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Abstract

The rapid growth of wireless communication has become vital to modern
society, connecting people and devices across diverse applications. However, en-
suring robust coverage and sufficient capacity in cellular networks especially in
densely populated urban areas remains a significant challenge due to complex en-
vironments and increasing user demands. This study aims to enhance network
performance by optimizing key operational settings and strategically expanding
infrastructure. We employ intelligent algorithms to fine tune base station param-
eters using Bayesian Optimization (BO) and determine optimal locations for new
towers using a Genetic Algorithm (GA), balancing signal quality, interference,
and practical constraints. The results demonstrate that these data-driven meth-
ods significantly improve coverage and capacity, offering a promising approach for
efficient and adaptive network management.

Keywords: Wireless Communication, Cellular Networks, Coverage, Capac-
ity, Optimization, Bayesian Optimization, Genetic Algorithm.



Résumé

La croissance rapide des communications sans fil est devenue essentielle a
la société moderne, connectant les individus et les appareils a travers une multi-
tude d’applications. Cependant, garantir une couverture robuste et une capacité
suffisante dans les réseaux cellulaires, en particulier dans les zones urbaines den-
sément peuplées, reste un défi majeur en raison des environnements complexes et
des demandes croissantes des utilisateurs. Cette étude vise a améliorer les per-
formances du réseau en optimisant les parametres opérationnels clés et en élargis-
sant stratégiquement l'infrastructure. Nous utilisons des algorithmes intelligents
pour ajuster finement les parametres des stations de base a 1’aide de 'optimisation
bayésienne (BO) et déterminer les emplacements optimaux pour de nouvelles tours
a l'aide de 'algorithme génétique (GA), en équilibrant la qualité du signal, les in-
terférences et les contraintes pratiques. Les résultats montrent que ces méthodes
basées sur les données améliorent significativement la couverture et la capacité, of-
frant une approche prometteuse pour une gestion de réseau efficace et adaptative.

Mots clés : Communication sans fil, Réseaux cellulaires, couverture, capacité,
Optimisation, Optimisation bayésienne, Algorithme génétique.
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General Introduction

Wireless communication has become an essential part of modern life, con-
necting people, devices, and services across every sector of society. As mobile
technology continues to evolve, the demand for faster speeds, broader coverage,
and more reliable connections is growing at an unprecedented rate. In partic-
ular, 4G LTE networks play a crucial role in meeting these needs especially in
densely populated urban areas, where maintaining both extensive coverage and
high capacity is a growing challenge.

The fast increase of mobile data traffic driven by smart devices, multimedia
services, and increasing user demands placed unheard-of pressure on cellular net-
works, especially in high-density urban areas, with its high densities and diverse to-
pographies, making provision of unremitting coverage and sufficient capacity chal-
lenging. Conventional rule-based approaches, like those used in Self-Organizing
Networks (SON) for 4G LTE, usually depend on static configuration and human
involvement and are unable to deal with dynamic radio environments, heteroge-
neous user requirements, and the complex interdependence of network parameters
like antenna tilt, transmit power, and base station placement. These conventional
approaches tend to be costly network densification chewing up demand but in-
creasing complexity, inter-cell interference, and operating expense and hence are
not scalable to modern demands. With the advent of ample performance and
configuration information in cellular networks, gates have been opened to data-
driven, intelligent optimization techniques, with artificial intelligence (AI) as the
game-changing tool.

