonate, Organic carbon

* Cation exchange capacity, Sodium saturation

* Available nutrient content, Heavy metal content,
etc.

* Soil Organic matter content, Soil enzymatic
activity, etc.
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Figure 1.1: Different Soil quality indicators |El Behairy et al.| (]2024&[)

SOM is also highlighted specifically as a key indicator, given its importance in
soil aggregation, nutrient cycling, carbon sequestration, and general fertility. Litera-
ture indicates that the use of organic amendments to raise SOM improves soil health
and crop yields. Phosphorus and nitrogen are also important, with P frequently be-
ing the second most limiting nutrient after N. Soil pH plays a central role in nutrient
availability, SOM decomposition, and microbial activity, to be touted as the "mas-
ter variable.Calcium carbonate (CaCO ) has a beneficial effect through its ability
to increase water-holding capacity and reduce hydraulic conductivity. Soil texture
also exerts a powerful influence on water retention, aeration, and root development.
Coarse deep soils can have poor water retention potential, affecting productivity.
Lastly, while all types of indicators are important, biological indicators are found
to be more sensitive and immediate in their response to environmental change, and
hence particularly valuable for soil quality evaluation and guiding management de-
cisions. They offer a missing link between soil condition and crop performance for
more sustainable land use systems.El Behairy et al.| (2024a)

1.2.2 Soil Quality Index

In order to evaluate soil quality, a metric named Soil Quality Index is com-
puted. Several methods are proposed, in Damiba et al. (2024) two methodologies
were utilized to compute the SQI: the Additive Soil Quality Index (A-SQI) and the
Weighted Soil Quality Index (W-SQI).

The Additive Soil Quality Index (A-SQI) approach involves calculating
the arithmetic mean of the normalized scores of all selected soil indicators. Nor-
malization is achieved using a Homothetic Linear Scoring Function (HLSF) that
standardizes indicator values between 0 and 1. The formula for A-SQI is expressed
as:

1 n
A-SQI = Ei;si (1)

3
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where S; represents the normalized score of the i-th soil indicator, and n is the
total number of the considered indicators. This method treats all indicators equally
without assigning specific importance, making it simple and broadly applicable
when the relative impact of indicators is unknown.

In contrast, the Weighted Soil Quality Index (W-SQI) refines the A-SQI
by incorporating the relative importance of each soil indicator. Principal Compo-
nent Analysis (PCA) is first applied to identify key indicators and assign weights
based on the proportion of variance explained by each principal component. Each
normalized score is multiplied by its corresponding weight, and the weighted scores
are summed to obtain the final index. The W-SQI is computed as:

m
W—SQI = Zwi X Si (2)
i=1

where w; denotes the weight assigned to the i-th soil indicator derived from
PCA. This method provides a more sensitive and precise evaluation of soil quality,
particularly when certain indicators have a greater influence on soil functionality.

Additionally, the sensitivity of each SQI method was evaluated to determine
their responsiveness to differences in soil conditions. The sensitivity index (S) was
calculated as follows:

_ SQImax
B SQImin

Sensitivity (S)

(3)

where SQI,,.. and SQI,;, represent the maximum and minimum SQI values
among all study sites, respectively. This metric is useful for assessing the ability of
the SQI methods to distinguish between different soil quality levels.

A summary comparison between A-SQI and W-SQI is presented in Table [I.1]

Table 1.1: Comparison of A-SQI and W-SQI methodologies

Criterion A-SQI W-SQI

Indicator selection All indicators are equally in- | Selected indicators via PCA
cluded

Weight assignment No weights assigned (equal | Weights w; based on ex-
importance) plained variance

Formula ASQI=1y" s, W-SQI = Y | w; X S;

Sensitivity to soil | Lower Higher

variability

One of our goals is to map the soil quality index, therefore, we present in
Section [1.3] the existing mapping techniques.



Chapter 1. Basic Concepts

1.3 Geographical Information Systems (GIS)

Geographical Information Systems (GIS) are computer systems based on hard-
ware, software, and georeferenced data that can be used to collect, store, manage,
process, analyse, and visualize both spatial and non-spatial information represent-
ing real-world geographic phenomena . Georeferenced data refers to any data that
are linked to a location on the Earth’s surface through the use of a geographic or
projected coordinate system. GIS data are digital objects which represent real-world
entities and are defined by: their geometric properties (spatial location), their at-
tributes (characteristics associated with each object), and their topology (definition
of how entities are related to others in space). In other words, data provide means
to locate them in space and can be overlaid, calculated, manipulated, visualised and
analysed along with other data layers that use the same coordinate system. Each
entity in the real world is represented by a data layer with geometric and topologic
properties and an associated set of attributes, in the form of a table, which define
the characteristics of that entity. GIS facilitates the analysis of spatial relationships
within datasets based on the topological properties within the data. Topology refers
to the inter connectivity and interrelated properties between data and defines and
describes how spatial objects relate to their neighbors in space. Rogers et al.| (2024)

1.3.1 Geo-Spatial data analysis techniques

One key concept in map visualization is spatial interpolation which is defined
as using points with known values -sample-, the estimation of surface values at
unsampled points -population-"(Chang, |2019).

Geo-Spatial interpolation techniques can be classified in various manners(Changj,
2019), one way is the use points : if all points are used then it’s called global in-
terpolation such as, Trend Surface Models and regression; Otherwise, it is called
local interpolation using a part of known points. we cite : Thiessen Polygons,
Density Estimation, Inverse Distance Weighted (IDW) interpolation and Thin-Plate
Splines.

Another way is the ezactitude of interpolation, where methods are grouped
into exact and inexact interpolation, the first, predicts a value at the point location
that is the same as its known value while the second predicts a value at the point
location that differs from its known value.

The third way where spatial interpolation methods may be deterministic or
stochastic. The deterministic interpolation methods provide no assessment of errors
with predicted values, whereas the stochastic interpolation methods, considers the
presence of some randomness in its variable and offers assessment of prediction er-
rors with estimated variances. All the previously local methods, except kriging are
deterministic. The kriging is a stochastic local method.

The previous methods applied mathematical models where the deterministic
methods have no ground truth(Korstanje, 2023) and the stochastic are expansive
in computation(Dramsch, 2020)(the computation of the semi-variogram for kriging
is very expansive), it is necessary to search for other techniques that do the same
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tasks but with more efficiency. Thereafter why the machine learning techniques are
used.

1.3.2 Machine Learning techniques for geospatial analysis

The goal of Machine learning (ML) is the creation of models that can learn from
data (Flach| 2012), also ML provides a set of algorithms that can working with any
type of data: labeled or unlabeled; unstructured, structured or semi-structured;
sequential or unsequential; to solve different problems: classification (ANN, SVM,
KNN, CNN...), regression, clustering (k-means, HAC,DBSCAN. . .), dimensionality
reducing (PCA, FCA) sequential analysis (RNN, LSTM. . .).

Over the last 70 years (Dramsch, 2020) give an overview of the use of ML
in spatial data analysis, or named Geo-science. The first use of Artificial Neural
Networks in geographic was in 1980s, in seismic deconvolution with Hopfield neural
network. while a Support Vector Machines (SVMs) were utilized for land usage
classification using remote sensing early on 1999. However, Random Forests, faced a
delay in achieving wider acceptance, primarily because it’s name was not introduced
until the year 2001.

For spatial interpolation, a new architecture of ANN, named FBRN, is used,
where the activation function of the hidden layers is the "Radial Base Function”
(RBF) proposed for the first time in 1987 by Powell, M.J.D(Lin and Chen [2004)), to
solve the real multivariate interpolation problem. A Convolutional Neural Network
(CNN) was applied for the first time on image seismic interpretation in 2017 by
A.U. Waldeland and A. Solberg(Dramsch, 2020)).

By applying ML sequential models Recurrent Neural Networks (RNN) and
Long Short-Term Memories (LSTM), the spatial data analysis has a great devel-
opment exploring different existing data in the field. (Dramsch, 2020) cited some
applications. In 2017, researchers exploring unstructured text documents to ex-
tract the existing geological relation. Another application was seismological event
classification of volcanic activity, multifactor landslide displacement prediction, sed-
imentological sequences modeling and prediction of petrophysical properties from
seismic data.

Generative adversarial networks (GAN) were applied since 2017(Dramsch, 2020)
to generate samples from data by several researchers in automatic seismic interpre-
tation field.

1.4 Machine Learning (ML)

Machine learning involves developing algorithms that use data to attain domain
expertise and facilitate decision-making autonomously. Machine learning algorithms
differ from traditional programming in that they are data-oriented, making and
learning from decisions based on what they are given. Machine learning is typically
categorized into four general types: supervised, unsupervised, semi-supervised, and
reinforcement learning—each having its own characteristics and applications|Guer-
raoui et all (2024)
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With the rapid development of machine learning technology, as a regression
problem that helps people to find the law from the massive data to achieve the
prediction effect, more and more people pay attention. Data prediction has become
an important part of people’s daily life. Currently, the technology is widely used in
many fields such as weather forecasting, medical diagnosis and financial forecasting.
Therefore, the research of machine learning algorithms in regression problems is a
research hotspot in the field of machine learning in recent years. Huang et al.| (2020))

Regression is the procedure of typical association between two or greater than
two variables of interest concerning original elements of the data-set. It also com-
mand to launch the behavior of the association in the middle of variables on interest
that are describing the practical association between the variables and thus afford
an instrument for prediction or forecasting. It is a method of analysis and recog-
nizes the relationship between two or greater than two variables of interest. The
method that is adapted to execute regression analysis helps to realize whichever as-
pects are significant, whichever aspects fail to notice and in what way an individual
promoting one and all. Regression castoff for prediction and forecasting. Regres-
sion is a subset of supervised machine learning techniques to predict the pattern of
data.Kumar and Bhatnagar| (2022))

1.4.1 Random Forest

Random Forest (RF, also called standard RF or BreimanRF) is an ensemble
learning algorithm that makes classification or regression predictions by taking the
majority vote or average of the results of multiple decision trees. Due to its simple
and easy-to-understand nature, rapid training, and good performance, it is widely
used in many fields, such as data mining, computer vision, ecology, and bioinfor-
matics.LeCun et al|(2015) Random forests are a combination of tree predictors, as
illustrated in Figure such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all trees in the
forest. The generalization error for forests converges almost surely. to a limit as the
number of trees in the forest becomes large. The generalization error of a forest of
tree classifiers depends on the strength of the individual trees in the forest and the
correlation between them.Breiman (2001))
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Figure 1.2: General architecture of a Random Forest
Yang et al.| (2025)

1.4.2 XGBoost (Extreme Gradient Boosting)

The XGBoost (eXtreme Gradient Boosting) algorithm is a boosting-based en-
semble learning method that accomplishes learning by constructing and integrating
multiple weak learners. Its core principle involves iteratively adding different trees
to the model, allowing it to evolve through feature splitting. Each newly added
tree learns a new function, effectively fitting the residuals of the previous predic-
tion. Ultimately, the final predicted value of a sample is obtained by summing the
contributions of all trees in the model.Su et al.| (2023)

1.4.3 Radial Basis Function Network (RBFN)

The radial basis function (RBF) neural network is usually employed due to its
advantages such as its straightforward structure, higher estimation features, and a
rapid training process. The RBF network is a potent feed forward neural network
structure. A schematic diagram of a conventional RBF model is illustrated in

figure [1.3]
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Figure 1.3: Structure of RBF model

The processing algorithm of the RBF model consists of three layers: an input,
a hidden, and an output, respectively. All of the nodes in the layers are completely
linked to the former layer. The inputs are allocated to each node in the input layer
and then straightly delivered to the hidden layer. At last, weighted connections are
used to transfer the data to the output layer. The significant stage of this model
is the hidden layer where the RBF is applied as the activation function to produce
the vector distance multiplied by the associated bias. Ramezanizadeh et al.| (2019)

1.4.4 Deep Neural Networks (DNNs)

A Deep Neural Network (DNN) is one type of artificial neural network
with several hidden layers between the input layer and the output layer. The DNNs
are able to learn intricate concepts by constructing more abstract concepts out
of easier features.Assert that the depth of the networks, their non-linearity, and
the transformations applied at every layer make them extremely adept at grasping
intricate relationships among large datasets.

DNNS5 contain an input layer that takes in raw data, one or more hidden layers
that successively apply learned weights and activation functions to the data, and an
output layer that generates predictions, which are typically task-specialized (e.g.,
softmax for classification). Adding more hidden layers enables the network to learn
higher-level and abstract features, a fundamental concept of deep learning.

For alleviating typical problems such as vanishing gradients and overfitting, a
number of solutions have been proposed. Some include using activation functions
such as ReLU for preventing the gradient flow from being interrupted, and reg-
ularization techniques such as dropout, L2 regularization, and early stopping for
improving generalization. Batch normalization is also typical for training stabiliza-
tion and acceleration.

DNNs have been used with tremendous success in a wide range of applica-
tions, including computer vision, speech recognition, natural language processing,
time series forecasting, and reinforcement learning. They are so versatile because
they can learn features from the data itself, which reduces the need for feature
engineering.Bishop and Bishop)| (2024])
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1.5 Conclusion

In chapter one, we have had a detailed discussion of the fundamental concepts
that form the foundation of our study of soil quality mapping. We have addressed
the principles of soil quality evaluation and its major indicators as well as the
quantitative measurement techniques such as the A-SQI and W-SQI methods. Fur-
thermore, we have covered the use of GIS in spatial data analysis and talked about
advanced computation techniques such as Random Forest, XGBoost, RBFN, and
Deep Neural Networks. Having established this solid theoretical base, we are now
poised to move forward into the challenging application of soil quality mapping
techniques in the following chapters. We will explore the systematic evolution of
these predictive models, assess pertinent research contributions, and investigate the
technological innovations that have spurred progress in this area. This integrated
philosophy will be our guiding principal as we strive to push the state of the art in
soil quality evaluation and mapping technologies.
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CHAPTER 2

STATE OF THE ART

2.1 Introduction

This chapter explores the principal work, and the results achieved in the past
years on soil quality prediction. We divide our review into two sections, which are
ML-based methods, and deep learning-based methods.

2.2 Traditional Methods

Brady and Weil (2016|) emphasize that traditional soil testing involves a set of
standardized laboratory tests developed over decades to determine important soil
characteristics. These include:

« Mechanical analysis to determine the soil texture (sand, silt, clay fractions)
using tests such as the hydrometer or pipette method.

« Chemical analysis for major nutrients such as nitrogen (via Kjeldahl diges-
tion), phosphorus (via Bray or Olsen extraction), and potassium (using flame
photometry or atomic absorption spectroscopy).

« Soil pH from water or salt solution (e.g., 1:1 soil-water solution).

e Organic matter content obtained from loss-on-ignition or Walkley-Black
analysis.

They note that while these methods provide strong, benchmark data, they are
spatially limited, require specialized laboratory equipment, and tend to lag due to
transportation of samples and laboratory processing.

“Although these tests are essential for understanding soil fertility, their
applicability is often constrained when real-time or large-area assess-
ments are needed.”

11
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— Brady & Weil, 2016

While scientifically rigorous and standardized, they are time-consuming, labor-
intensive, and costly. Furthermore, they have limited spatial generalizability be-
cause each soil sample represents only a small area. This has motivated growing
interest in more scalable, data-driven approaches that complement or replace tra-
ditional testing, especially for extensive-scale environmental and agricultural plan-
ning.

2.3 Machine Learning methods

Du et al.| (2020)) investigates the structural characteristics of cutting notches
in tea stalks using advanced X-ray micro-computed tomography technology to op-
timize harvesting equipment design for improved tea production efficiency. Re-
searchers systematically analyzed third inter-node samples from Zhongcha 108 tea
variety collected from Maichun tea farm in Zhenjiang, China, under precisely con-
trolled cutting conditions with varying depths (0.7, 1.5, 2.3 mm) and cutting edge
angles (30°, 35°, 40°). The experimental design employed a texture tester (Stable
Micro Systems TA-XT2i) operating at 1.0 mm/s test speed to ensure consistent
cutting parameters. Micro-CT scanning was performed using a Scanco Medical AG
micro-CT 100 system at 45 kV and 88 A, generating 200 high-resolution slice im-
ages at 1024 x1024 pixel resolution with 4 m maximum resolution capability. Image
processing utilized sophisticated grey-scale histogram analysis and bimodal segmen-
tation methods with optimal threshold values of 12 for data extraction, followed by
3D reconstruction and volume rendering using AVIZO software for comprehensive
structural analysis.

Two critical quantitative metrics were established and validated: Maximum
Cross-sectional Area Ratio of Cutting Notch (MCSARCN) and Volume Ratio of
Cutting Notch (VRCN), both demonstrating proportional increases with cutting
depth across all tested conditions. Specifically, MCSARCN values increased from
4.89% to 9.47% for 30° angle, 8.51% to 22.83% for 35° angle, and 4.30% to 16.87%
for 40° angle as cutting depth progressed from 0.7 to 2.3 mm. Similarly, VRCN
measurements showed increases from 1.59% to 2.13%, 2.98% to 5.76%, and 3.04%
to 5.01% respectively. The 35° cutting edge angle demonstrated optimal perfor-
mance characteristics, producing maximum VRCN values and establishing the most
efficient cutting parameters. Conversely, when cutting depth was maintained con-
stant at 1.5 mm, increased cutting edge angles resulted in higher cutting forces
(14.20 N to 15.95 N) but paradoxically decreased VRCN values, revealing complex
biomechanical interactions. The non-destructive imaging revealed intricate internal
deformation patterns including inward shrinkage of stalk epidermis, irregular notch
formation, and tissue compression effects. Notably, actual cutting notch depths con-
sistently measured less than applied cutting depths due to the rheological properties
and elastic recovery characteristics of tea stalk cellulose structure. This pioneering
application of micro-CT technology to plant cutting mechanics provides quantitative
foundations for evidence-based agricultural equipment optimization and represents
a significant advancement in precision agriculture methodology.