Bayesian Optimization and Genetic Algorithms are promising techniques for
overcoming these problems and enabling adaptive, automatic, and effective op-
timization of the most critical performance metrics without extensive and time-
consuming manual tuning. A two-component scheme for LTE network optimiza-
tion in urban macrocells is proposed in this thesis, taking into account two very
significant tasks: dynamic parameter tuning of existing base stations and optimal
placement of new towers. Using BO, the system adjusts transmit power and an-
tenna downtilt in real time, employing Expected Improvement (EI) for efficient
single-objective optimization and ¢-Expected Hypervolume Improvement (qEHVI)
for nuanced multi-objective trade-offs, targeting reduced weak coverage, minimized
over-coverage, and controlled interference. When existing infrastructure proves in-
sufficient, a GA determines optimal locations, power settings, and downtilt angles
for new towers, incorporating coverage, capacity, interference, and regulatory con-
straints like zoning restrictions near sensitive areas. The approach is tested within
a simulated urban area, leveraging OpenCelliD data for tower coordinates, the
COST-231 Hata model for radio propagation, and a synthetic terrain grid to mir-
ror urban complexity. By integrating these Al-driven methods, this study aims to
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deliver self-optimizing, adaptive networks that perform robustly under real-world
variability, surpassing traditional heuristic and rule-based strategies. While rooted
in 4G LTE optimization, the principles and methodologies explored here hold rel-
evance for future 5G deployments and beyond, addressing the universal challenge
of balancing coverage, capacity, and cost in wireless communications.

This work sets the stage for a comprehensive evaluation of intelligent optimiza-
tion, offering repeatable insights and a scalable framework to meet the evolving
demands of modern cellular networks.

Motivation

The surge in mobile data traffic from smart devices and user demands has
strained cellular networks, especially in urban areas with high population den-
sity and varied topography. Traditional SON methods for 4G LTE, reliant on
static configurations and manual intervention, struggle with dynamic conditions
and complex parameter interactions, leading to costly densification and increased
interference. Al-driven techniques, such as BO and GA, offer adaptive, automated
optimization of key performance metrics, enabling efficient parameter tuning and
strategic tower placement to meet modern network demands cost-effectively.

Research Questions

This thesis explores Al-based optimization for LTE networks in urban settings
through key questions: How can BO optimize capacity and coverage via dynamic
parameter adjustments, balancing weak and over-coverage? What is the impact of
real-time tuning in dense urban areas with fluctuating interference and demand?
Can GA optimize new tower locations to enhance coverage and capacity while
respecting cost, terrain, and regulatory constraints? How do BO and GA compare
to traditional methods in performance and scalability? How can these approaches
integrate to create adaptive, cost-effective LTE networks? These questions aim
to reveal the potential of Al-driven solutions for modern wireless communication
challenges.

Objective and Scope

This thesis develops an Al-driven framework for optimizing LTE network cov-
erage and capacity in urban macrocell environments. It has two objectives: (1)
real-time optimization of base station parameters using BO to enhance signal qual-
ity and reduce interference, and (2) strategic placement of new towers using GA
to address coverage gaps while adhering to regulatory constraints. The framework
integrates BO for single- and multi-objective optimization with GA for infras-
tructure planning, tested in a simulated urban setting with a propagation model.
Focused on LTE, the findings are scalable to 5G, offering practical solutions for
urban network challenges.
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Contributions of the Thesis

This thesis pushes wireless communications one step ahead by proposing a new
Al-based framework to optimize LTE cellular networks in urban environments,
where it is critical to trade off coverage, capacity, and practical constraints. To
this end, it first proposes a novel approach that leverages Bayesian Optimization
to dynamically adjust base station parameters, i.e., transmit power and antenna
downtilt, to enhance signal quality and reduce interference in real time accord-
ing to single-objective and multi-objective schemes. Second, it proposes a Genetic
Algorithm-based model for strategically placing new base stations, optimizing their
locations and configurations to address coverage gaps and capacity demands while
respecting regulatory restrictions near sensitive areas like schools and hospitals.
Third, it integrates these methods into a sequential framework, combining pa-
rameter optimization of existing infrastructure with targeted tower placement to
deliver an adaptive and cost-effective solution for network enhancement. Fourth,
it establishes a reproducible simulation-based testbed, leveraging real-world tower
data and a synthetic urban terrain model to create a realistic environment for
evaluating optimization results. These contributions elevate LTE network man-
agement by providing a flexible and intelligent system that addresses current chal-
lenges and lays a foundation for future research into self-optimizing networks for
5G and beyond, offering practical insights for operators aiming to improve service
quality, cost-efficiency, and sustainability in complex urban settings.

Thesis Organization

This dissertation systematically explores the development, implementation,
and evaluation of an Al-driven framework for optimizing LTE cellular network
coverage and capacity, with a focus on urban macrocell environments, guiding
readers through its concepts, methods, methods, and outcomes. Chapter [l, "Basic
Concepts,” provides the theoretical foundation, covering the evolution and struc-
ture of mobile cellular networks, the role of network configuration parameters like
frequency reuse, base station count, density, and antenna configuration, tilt in
enhancing performance, and the application of Al to address these challenges.
Chapter P, A, "Related Work”, reviews existing approaches to network optimiza-
tion, examining traditional and Al-driven techniques, highlighting their strengths
and limitations, and identifying opportunities for intelligent, adaptive solutions
addressed by this work. Chapter B, "Proposed System,” outlines the design and
architecture of the proposed framework, detailing a sequential process that uses
Bayesian optimization to adjust base station parameters and a genetic Algorithm
to optimize new tower placement, balancing coverage, capacity, and interference,
regulatory constraints in a simulated urban setting. Chapter W, "Experiments
and Results,” describes the simulated setting and experiments that evaluate the
performance of the framework in terms of measures like signal strength and cov-
erage, interference, and quality of coverage. and finally with Conclusions and
Perspectives. This format guarantees a smooth transition, providing an in-depth
examination of Al-based optimization for urban LTE networks.



Chapter 1

Basic concepts

1.1 Introduction

The fast-paced development of cellular mobile networks has significantly trans-
formed worldwide communication driven by the surging demand for mass internet
access and broadband data services. In this chapter, we provide the foundation
for understanding the mechanisms and technologies behind these networks in gen-
eral, and particularly highlighting 4G Long-Term Evolution (LTE) systems, which
form the core objective of this thesis in terms of extending coverage and capacity
in cities, The application of artificial intelligence (AI) to network optimization is a
promising solution to dealing with interference, resource allocation, and scalability
challenges, especially for very dense user contexts. we start with background in-
formation on wireless communication, an exploration of its past development and
technical foundations, which are the underpinnings of current cellular technology
demonstrating that this work can scale to other technologies in that field. It then
elaborates on mobile cellular network structure, evolution, and fundamental build-
ing blocks and emphasizes their role in facilitating a wide diversity of applications
as well as the delivery of public safety. The subsequent parts discuss the effects of
network parameter configurations, such as antenna tilt and base station location
on coverage and capacity, in addition to radio propagation modeling and struc-
tured optimization framework. By combining these elements, this chapter sets the
theoretical and practical groundwork for Al-based optimization techniques pre-
sented in subsequent chapters, showcasing their relevance in enhancing 4G LTE
performance in urban areas.

1.2 Overview of Wireless Communication

The basis on which the global link established by cellular mobile networks
based on wireless communication, which refers to transmission without physi-
cal wired connections. This expansion was made possible through the work of
Guglielmo Marconi on radio waves in the late 19th century. Previous systems
utilized analog transmission techniques and simple modulation methods, for ex-
ample, frequency modulation (FM) and amplitude modulation (AM), which en-
hanced transmission distance and signal quality via the mid-20th century. This
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was particularly apparent in their use for military and naval applications. Cellular
concepts, created in the 1940s by Bell Laboratories, were a conceptual advancement
insofar as they envisioned geographical divides as cells that would be managed by
base stations for efficient reuse of frequency. This, together with digital signal
processing and multiplexing, evolved into today’s sophisticated wireless networks.
Understanding these origins is essential to solving present problems, such as max-
imizing capacity and coverage in densely populated cities, a primary focus of this
thesis.