Silvero et al.| (2021) investigates the influence of spatial, spectral, and tempo-
ral resolutions of satellite images on predicting soil properties and their application

12
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to soil classification and management. The research was conducted over a 182-
hectare area in southeastern Brazil, utilizing data from three different satellites:
PlanetScope, Sentinel-2 MSI, and Landsat-8 OLI. A total of 120 topsoil samples
were collected from the study area and analyzed for several key soil properties,
including clay content, sand content, organic matter (OM), iron content (FepO3),
and soil color characteristics (hue, value, and chroma). Multi-temporal synthetic
soil images (SYSI), as well as single-date images, were employed as predictors in
Cubist regression models to estimate the soil properties. The study evaluated var-
ious combinations of spectral bands, including visible to near-infrared (vis-NIR)
and visible to near-infrared plus shortwave infrared (vis-NIR-SWIR) bands, using
10-fold cross-validation to assess the model performance. The results indicated that
multi-temporal Sentinel-2 MSI images, particularly those incorporating six spectral
bands, yielded the best model performance for most of the soil properties. The
inclusion of SWIR bands generally contributed to an improvement in prediction
accuracy. On the other hand, PlanetScope, despite having a higher spatial resolu-
tion of 3 meters, did not outperform Sentinel-2 MSI or Landsat-8 due to its limited
spectral range, particularly the absence of SWIR bands. The soil property maps
generated from these satellite images varied in spatial detail and accuracy, with
significant implications for soil classification and management. For example, the
delineation of soil classes such as Nitisol based on clay content and the identifica-
tion of variations in organic matter and iron content were influenced by the choice of
satellite data. The study concludes that satellite images, especially multi-temporal
composites, are effective tools for digital soil mapping, providing valuable informa-
tion for soil classification and management. However, the utility of these satellite
images depends on the specific application and the required spatial resolution. In-
tegration of field data remains crucial for capturing critical subsurface variability
that satellite-derived data may not fully represent, ensuring accurate soil property
mapping and classification.

Pham et al| (2021)addresses critical gaps in soil property analysis through
advanced interactive visualization techniques and machine learning approaches, in-
formed by extensive stakeholder engagement including interviews with 102 profes-
sionals in the proximal sensor field. The research identified five key objectives:
developing typical visualizations for chemical measurement data, creating intelli-
gent visual recommendation systems, implementing real-time error detection for
proximal sensors, advancing machine learning components for device calibrations,
and establishing predictive models for soil property estimation from spectral data.

The visualization framework addresses portable X-ray fluorescence (pXRF)
soil profile data analysis through sophisticated interactive solutions including force-
directed correlation graphs, scatter plots with linear regression analysis, interpolated
contour maps using spherical Kriging algorithms, statistical box plots for horizon-
based distribution analysis, and innovative 3D visualization systems inspired by
medical imaging techniques. Five critical analysis tasks were systematically ad-
dressed: providing comprehensive elemental overviews, quantifying correlations be-
tween chemical elements, comparing spatial distributions, analyzing statistical dis-
tributions across pedological horizons, and detecting outlying data points caused
by field scanning errors.

Simultaneously, the study explores machine learning and deep learning ap-
proaches for predicting soil properties from visible and near-infrared (Vis-NIR)
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spectral data using the extensive ICRAF-ISRIC global soil spectral library con-
taining 4,437 samples from 785 soil profiles across 58 countries. The spectral li-
brary encompasses wavelengths from 350-2500 nm across 216 wavebands, focusing
on predicting pH H,O and pH KCI values as alternatives to time-consuming lab-
oratory procedures. Data preprocessing employed Savitzky-Golay transformation to
enhance signal-to-noise ratios and capture reflectance changes between consecutive
wavebands.

Comprehensive model comparison included Partial Least Squares Regression,
Random Forest with optimized hyperparameters, Multi-Layer Perceptron with five
fully connected layers, and various Convolutional Neural Network architectures in-
cluding DenseNet and VGG blocks. The novel Residual Dilated Neural Network
(RDNet) architecture was developed incorporating WaveNet-inspired dilated con-
volutions with ResNet skip connections, enabling efficient feature extraction from
long spectral sequences while minimizing parameter requirements. RDNet achieved
state-of-the-art performance with mean squared error of 0.28 and 0.25, coefficient
of determination (R?) of 0.86 for both pH measurements, and residual prediction
deviation of 2.76 and 2.93 for pH H»O and pH KCI respectively, substantially
outperforming conventional methods. This integrated approach provides both im-
mediate analytical capabilities for field scientists and robust predictive modeling
alternatives to expensive, time-consuming laboratory procedures.

The study |Zolfaghari Nia et al. (2022) explored the spatial variability of soil
properties in riparian forests and adjacent agricultural lands using ML models. A
total of 103 soil samples were collected from the Maroon riparian forest in Iran
using the Latin hypercube sampling method Shields and Zhang (2016). Various
soil properties such as nitrogen, potassium, organic carbon, C:N ratio, pH, calcium
carbonate, sand, silt, clay, and bulk density were analyzed.

To model and map these properties, five ML algorithms were evaluated: Ran-
dom Forest (RF), Cubist regression tree (RTC), Artificial Neural Networks (ANN),
k-Nearest Neighbors (KNN), and Classification and Regression Trees (CART). The
study used remote sensing data (MODIS, Landsat-8, Sentinel-2), digital elevation
models (DEM), and climate variables as ancillary data. The Boruta algorithm
Kursa and Rudnicki| (2010) was applied to identify the most significant predic-
tors.Key findings include:

o RF performed best for predicting pH, nitrogen, potassium, and bulk density.

o RTC outperformed others for organic carbon, C:N ratio, phosphorous, and
clay content.

« ANN was most accurate for calcium carbonate, sand, and silt.

The results highlight the importance of selecting model-specific approaches
for different soil properties and demonstrate the effectiveness of ML combined with
geospatial data for digital soil mapping (DSM). The study emphasizes that DSM can
serve as a cost-effective and accurate tool for environmental planning and monitoring
in riparian ecosystems.

Peng et al.| (2022)) presents a comprehensive methodology for quantitative soil
fertility assessment utilizing advanced crop spectral variables derived from high-
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resolution Sentinel-2 satellite imagery, representing a paradigm shift from tradi-
tional laboratory-based soil analysis to remote sensing applications. Conducted in
the agriculturally significant Conghua District of Guangzhou, Guangdong Province,
China (113°17 E-114°04 E, 23°22 N-23°56 N), researchers systematically collected
150 strategically distributed soil samples using stratified random sampling method-
ology considering diverse land units, soil types, land-use patterns, and agricultural
facility construction levels across the 205 km? of arable land.

The comprehensive soil analysis protocol examined five critical soil proper-
ties: pH levels (ranging 4.90-8.20), soil organic matter content (6.42-68.90 g/kg),
total nitrogen concentrations (0.37-2.14 g/kg), available phosphorus levels (6.80-
140.8 mg/kg), and available potassium content (2.00-235.00 mg/kg). These mea-
surements were integrated using fuzzy mathematical approaches following DB43/T
2087-2021 regulations to calculate a comprehensive Soil Fertility Index (SFI) in-
corporating weight coefficients and membership degrees for each indicator. The
innovative approach combines Extreme Gradient Boosting (XGBoost) algorithm
for optimal variable selection with Backpropagation Neural Network (BPNN) for
sophisticated fertility estimation modeling.

From an initial set of 27 crop spectral variables calculated using the Google
Earth Engine platform, the XGBoost algorithm with optimized parameters The
model was trained using a learning rate (7 = 0.4), which allows it to update weights
relatively quickly during the training process, enabling faster convergence but also
increasing the risk of overshooting the optimal solution. To capture complex pat-
terns in the data, the maximum depth of each tree was set to 10 (max depth = 10),
providing the model with enough capacity to learn detailed interactions between fea-
tures. Additionally, the training process was carried out over 150 boosting rounds
(Mround = 150), allowing the model to incrementally improve its performance with
each iteration. Identified six preliminary variables, subsequently refined using Vari-
ance Inflation Factor (VIF < 10) analysis to eliminate multicollinearity. Five opti-
mal crop spectral variables were ultimately selected: inverted red-edge chlorophyll
index (IRECI), chlorophyll vegetation index (CVI), normalized green-red difference
index (NGRDI), red-edge position (REP), and triangular greenness index (TGI).
This represents the pioneering application of red-edge spectral indices for soil fer-
tility evaluation, leveraging Sentinel-2’s unique red-edge bands (705783 nm) that
provide enhanced vegetation stress detection capabilities.