1.3 Mobile Cellular Networks

With the potential to extend internet access and inter-personal communica-
tion to billions of people across the globe, mobile cellular networks form a vital
part of modern wireless communication networks. inexpensive mobile phones, per-
vasive internet-based services, and ensuing technology enhancements are the key
drivers of their exponential growth. They employ several technologies like satel-
lite communication, Wi-Fi, and cellular radio to maintain persistent connectivity
and extensive coverage between locations. This connection is founded on regular
communication and QoS-demanding applications that need outstanding network
performance, particularly in urban areas. With a top priority on tower positions
and dynamic parameter configuration, this thesis addresses these problems with
Al-supported optimization techniques for 4G LTE networks.

1.3.1 History

The technology of mobile cellular networks or wireless communication is one of
the most revolutionary technologies of the contemporary age, transforming world
communication and inter-connectivity in basic ways. Since the time they were
introduced for the first time in the mid-20th century, mobile networks have passed
through generations, they are characterized by pioneering development in speed,
stability, and scalabilty. The initial cell networks established in the 1950s and
activated in the late 1970s used analog transmission methods in conjunction with
Frequency Division Multiple Access (FDMA) methods. Each cell in the systems
had a personal frequency band, providing fundamental voice communication albeit
with modest capacity and security.

The second generation (2G) technology innovation in 1980 was a big leap from
the analog to digital communication mode. also the fitting of the Global System
for Mobile Communications (GSM) in the early 1990 enabled the use of Time
Division Multiple Access (TDMA), which allows multiple users to access the same
frequency channel by allocating them different time slots.

This generation constitutes the foundation of many new services like Short
Message Service (SMS) and General Packet Radio Service (GPRS) establishing
a platform for mobile data communication and setting the ground for a trend
of mobile internet connectivity. On this basis, third-generation (3G) networks
were established in the early 2000 with the introduction of the Universal Mobile
Telecommunications System (UMTS). Those networks used Code Division Mul-
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tiple Access (CDMA), which supported simultaneous voice and data services on
broader bandwidths. With higher data transmission rates and remarkably low
latency, 3G facilitated the development of multimedia services such as mobile
web access, video calls, and email on the move, thereby speeding up the conver-
gence of information technology and telecommunications [50].Fourth generation
(4G) Multiple-Input Multiple-Output (MIMO) antennas and the all-IP network
architecture, which was standardized by the 3rd Generation Partnership Project
(3GPP) in 2008 and commercially launched in 2010, transformed mobile commu-
nication. Voice-over-LTE (VoLTE), cloud-based services, and HD video streaming
became standard, and data speeds of over 100 Mbps were made possible. 4G ush-
ered in the era of mobile broadband, greatly improving network capacity, spectrum
efficiency, and user experience as well. Present fifth generation 5G is the technol-
ogy which is being deployed in most of the countries, deployed globally from the
year 2020, a huge leap and a true game-changer. 5G is intended to meet the varying
needs of an ultra-connected world and is envisioned to provide ultra-low latency,
gigabit-per-second data rates, massive device connectivity, and network slicing.
They are essential for future applications and use cases such as autonomous cars,
virtual /augmented reality, IoT, and Industry 4.0 [b4]. Furthermore, 5G networks
are deploying greater software-defined networking (SDN) and network function
virtualization (NFV) in a bid to be more agile, dynamic, and intelligent in the
management of the network [50]. In the future, early 6G network research in
the 2030s is exploring convergence of artificial intelligence, machine learning, ter-
ahertz (THz) communications, and quantum technologies. The networks need to
deliver record spectral efficiency, spatial resolution, and context-aware services,
and support real-time digital twins, tactile internet, and holographic communica-
tions with immersive experiences. Within this overall context, this thesis considers
4G LTE network optimization, which remains the world’s connectivity backbone
today. Proper configuration of the network parameters, antenna tilt, transmit
power, and base station location is crucial in urban areas with dense population
to ensure stable coverage and sufficient capacity. While basic principles and opti-
mization problems are the same for every generation, it still stands to gain from
maximizing the performance of 4G LTE infrastructure, especially given that these
networks will coexist and interoperate with 5G deployments. The techniques and
methodologies explored herein are thus relevant not only to existing LTE networks
but also provide valuable lessons for next-generation wireless networks.

1.3.2 Architecture

The architecture of mobile cellular networks is designed to connect mobile
devices such as smartphones and tablets to radio networks for communication and
internet access. It comprises a hierarchical structure of cells (macro-cell, micro-
cell, pico-cell, femto-cell), each served by a base station, with 5G networks using
gNodeB (gNB) to link devices to the core network in both downlink and uplink
directions. The basic network architecture is shown in Figure by [11].The
core network, or backbone, connects to the public internet via high-capacity links
like fiber optic cables or satellite connections, interfacing with Internet Service
Providers (ISPs) through the Border Gateway Protocol (BGP) for efficient data
routing. This infrastructure supports seamless connectivity, with later 4G en-
hancements introducing small cells to boost capacity in high-traffic urban zones.
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Figure 1.1: Hierarchy of cells and the connection link between devices and e-
UTRAN that is connected to core network

The thesis leverages this architecture to explore optimization strategies, such as
adjusting antenna tilt and base station placement, to enhance 4G LTE perfor-
mance.

1.4 The Impact of Network Configuration on Cov-
erage and Capacity

To systematically optimize network coverage and capacity, the most important
cellular system parameters must be detected and configured accordingly. It is
apparent that a wide variety of network elements can be optimized to satisfy user
needs and system constraints. These constraints include things like environmental
factors and changes in user needs. Some of the adjustable parameters include
base station location, antenna tilt, transmit power, and frequency reuse. In this
section, we assess some of these critical parameters, analyze their effects on network
behavior, and review the previously defined optimization settings. Our focus is not
limited to coverage and capacity alone. We also consider the level of complexity
such parameters introduce toward automating self-optimizing systems powered
by artificial intelligence. We pay most attention to those that have practically
adjustable capabilities as they form the basis of the whole framework constructed
using our optimization.

1.4.1 Static Deployment Parameters

We examine key parameters that are established in the early stages of network
planning and deployment in this section. Once the infrastructure is deployed,
these are typically static and expensive or difficult to change. They are crucial in
the context of contemporary cellular technologies like 5G as fundamental design
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choices have a significant impact on long-term network performance, even though
they are frequently disregarded in short-term optimization. Understanding their
influence is essential to creating scalable and effective networks.

Frequency Spectrum and Frequency Reuse

The available frequency spectrum plays a pivotal role in determining the ca-
pacity of cellular networks. In earlier generations such as GSM (Global System for
Mobile Communications), to mitigate co-channel interference, the total spectrum
was partitioned and distributed across cells so that adjacent cells operated on dif-
ferent frequency bands. This strategy does not only minimized interference but
also enabled dynamic spectrum allocation, allowing cells to adjust frequency usage
based on fluctuating traffic demands. As illustrated in Figure [L.2, this traditional
approach (left) assigned distinct frequencies (f1, 2, £3) to neighboring cells to re-
duce interference, whereas modern LTE networks (right) adopt a reuse factor of
one, using the full spectrum in each cell to maximize capacity. Modern networks,
such as LTE, on the other hand, have a frequency reuse factor of one, which means
that each cell uses all of the spectrum. This increases the capacity and spectrum
efficiency, but it also increases inter-cell interference, especially in dense areas.[25]
Consequently, it is no longer feasible to increase dynamic capacity in LTE and
beyond by merely altering spectrum allocation. These networks instead use alter-
native optimization techniques including power management, antenna tuning, and
interference coordination systems to maintain performance in dynamic situations.

Figure 1.2: Comparison of frequency: f= f1+{2413: larger spectrum per cell means
more radio resources per cell.