The BPNN model architecture featured 11 hidden layer neurons, 5000 training
iterations, and 0.01 learning rate, achieving superior performance with coefficient
of determination (R?) Onyuthal (2020) of 0.66, root mean square error (RMSE)
Hodson| (2022) of 0.17, concordance correlation coefficient (CCC) King et al.| (2007)
of 0.81, and ratio of performance to interquartile range (RPIQ) Breure et al.| (2022)
of 1.16 on validation data, substantially outperforming multiple linear regression
approaches (R?>=0.02, RMSE=0.28). Regional-scale validation using six Sentinel-
2 images spanning September-November 2017 rice growing seasons demonstrated
robust model transferability with R? of 0.62 and RMSE of 0.09, confirming practical
applicability for precision agriculture implementations. The successfully captured
nonlinear relationships between spectral variables and soil fertility provide rapid,
cost-effective alternatives to time-consuming laboratory procedures, enabling real-
time agricultural decision-making and sustainable farming practices across large
geographical areas.
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El Behairy et al. (2024b)) focuses on the use of machine learning, specifically
ANN;, to accurately predict soil quality indices in arid regions. The authors utilized
extensive soil data, employing a MATLAB-based program to process and analyze
the information efficiently. The ANN model demonstrated high predictive accuracy,
achieving coefficients of determination of approximately 0.97 for training and 0.98
for testing datasets. The findings indicated that a significant portion of the soil
samples (36.93%) fell into the very high-quality category, while other quality cate-
gories showed varied distributions, highlighting the importance of soil features like
pH, salinity, and calcium content in determining soil quality.

The study indicates that traditional methods of soil assessment are often inef-
ficient and that machine learning approaches can provide more reliable results. By
utilizing 306 soil samples from three distinct regions, the researchers established a
comprehensive SQI database consisting of chemical, physical, and fertility indica-
tors, which are essential for understanding soil characteristics and management.

The study illustrates the potential of machine learning in agricultural practices,
offering a robust methodology for predicting soil quality that can be applied to
other regions. The authors suggest that regular soil quality evaluations are crucial
for improving crop yields and addressing food security concerns. Future research
should explore various algorithms and activation functions in ANN models, as well
as incorporate biophysical and socio-economic factors to enhance the understanding
of soil quality dynamics. The proposed approach serves as a valuable tool for
decision-makers in optimizing soil management practices to meet the challenges of
sustainable agriculture.

2.4 Deep Learning Methods

In Padarian et al.|(2019)), the authors investigate the use of Diffuse Reflectance
Infrared Spectroscopy (DRIS) to quickly get soil information, whether in the field
or the lab. They point out that the growing global interest in vis-NIR spectroscopy
has led to the creation of regional and even global soil spectral libraries. These
large datasets can be tough to analyze using traditional methods, but the authors
believe that deep learning, especially convolutional neural networks (CNNs), offers
a promising solution for processing this data more efficiently.

The study focuses on using CNNs to predict various soil properties directly from
raw soil spectra, without needing to pre-process the data. They tested this approach
on the LUCAS soil database, which contains around 20,000 soil observations from
Europe, covering a wide range of physicochemical and biological properties. The au-
thors represented the soil spectral data as 2D spectrograms, which show reflectance
values as a function of wavelength and frequency. This technique allowed them to
train the CNN in a multi-task setting, as shows Figure[2.1]Common layers represent
the layers shared by all the predicted properties. Each branch, one per predicted
soil property, correspond to a series of one convolutional layer (BN: bottle-neck
layer, which reduces the dimensionality of the data) and a fully-connected layer of
size 1, which corresponds to the final prediction. The the model was able to predict
six soil properties simultaneously: organic carbon (OC), cation exchange capacity
(CEC), clay content, sand content, pH, and total nitrogen (N).
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Figure 2.1: Architecture of the multi-task network.

The results were impressive. The CNN outperformed traditional methods like
PLS regression and Cubist regression trees, especially in multi-task learning. For
example, in predicting soil organic carbon, the multi-task CNN reduced prediction
errors by 87% compared to PLS and 62% compared to Cubist. The study shows that
CNNs are highly effective for modeling soil spectral data, especially when trained
on large datasets. Given their high accuracy, CNNs are seen as an ideal tool for
analyzing complex soil data.

In [Sumathi et al.| (2023), the study proposes the Improved Soil Quality Predic-
tion Model using Deep Learning (ISQP-DL) to enhance soil quality prediction for
smart agriculture in Coimbatore and Erode districts of Tamil Nadu, India. ISQP-
DL model consists of Deep Neural Network Regression (DNNR) architecture with
some hidden units layers to investigate chemical (e.g., organic carbon, phosphorus,
potassium), physical (e.g., pH), and biological (e.g., natural manure) properties of
the soil.

Soil laboratory values (2016-2020) are pre-processed, trained, and tested using
classification grouped into six fertility classes of Very-Less (A), Less (B), Medium
(C), Modest (D), High (E), and Max-rate (F). The soil features are processed by
the model that classifies soil quality at 96.7% accuracy, better than traditional
models such as ANN and KNN. It also utilizes rectified linear activation function
and Levenberg-Marquardt optimization [Hemmati-Sarapardeh et al. (2020) for lesser
training time and better generalization.

The ISQP-DL model not only reduces computational complexity but also pro-
duces SQ Reports supporting data-driven crop planning and fertilizer recommenda-
tions. The system further incorporates IoT and cloud infrastructure for real-time
monitoring of agriculture. Integration with automated irrigation in the future is
suggested by the authors to further enhance agricultural decision-making.

Folorunso et al. (2023 carried out a systematic review on the application of
machine learning models in predicting different nutrient attributes of soil, which
is an important area in precision agriculture. The authors have focused on the
huge strides achieved by Digital Soil Mapping (DSM), which, in their opinion, were
enabled by the advanced functionalities of different machine learning methodologies,
including Random Forest, Support Vector Machines, and Deep Neural Networks, to
improve soil quality assessments, crop yield prediction, and resource management
practices. The study emphasized the fact that analysis of traditional soil data poses
computational challenges, especially when large datasets are involved, as in the case
of recently developed global and regional soil spectra libraries.
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Key in the review was the innovative use of Diffuse Reflectance Infrared Spec-
troscopy—commonly known as DRIS—for fast gathering of field or lab soil infor-
mation by using deep learning in analyzing raw soil spectral data; authors recom-
mended using CNN. They have done this by applying the above approach on the
LUCAS soil database, which includes 20,000 soil observations across Europe. They
represented the spectral data of the soil into 2D spectrograms and then trained
CNNs in a multitask framework for the prediction of the following six soil proper-
ties: organic carbon, cation exchange capacity, clay content, sand content, pH, and
total nitrogen.

The review also noted some of the limitations, including data availability, tech-
nological, and infrastructural barriers that slow the uptake of these technologies, es-
pecially in developing countries. The authors finally provide a framework for future
research, which emphasizes the need for state-of-the-art soil information systems,
seamless data integration, and tailored machine learning approaches to improve
agricultural productivity worldwide.

Inazumi et al.| (2020]) use deep learning to automate soil classification, the data
were collected by images of soil were taken using a smartphone camera and resized
to 56x56 pixels for processing, as presented in Figure

TN,

(a) Image of sand (b) Image of clay (c) Image of gravel

Figure 2.2: Examples of soil image used to develop Al program for soil classification.
Inazumi et al.| (2020)

This study employs a CNN to classify three soil types: clay, sand, and gravel.
The model, as shown by Figure was trained using 1,000 images (400 clay, 400
sand, 200 gravel).
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Figure 2.3: Image of model’s multi-layer structure

The model achieved an accuracy of 86% on training data and 77% on verifi-
cation data.Sand was identified with high recall (1.0), but gravel had lower recall
(0.54), often being mistaken for sand or clay.
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Table 2.1: Recap. of the literature review on Soil Quality Prediction (sorted by

year)
Reference Methods Dataset Metrics & Results
Padarian et all | CNN on raw DRIS | LUCAS (20,000 | 87% error reduction (vs.

(2019)

spectra as 2D spectro-
grams

soil samples)

PLS); predicted 6 proper-
ties at once

logic

China) + Sentinel-
2

Du et all| Micro-CT, segmen- | Zhongcha 108 tea | 35° angle optimal, MC-
(2020) tation, AVIZO 3D | stalks (3 depths x | SARCN up to 22.83%,
rendering 3 angles) VRCN to 5.76%
Inazumi et al.| | CNN trained on 56x56 | 1000 images (400 | Accuracy: 86% (train),
(2020)) images (clay, sand, | clay, 400 sand, 200 | 77% (test); recall 1.0 for
gravel) gravel) sand, 0.54 gravel
Pham et all| PLSR, RF, MLP, | ICRAF-ISRIC RDNet: RZ = 0.86,
(2021)) CNN, Residual Dilated | (4,437 samples, 58 | MSE = 0.25-0.28, RPD
CNN (RDNet) countries) 2.8-2.9
Silvero et al. | Cubist regression; | 120 samples, | Sentinel-2 MSI (6 bands)
(2021]) SYSI and vis- | Brazil + Plan- | gave best performance;
NIR+SWIR bands etScope, Sentinel- | SWIR critical
2, Landsat-8
Peng et al|| XGBoost for variable | 150 samples | R? = 0.66, RMSE = 0.17,
(2022]) selection, BPNN; fuzzy | (Guangzhou, CCC = 0.81; regional R?

= 0.62

Zolfaghari Nia
ot all (2022)

Folorunso
et al] (2023)

7Sumathi et al.
(2023])

El Behairy
et all (2024b)

RF, RTC, ANN, KNN,
CART; Boruta feature
selection

103 soil samples
(Iran) + MODIS,
Sentinel-2, DEMs

RF best for pH/N/K;
RTC for OC/clay; ANN
for CaCO , sand, silt

RF, SVM, DNN, CNN
with DRIS; multitask
framework on 2D spec-
trograms

LUCAS soil
database (20,000
observations, Eu-
rope)

CNN predicted 6 prop-
erties: OC, CEC, clay,
sand, pH, nitrogen

DNNR, RLAF, Lev-
enberg—Marquardt, 10-
fold cross-validation

Soil samples from
Tamil Nadu, India
(6 quality levels)

Accuracy:  96.7%; high
Fl-score, outperforming
ANN and KNN

Artificial Neural Net-
works via MATLAB

306 soil samples (3
regions, Egypt)

R?  0.97 (train), 0.98
(test); 36.9% were very
high SQI

2.5 Conclusion

This chapter contained a thorough analysis of the key components and methods
involved in soil quality analyses, the surveyed literature show that a clear evolution
from traditional laboratory-based methods to sophisticated machine learning and
deep learning solutions that use advanced imagine technologies.

In the following chapter, we shift from theoretical exploration to practical im-
plementation. The experimental chapter presents the methodological framework
adopted for this study, detailing the datasets used, preprocessing steps, and the de-
sign of the machine learning models employed for soil quality prediction and plant
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suggestion.
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CHAPTER 3

EXPERIMENTS

3.1 Introduction

In the previous chapter, we presented, a literature reviewof ML and DL based
techniques for Soil Quality Prediction. Based on all these works, we present in this
chapter our experiment for SQP system. We start by description of the datasets,
going through the pre-processing steps adopted in addition to the architecture of
our models, and finally our results. Our work is divided into two experiments in
the first, we conduct a comparative study of 4 ML models for SQI prediction and
mapping. Based on the results, we select the most effective model and use it to
generate the SQI map. In the second experiment, we trained our RF model for SQI
prediction, then, in order to optimize the model, we create a model that suggests
plants based on SQI, weather and expert rules. Finaly a web application is proposed
in order to facilitate the usage of our models.

3.2 Experiment I: Mapping SQI using best re-
gressor

In order to create a map of soil quality, we first study four ML /DL regression
techniqued!] then choose the best among them. The process is shown in Figure [3.1]
In the sequel, we describe each stage.

3.2.1 Dataset collection

We experiment with the SoilGrids dataset provided by ISRIC-World Soil In-
formation Poggio et al.| (2021). It offers consistent quantitative information about
soil characteristics across the globe, making it suitable for ML applications in soil
quality and construction suitability prediction.

IThis part is presented as conf. paper on AISTC’2025 : International Conference on Artificial
Intelligence, Smart Technologies and Communications on April 14-15, 2025 at Chl
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LightGBM Output map
Preprocessed Dataset Wal
048576 points with Long.. Lat. + 9 featur AN Mapping & e, I
valid? ™ < .
M — o -
ra . BestRegressor | } g -ﬂ\“
B~ - I

Figure 3.1: The performed SQP pipeline

3.2.2 Preprocessing

From SoilGrids dataset a tabular dataset is created to facilitate analysis. First,
each cell of the grid is represented by its center as a point with (longitude, latitude)
and nine important soil characteristics to compute SQI, as described in Table [3.1]

Table 3.1: Soil features description.

Feature Unit Description

Bulk density (cg/cm?) Mass of soil per volume unit, indicating
compaction and porosity.
Cation  ex- (mmol(c)/kg) Soil’s ability to retain and exchange nu-

change capac- trients.

ity at pH 7

Coarse frag-  (cm3/dm?®)  Volume of large soil particles (gravel,

ments stones) affecting drainage.

Clay content (g/kg) Fine soil particles that retain water but
reduce aeration.

Nitrogen (cg/kg) Essential nutrient for plant growth and
chlorophyll production.

pH water (pH x10) Soil acidity or alkalinity, affecting nu-
trient availability.

Sand (g/kg) Large soil particles improving drainage
but reducing water retention.

Silt (g/kg) Medium-sized particles balancing mois-
ture retention and drainage.

Soil  organic (dg/kg) Carbon in organic matter, vital for soil

carbon fertility.

Due to differences in units, standardization is performed using z-score normal-
ization. To compute an accurate SQI, the improved method proposed by
is considered, where a Weighted SQI is calculated, based on PCA to
extract the most significant indicators with eigenvalues greater than 1 were consid-
ered to account for a significant amount of variance. At the end of this stage, we
get a dataset with 2,316,650 points, 11 features and the W-SQI target.
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3.2.3 Modeling

The Weighted SQI and predictor variables are used to train and test four ML
models, namely Light GBM, XGBoost, Radial Basis Function Network (RBFN),
and Deep Neural Network (DNN). To provide a clear understanding of the model
design, the architectural overview of each model is illustrated in Figures
These diagrams highlight the structural low and key components involved
in the implementation of each approach.

(1438504)

Bands (31) m 1
12 3 \‘

+
310’*02—-»
— GNe 0.0 —

1 2
.

(100) (1438504)

0.31211768906

03247195245

+

(31) {V. 100
1 2 N

Input LightGBM Output(sQl)

0.372875675

Figure 3.2: Architecture of the Light GBM model

(1000)

(1438504) (1438504)

Bands ) ﬁ\ 1 031211768906

\ 03247195245

+ 4

g {<>\ N B
i +

Input Output(sQl)
Boosting Trees (subsample 20%)

Grids

0.372875675

Figure 3.3: Architecture of the XGBoost model
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(1438504) (50) 1) 1438504

Bands

0.31211768906

03247195245

Grids

0.372875675

Input RBF Layer  Fully Connected Output(SQl)

Figure 3.4: Architecture of the Radial Basis Function Network (RBFN)

9) (128) (1 (1438504)

0.31211768906

0.3247195245

0.372875675

Output(sigmoid)
Dense(ReLU) Predicted(SQl)

Figure 3.5: Architecture of the Deep Neural Network (DNN)

We selected these algorithms because of their complementary strengths in re-
gression tasks. RBFN is suitable for small datasets and picking up local patterns.
Light GBM and XGBoost are gradient boosters which specialize in speed, stabil-
ity, and performance when dealing with structured data. DNN was employed to
evaluate the strength of deep learning in capturing complex, nonlinear relationship
among soil parameters.

Hyperparameters for each model were chosen after a few trial runs with vary-
ing configurations to get the best performance. Regularization techniques such
as dropout (DNN), subsampling (LightGBM), and colsample_bytree (XGBoost)
were applied to prevent overfitting. Learning rates (0.05 for Light GBM /XGBoost,
0.001 for DNN) were such that stable convergence could be obtained. Number of
epochs and model-specific parameters (e.g., number of leaves in Light GBM, centers
in RBFN) were tried and tuned for balancing accuracy, efficiency, and generaliza-
tion.

3.2.4 Results and Discussion

The result presented in Table indicate that XGBoost achieved the highest
R? score of 0.9768, making it the most effective model to predict soil quality in
this setting. LightGBM achieved an R? score of 0.9043, demonstrating its strong
predictive capability while maintaining computational efficiency with a significantly
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lower execution time of 1.78 seconds. DNN, despite achieving a comparable R? score
of 0.8981, required a much longer execution time of 1176.19 seconds, making it less
efficient for this task. Ridge regression with an RBF kernel, on the other hand, had
the lowest performance with an R? score of 0.7925, indicating weaker predictive
accuracy compared to the other models.

Table 3.2: Comparison of the four models based on execution time, RMSE, and R?
score.

Model Time (s) RMSE  R?

RBFN 147.10 0.03 0.79
DNN 1176.19 0.02 0.90
Light GBM 1.78 0.02 0.90
XGBoost 3.54 0.02 0.98

Using geospatial techniques and ML models, it is possible to generate high-
resolution soil quality maps that highlight areas of concern and potential for im-
provement. Figure [3.6] illustrates the spatial distribution of the Weighted SQI
across the Mediterranean and surrounding regions, as predicted by the XGBoost
model.

W-SQI Map

Latitude

42

=10 -3 ] 5
Longitude

Figure 3.6: Soil Quality Index Map.

The map employs a continuous color gradient ranging from deep red to green,
where green shades signify areas with higher soil quality (W-SQI values up to 0.55),
and red hues indicate regions with comparatively lower soil quality (W-SQI values
closer to 0.30). Intermediate colors, such as yellow and orange, represent moderate
soil quality levels. From the visualization, it is evident that regions in southwest-
ern Europe, particularly parts of Spain and southern France, display higher W-SQI
values, indicated by the prevalence of green shades. In contrast, areas in central
and southern Italy, as well as coastal zones along the Adriatic Sea, show lower soil
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quality, represented by red and orange tones. This spatial heterogeneity in soil qual-
ity reflects the influence of various geographical and environmental factors, such as
topography, climate, land use, and anthropogenic pressures. Notably, mountainous
and coastal areas appear more prone to lower soil quality, possibly due to erosion,
land degradation, or intensive agricultural activities. Such a map is invaluable for
stakeholders in precision agriculture, land conservation, and sustainable land man-
agement, providing critical information to optimize resource allocation, improve
crop productivity, and implement targeted conservation strategies. Furthermore,
identifying areas with declining soil quality can guide policymakers in prioritizing
soil restoration and environmental protection efforts.

3.3 Experiment II: extending SQI Mapping with
Plants Suggestion

Implementation setup Implementations are carried out using the Keras API
and TensorFlow backend. Experiment is executed on a system with Intel i7 CPU,
32GB RAM, and NVIDIA RTX 4060 GPU under Ubuntu 24.04.1 LTS.

To extend our work beyond soil quality evaluation, this second experiment aims
to identify and map the most suitable plant species for a given region using machine
learning techniques.

The methodological pipeline is summarized in Figure [3.7] encompassing dataset
preparation, preprocessing, feature selection, model training, and spatial prediction.
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Figure 3.7: Pipeline for identifying and mapping optimal plant species
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3.3.1 Dataset collection
3.3.1.1 Environmental Data

The environmental dataset served as the foundation for spatial analysis, con-
taining comprehensive environmental and climatic information for various geoloca-
tions. These spatial variables, along with the soil and environmental parameters,
were derived from a combination of the LUCAS (Land Use/Cover Area frame Sur-
Vey)%SOilGridsﬂ and climate variables obtained via the Copernicus Climate Data
Stord’l

3.3.1.2 Plant Norm Data

The plant norm dataset contained expert-derived specifications for optimal
growing conditions of various plant species. This dataset was compiled through
consultation with soil and agriculture specialists and illustrated by table |3.3]

Category Description
Species Common Name: Vernacular plant names
Identification Scientific Name: Taxonomic nomenclature following

standard botanical classification

Soil pH: Optimal pH range for plant growth
Growing Planting Season: Recommended planting periods
Requirements Nutrient Requirements: Optimal levels for Nitrogen
(N), Phosphorus (P), and Potassium (K)
Temperature Thresholds: Minimum and maximum
temperature tolerance limits

Table 3.3: Plant species and their growing requirements

3.3.2 Preprocssing

The preprocessing phase was a crucial step in preparing the data for subsequent
modeling tasks. It began with the integration of three primary data sources that are
mentioned before. These datasets originated from different platforms and were col-
lected using varying spatial resolutions, coordinate systems, and data formats.This
required significant preprocessing to align and standardize the geolocation data be-
fore use four steps are preformed:

1. Data Integration and Harmonization: Combining these sources posed
several challenges. Most notably, discrepancies in geographic coordinates (longi-
tude and latitude) were encountered due to differences in spatial reference systems
and granularity. To ensure spatial compatibility, we employed a nearest neighbor
matching strategy. This involved assigning to each soil observation the values of
the closest corresponding grid cell from other datasets. This method preserved

“https://esdac. jrc.ec.europa.eu/content/lucas-2009-topsoil-data
3https://soilgrids.org
4https://cds.climate.copernicus.eu
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the original resolution of each dataset and avoided the distortions that can arise
from interpolation or resampling, thereby ensuring a reliable and coherent spatial
integration for subsequent analysis.

2. Spatial Alignment: Even after harmonization, non-coincident spatial
points remained due to the nature of data acquisition. To overcome this, nearest
neighbor method was used to align the datasets geographically. This step was par-
ticularly important to ensure that soil and climate features corresponded accurately
to the same physical locations. The resulting aligned dataset allowed for pixel-wise
feature extraction, crucial for both prediction and mapping tasks.

3. Missing Value Imputation: All datasets exhibited varying degrees of
missing data due to sensor errors, data acquisition gaps, or unreported measure-
ments. Rather than discarding incomplete samples—which would reduce the overall
data volume—regression-based imputation techniques were used to estimate miss-
ing values.Random Forest Regressor models were trained on correlated features to
predict and fill in the gaps.

The implementation of a regression model for missing value imputation can be
effectively demonstrated through comparative visualization as indicated by figure
3.8

Original_phh2o

Corrected_phh2o

Latitude
pH H20

Latitude

s
Longitude - 3

H
Longitude

(a) Original dataset map with missing pH
values (b) Dataset map after pH imputation

Figure 3.8: Comparison of soil pH maps before and after imputation

4. Feature Scaling and Normalization: Given the wide disparity in feature
units and magnitudes—e.g., pH (unitless), temperature (°C), and nutrient concen-
trations (mg/kg)—normalization was essential. Z-score standardization was applied
to all numerical variables to ensure a mean of zero and unit variance. This scaling
ensured that no single feature dominated the learning process.

Together, these preprocessing steps established a consistent, clean, and spa-
tially aligned dataset that served as the foundation for all subsequent analyses.
Table shows the final dataset after the preprocessing steps.
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Table 3.4: Environmental dataset variables

Category Description

Spatial Variables Geographic coordinates: Longitude
and Latitude values defining precise
location coordinates

Phosphorus content (P)
Potassium content (K)

Bulk density (bdod)

Coarse fragments volume (cfvo)
Cation exchange capacity (cec)
Soil and Environmental Parameters | Clay content percentage (clay)
Soil pH in water (phh2o)

Sand content percentage (sand)
Silt content percentage (silt)

Soil organic carbon (soc)

Nitrogen content (nitrogen)

Water Soil Quality Index (W-SQI)
Maximum temperature (tx)
Minimum temperature (tn)

Mean temperature (tg)
Precipitation (rr)

Humidity (hu)

Wind speed (fg)

Seasonal Climate Data

Table provides a sample of the final datasets obtained after the complete
preprocessing pipeline.
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Longitude Latitude bdod cfvo clay nitrogen \
0 2.545694 51.079027 125.91011 93.692000 240.70345 221.22864
1 2.520694 51.070694 132.40776 112.029366 265.55347 260.75790
2 2.529027 51.070694 132.90732 98.643340 261.17865 226.78712
3  2.537360 51.070694 131.13080 91.806890 245.43471 222.70674
4  2.545694 51.078694 138.58860 88.490660 243.46753 231.75539
phh2o sand silt sSOC cec W-S0I Y
6 75.36591 415.80150 343.49583 364.80365 217.17345 8.393045 41.1
1 75.00000 359.85428 374.59225 256.24323 247.02937 0.362251 88.8
2 75.00511 365.22278 373.59344 232.64720 233.06229 0.361112 88.8
3 75.10312 388.66135 365.80084 302.55699 215.08812 0.378880 41.1
4 75.06830 393.25284 363.16785 323.36545 202.59935 0.385795 41.1
K tx Autumn tx Spring tx Summer tx Winter tn Autumn tn Spring \
@ 181.8 16.830655 14.717719 22.85837 9.989832 10.175827 7.485167
1 411.1 16.838655 14.717719 22.85837 9.909832 10.175827  7.485107
2 411.1 16.830655 14.717719 22.05837 9.909832 10.175827  7.485167
3 101.60 16.830655 14.717719 22.05837 9.909832 10.175827  7.485107
4 101.9 16.830655 14.717719 22.05837 9.909832 10.175827 7.485107
tn Summer tn Winter +tg Autumn tg Spring tg Summer tg Winter \
6 14.672935 5.358333 13.887145 11.666385 18.51326 7.630999
1 14.672935 5.358333 13.087145 11.066305 18.51326 7.630999
2 14.672935 5.358333 13.087145 11.066305 18.51326 7.630999
3 14.672935 5.358333 13.087145 11.066385 18.51326 7.6308999
4 14.672935 5.358333 13.087145 11.066305 18.51326 7.630999
rr_Autumn rr Spring rr Summer rr Winter hu Autumn hu Spring \
0 2.488791 1.127174 2.116304 2.26 83.13578 71.58904
1 2.4688791 1.127174 2.116384 2.26 83.13578 71.589064
2 2.488791 1.127174 2.116304 2.26 83.13578 71.58904
3 2.488791 1.127174 2.116304 2.26 83.13578 71.58904
4 2.488791 1.127174 2.116304 2.26 83.13578 71.589064
hu Summer hu Winter fg Autumn fg Spring fg Summer fg Winter
0 76.88379 B83.67647 4.496044 4.510978 4.125216  6.622499
1 76.08379 B3.67647 4.496044 4.510978 4.125216 6.622499
2 76.88379 83.67647 4.496044 4.510978 4.125216 6.622499
3 76.88379 83.67647 4.496044 4.510978 4.125216 6.622499
(a) Final Processed Environmental Dataset
i | CommonName | ScientificName | SollpH |  PlantingSeason | N [ P | K [Min TempMax Temy
2 Asparagus Asparaqus officinalis 6.8 Winter Spring 0 10 180 10 PA]
3 Garlic (AL Allium sativum 6-7.5 Winter Autumn 0 ' 5 150 18 il
4 Artichoke (ARTICHAUT)  Cynara scolymus 115 Summer Spring 150 150 3% 18 U
5 [Eggplant (Auberging)  Solanum melongena 6772 Spring 00 0 150 200 2 5
6 (Carrot (Carotte) Dacus carofa 675 Winter Autumn 150200 1 100120 20050 27 Pl
7 Beetroot (Betterave)  Befa vulgaris 587 Winter Spring Summer 150200 1 100120 200250 20 i
§ Fennel (Fenouil Foeniculum vulgare 5565 Summer g 1m0 12,0 18 |
9 ZucchinifCourgette (Courge Cucurbita pepo 5568 Spring 0 | 60 W B 5
10 Cucumber (Concombre)  Cucumis sativus 5568 Winter 170200 | 100150 200250 22 pi
11 [Fava Beans (Féve) Vicia faba 6.007 Autumn 060 0 080 N 18 2
12 (Green Beans (Haricot)  Phaseolus vulgaris 5568 Winter Spring Summer 5080 ¢ 80100 100150 15 pi

(b) Final Plant Norm Dataset

Figure 3.9: Screenshots of the resulting datasets after the complete preprocessing
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3.3.3 Modeling

The experimental approach employed a two-stage methodology to achieve a
comprehensive plant suitability prediction:

3.3.3.1 Fertility Analysis

The first stage of the system focuses on predicting environmental and soil-
related features for unseen geographical coordinates. To achieve this, a separate
regression model is trained for each individual feature. Each regressor takes the
longitude and latitude as input and outputs a single soil property (e.g., clay content,
pH, etc.). The architecture of these regressors is illustrated in the figure m

®
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Figure 3.10: Feature Regressor architecture

Once all the target features are predicted, they are collectively passed as in-
put to a second model-—a Random Forest Regressor—presented in the figure [3.11]
This model is responsible for predicting the Soil Quality Index (SQI) based on the
complete set of predicted and geospatial features. The final SQI prediction model
is trained on the following input features: ['Longitude', 'Latitude', 'bdod',
'cfvo', 'clay', 'mitrogen', 'phh20', 'sand', 'silt', 'soc', 'cec', 'P',
| K 1 ]

The Random Forest Regressor is implemented with the following configuration:

model = RandomForestRegressor (
n_estimators=100,
max_depth=20,

33



Chapter 3. Experiments

min_samples_leaf=5,
n_jobs=-1,
random_state=42
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Figure 3.11: SQI Regressor architecture

The Random Forest Regressor exhibited strong predictive capability in esti-
mating environmental parameters across the study area, with R? values within
acceptable thresholds. Figure [3.12] presents the model’s training performance in

terms of RZ and RMSE.

R? Score vs Number of Trees RMSE vs Number of Trees
°
0.9465 | 1.730 1
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0.9450 { .
1.700 { s
- .
0.9445 4
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n_estimators n_estimators
2
(a) Model R (b) Model RMSE

Figure 3.12: R? and RMSE curves

34



Chapter 3. Experiments

Figure illustrate interactive Soil Quality Index (SQI) map created with
Folium (an open source library) across the study area, longitude and latitude coor-
dinates locate each prediction. High SQI (green) denotes better soil quality, while
low SQI (red) indicates poorer quality.

ire / Ireland

T senasbis ( ] P
. Mlgétie HXX310
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Figure 3.13: Interactive Soil Quality Index (SQI) Map

3.3.3.2 Plant Suggestion

In this part, a plant suggestion is proposed using the cos similarity, which is
employed to quantify the match between a plant species’ optimal growth require-
ments and the prevailing site and environmental conditions. We represent:

o s: the site condition vector, containing parameters such as soil pH, nutrient
levels (N, P, K), seasonal minimum and maximum temperatures, etc.

e p: the plant requirement vector, encoding the same parameters at their opti-
mal values for a given species.

The cosine similarity between these two vectors is defined as:

cos(f) = (3.1)

_S'P
sl llpll
Where:
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e s-p is the dot product of the two vectors,
o ||s|| and ||p|| are the Euclidean norms (magnitudes) of the vectors,

o 0 is the angle between the vectors in a multidimensional space.

A higher cosine similarity value (close to 1) indicates a stronger match between
the site conditions and the plant’s ideal growing conditions, and thus, a better
recommendation.

Because this measure depends solely on the angle between the vectors, it high-
lights the relative orientation of feature patterns (e.g., nutrient ratios) rather than
their absolute magnitudes. A value close to 1 indicates a strong correspondence.

The second stage of our pipeline applies this similarity measure to perform plant
suggestion based on the previously predicted environmental and soil parameters.
Specifically, the system:

1. Retrieves the predicted feature vector s for the selected location.

2. Compares s against the plant-norms database P = {p1, p2,...,pn} where n
is the size of the plant database using Equation (3.1)).

3. Computes a cosine similarity score for each candidate species.
4. Ranks all species in descending order of similarity.
5. Presents the top three species with the highest scores as the most suitable

choices for the given location and season.

Access to additional map features—such as high-resolution soil parameter lay-
ers, NPK wvalues, and seasonal vegetation overlays—is determined by the user’s
subscription level, with higher-tier plans unlocking more detailed data views.

To ensure these recommendations are readily accessible, we constructed an
interactive map using the open-source Leaflet libraryf’| . As shown in Figure [3.14]
clicking on any point displays:

o Geographic coordinates,

o Predicted soil characteristics (pH, bulk density, clay, sand, silt, organic carbon,
etc.),

 Soil Fertility Index (W-SQI),
o Top three plant suggestions based on cosine similarity.
This interactive map allows stakeholders to explore spatial SQI predictions

and receive immediate, tailored plant recommendations, facilitating data-driven
agricultural planning.

Shttps://leafletjs.com/
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\ |4
sl Lﬂ sl

Figure 3.14: Interactive SQI and plant-suggestion map implemented with Leaflet.

When a user clicks on a location outside our study area, this interface in the
figure [3.15| appears to notify them that data is currently unavailable for that region.

" Soil and Plant Analysis
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Figure 3.15: Alert shown when the selected point lies outside the study area (no
data available).

3.4 SoilTech web application

Following the development of the prototype, we transitioned to a web-based
application to ensure broader accessibility and practical use within the commu-
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nity. The web application was structured using standard web technologies, includ-
ing HTML and CSS for the frontend interface design, and FastAPI for building
the backend API services. This architecture enabled an interactive platform where
users can explore predicted soil quality indicators and receive location-specific plant
suggestion directly through a user-friendly interface. The web application was struc-
tured as follows:

Homepage

First you get to our application you find a homepage with an introductory
section, plans section, our team section and the support contact as demonstrated
in the figures [3.16

Home Plans About Support Please login for Mapping SoilTech

)\r/ ) \/

A

Welcome to o301 1 ¥ KeYed 11

This platform helps you understand soil conditions and

recommend the best plants to grow based on your location.

SoilTech ensures your choices align with the soil's natural
strengths and seasonal conditions for healthier growth and

higher yields.

Please login for Mapping —

Figure 3.16: About us section

By scrolling down, the user will encounter the available plans section, as shown

in Figure 3.17]

Our Plans

Free Advanced Ultra
€0/ month €9.99 / month €19.99 / month

Coordinates Coordinates Coordinates &
Fertility (W-SQI) Fertility (W-SQI) Fertility (W-SQI)
X Soil Features ¥ Soil Features ¥ Soil Features Y2
X NPK Values &/ NPK Values // NPK Values &
X spring Plants # X spring Plants Spring Plants
¥ summer Plants ¥ summer Plants Summer Plants
X Autumn Plants #; X Autumn Plants #; Autumn Plants #;
> Winter Plants X Winter Plants Winter Plants

Figure 3.17: Plans section
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Continuing downward, users are introduced to the team behind the applica-
tion, showcasing the individuals involved and their contributions, as depicted in

Figure .18

About Us

L -4 <

Taleb Ahmed Abdelmalek Mokdad Meriem Mrs. Ben Abderrahmane Mr. Ouled Naoui Slimane
Habiba

Developer Developer Co-Supervisor Supervisor

Figure 3.18: Team section

Finally, the homepage concludes with the support contact section, offering users
a way to reach out for assistance or inquiries. This section, shown in Figure [3.19]
includes the email address of one of our team members for direct communication

Contact Us

If you need any assistance, please reach out to our support team at

N
©2025 Soil Web App. All rights reserved.

Figure 3.19: Support contact section

Login

To access the system’s features, users must first log in through a dedicated
interface. The login page is designed for simplicity and ease of use, allowing users
to enter their credentials securely. This interface is illustrated in Figure [3.20
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SoilTech

User Login

4 o s
Vo~ "“‘/ ""\ \}( ‘/’Kr ~ AN AP 7PN \ Y ’ %

Figure 3.20: Login section

System interactive map

Depending on the user’s subscription plan, three distinct interfaces are available
for the interactive map:

Free Plan Free-plan users have access only to the basic Soil Fertility Index
(W-SQI) overlay.

Home Plans About Support SoilTech
ormeRmee Uetuva

p— Newcastle

Befast Upon Tyne ( 3 KaAurmnpaa ) .
* P, Great Britoin w Soil and Plant Analysis
IsEiMEn, © Lo poisten e Gdarisk N
- g PopHs
— Eire / Ireland | Manchester . sheffieid Groningen * yamiburg Bydgoszcz
e Babsto Display Options:
4 gl Poznan .
Birm . Warszawa . A
Nedefland’ = A et Coordinates Soil Features
Carditt agdeburg i Sphc -
Dyssgidort-— o L L NPK Values Fertility (W-SQI)
Bel utschiand Lbiin % 1y X
UNEgeigique /3 o Horkiurt Spring Plants Summer Plants
Bl
Guernsey ' e Numberg ewis Autumn Plants Winter Plants
paris. [ Luxembourg
* g Update Displ:
Nantes i MRS Ostefreich
. France Gran . -
v Soil Fertility Heatmap (Southern Europe)
venijd
Show W-SQI Heatmap
Genova ©B0l0gNa Syirvatsk
o
Pampona ! i san
> ? Location Coordinates
Andorra
: 1a Vella \ s Italia Latitude: 3670925
garl Longitude 20.29064
wagnd e g
ESPana  atents ) paima
Por 7
. Eac AT
Lisboa aemes : / Soil Fertility Index
o . games As?w‘d Weighted-Soil Quality Index: 0.3377
, —votEsh S
lbtaiar ¢ v j] 25 Malta
Eenadane 3 Upgrade your plan to see more Soil Features!
Rabat 0Bo& Djelfa XehHo. i e
U aat
e
0

Figure 3.21: Free plan: interactive map displaying only the W-SQI heatmap.

Advanced Plan
Advanced-plan users can view all features except the seasonal plant suggestion.

Figure [3.22| showcases the Advanced plan, which includes an interactive map
with access to soil parameters, NPK values, W-SQI, and a limited set of plant
suggestions. In contrast, Figure displays the Free plan, where users can only
view the W-SQI heatmap without any additional data or recommendations.
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Home Plans About Support SoilTech

e e Y L v
R Legos » pogs” Soil and Plant Analysis
_ hietana | Moot perrely ﬁm‘mw i : X
&‘5” g Nodeang D Display Options:
Coordinates Soil Features
NPK Values Fertility (W-SQI)
Spring Plants Summer Plants.
Autumn Plants Winter Plants

Update Display

Magyarorszig

‘ClifNapoca

S Soil Fertility Heatmap (Southern Europe)
? Location Coordinates
Latitude: 4011169
o Longitude: 452885
L 5@ B
Konya . .
Sogrizi ¢ Soil Characteristics
¢ Constantine f Soil Characteristi
Sevmac anio n £
|- ol — 7 Soil pH: 73.04 (x10)
/ 250130 Us@OHI™ Alger AXs3£0 2 A ¥ W
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Boen 2 Cation Exchange Capacity (cec): 199.03 mmol(c)/kg
2 Clay Content: 203.49 glkg
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Figure 3.22: Advanced plan: interactive map with coordinates, soil parameters,
NPK, W-SQI, and limited plant suggestions.

Ultra Plan

Users on the Ultra plan have full access to all map features, including:

« Display of geographic coordinates.

« Detailed soil characteristics (pH, bulk density, clay, sand, silt, organic carbon,
cation exchange capacity, etc.).

o NPK nutrient values.
« Soil Fertility Index (W-SQI) heatmap.

o Top-three plant recommendations based on cosine similarity.

Figures [3.23] and [3.24] illustrate the main features of the Ultra plan interface.
Figure |3.23 shows the fully interactive map, while Figure [3.24] presents an example
of the detailed popup, which includes spatial coordinates, soil characteristics, the
W-SQI, and tailored plant suggestions.

Home Plans About Support

Soil and Plant Analysis

Display Options:
Coordinates Soil Features
NPK Values Fertilty (W-SQI)
Spring Plants Summer Plants
Autumn Plants Winter Plants

Soil Fertility Heatmap (Southern Europe)

? Location Coordinates
Latitude: 39.23225
Longitude: -5.05595

N }:\é{‘uvha(mba \

N Sha

l/vwm R 2%
.;s]?.oa / okara )
Natpa ¢ Soil Characteristics
Sevilas Andolu el Aerw . ’
R . ’_\’“"E” “SL“’ s Soil pH 69.48 (x10)
\ gl Emn uwm\ “Nger A%:350 o \
Giitarar O St Malta Bulk Density (bdod): 142.49 cglem®
3 Ko
a0t O et ok - g ,..u L’ﬂ;l’? || oarse Fragments (cfvo): 199.29 cmldm®
g Py =5 i Cation Exchange Capacity (cec): 192.51 mmol(c)ikg
b7y ST / | clay Content: 189.85 glkg
N S PN P Wf Sand Content 444,65 glkg
- EONC T i Silt Content: 366.86 glkg
& A
" Organic Carbon (soc) 17275 dglkg
e o
wall Algérie Kx%o710 (A —
Sl i Banlduns .

Figure 3.23: Ultra plan: full interactive map interface.
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Soil Fertility Heatmap (Southern Europe)

* Location Coordinates

Latitude: 41.25295
Longitude: -1.58203
“" Soll Characteristics

Soil pH: 76.95 (x10)
Bulk Density (bdod): 137.23 cglem?
Coarse Fragments (chvo): 189.42 em*ldm?
Cation Exchange Capacity (cec): 197.89 mmaol{cpkg
Clay Content: 243.96 glkg
Sand Content: 351.77 glkg
Silt Content: 406.93 glkg
Organic Carbon (soc): 156.03 dglkg
# Soil Nutriants (NPK)

Nitrogen (N): 138.34 cglkg
Phosphaorus (P): 56.60 mglkg
Potassium (K): 144.54 mglkg

Soil Fertility Index
Weilghted-Soll Qualty Index: 0.3993

» Spring Plants
PeppenBell Pepper (Piment/Poivron) (94.3%), Beetroot (Betterave) (93.7%). Zucchini/Courgette (Courgeite) (93.5%)

Summer Plants

Beetroot (Betterave) (93.7%), Artichoke (ARTICHAUT) (B8.494), Green Beans (Haricot) (88.296)

#; Autumn Plants

Carrot (Carotte) (93.6%), Garnlic (AIL) (91.7%), Parsley (Persil) (90.2%)

Winter Plants

Beetroot (Betterave) (93.4%), Carmot (Carotte) (93.3%), Cucumber (Concombre) (93.29%)

Figure 3.24: Ultra plan: example popup showing coordinates, soil data, W-SQI,
and plant suggestions.

3.5 Conclusion

In this chapter, we outlined two complementary experiments constituting the
core of our Soil Quality Prediction (SQP) system. First, we compared four re-
gression algorithms—LightGBM, XGBoost, Radial Basis Function Network, and
Deep Neural Network—and selected XGBoost as the most accurate and efficient
model to map the Weighted Soil Quality Index (W-SQI) across our study area. A
Folium interactive map was then utilized to visualize spatial SQI predictions so that
stakeholders could identify high and low soil fertility zones.

Second, we widened the pipeline to provide data-driven plant recommenda-
tion by establishing cosine similarity between predicted site feature vectors and ex-
pert-derived plant requirement norms. This stage was finalized with an interactive
Leaflet map that provides personalized plant recommendations, soil characteristics,
and SQI values at user-selected locations. Access to premium layers and recommen-
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dation features is managed via subscription levels, ranging from free-tier basic SQI
overlays to full Ultra-plan functionality.

Together, these experiments demonstrate the promise and utility of combining
machine learning, spatial analysis, and web-based visualization to make data-driven
agricultural planning decisions.
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Conclusion and Perspectives

This work outlines a machine learning-based approach for soil quality prediction
and plant suggestion, divided into two basic experiments. The first experiment tries
to evaluate the performance of four ML models—RBFN, Light GBM, XGBoost, and
DNN-—on a geospatial dataset of nine leading soil features. XGBoost achieved the
best results, with an R? of 0.98, confirming its suitability for SQP tasks. The
second experiment devises a two-stage framework: stage one consists of 36 expert
regressors, where each model predicts a specific soil or environmental parameter
from spatial coordinates. The predicted features are fed as input to a Random
Forest Regressor for SQI prediction describing the soil fertility. Stage two contains
a cosine similarity-based algorithm for matching predicted environmental vectors
with species-specific requirements to suggest suitable plants. The proposed system
is embedded in an interactive web application that offers visualization through maps,
performs SQI analysis, and gives suggestions on plant species.

Future research will address current limitations by prioritizing the collection of
more data, especially from Algeria, and extending the interactive map to greater ge-
ographical expanses, thereby enhancing the tool’s usefulness in precision agriculture
and environmental planning.
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