Base Station Density

The idea of "cells,” first proposed by Bell Labs in the late 1940s, is the basis
of the infrastructure of today’s cellular networks. This model segments a large
geographical area into smaller zones, each managed by a dedicated Base Station
(BS), allow for efficient frequency reuse and increased network capacity. Due to
high data traffic and increasing user demand for improved QoS, Densification, i.e.,
increasing the number of base stations is a practical way to improve both coverage
and throughput[[12]. As shown in Figure [L.3, densification is visually represented
by comparing a traditional sparse layout of base stations (left) with a denser
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Figure 1.3: Higher BS density means larger number of radio Resources per unit
area.

deployment (right), where more BSs per unit area result in improved spectral
efficiency and service availability. However, The challenges are critical in this
approach. Regulations, environmental concerns, and public health reasons severely
restrict the deployment of BSs to designated acceptable sites. Furthermore, rapid
or large-scale densification is not feasible for short-term improvements because
of the time and expense involved in installing new infrastructure. To achieve
short-term performance improvements, densification is therefore usually regarded
as a long-term investment and is frequently combined with additional optimization
strategies like small cell deployment, antenna parameter modification, and load
balancing algorithms [31].

Cell Placement

Optimal cell placement is Crucial for improving network performance in het-
erogeneous LTE environments, due to the complexity of cell deployment, which
involves many complex factors. The locations of base stations (BSs) determine
not only the size of their coverage areas but also affect how signals interfere and
how resources are allocated throughout the network. This is especially critical in
dense networks like LTE heterogeneous networks (HetNets), where both macro
and small cells are in use, since poor or uncoordinated placements can lead to
overlapping signals and increased interference, ultimately harming the user expe-
rience [24]. This work addresses this multi-dimensional challenge an innovative
framework designed to carefully select BS locations. There are methods that im-
prove coverage and capacity while keeping interference to a minimum. It does so
by using a new technique which has proven to be more effective at solving the BS
placement problem in comparison with traditional approaches[1§].

Antenna Elevation

The mounting height of a base station (BS) antenna is among the signifi-
cant parameters that affect wireless signal propagation patterns in a given region.
Generally speaking, increasing the height allows signals to cover longer distances
by reducing the impact of blocking by buildings and terrain undulation, thus en-
hancing the overall coverage area. It can be particularly beneficial under rural
or semi-urban environments where line-of-sight communications are a primary ne-
cessity for crystal clear connectivity. But a higher antenna is not always better.
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Too much height can cause greater interference with far-away cells or even signal
overshooting, which creates coverage holes on the ground in the immediate area
around the BS. It can also decrease signal penetration in urban areas with high
population densities, where users can be found indoors at lower elevations. In
operational scenarios, antenna height is typically set during the first deployment
and network planning stage based on topography, user density, and environmen-
tal factors. After installation, it is logistically and economically challenging to
modify antenna height, since it can entail civil work or structural modification of
rooftops or towers. It is therefore not an appropriate parameter for real-time or
adaptive network optimization. In the context of next-generation networks, while
smart antennas and beamforming allow for more dynamic control in horizontal
and vertical dimensions (via electrical downtilt), the physical height of an antenna
remains a comparatively static parameter. Future research may address deployable
or variable-height platforms e.g., drone-based BSs or reconfigurable mast systems
for temporary events or emergency coverage, though such solutions are not yet
mainstream for macrocell deployments.

1.4.2 Dynamic Configuration Parameters

This section focuses on the remotely optimizable and tunable dynamic net-
work parameters over the lifespan of the network. These include parameters such
as antenna tilt and transmit power, which can be optimized in real time based on
evolving user demand and interference levels. Such parameters are at the heart of
contemporary Self-Organizing Networks (SONs) and Al-based optimization suites.
Understanding these parameters is crucial to achieving the fulfillment of adaptive,
intelligent, and high-capacity cellular networks.

Sectorization

The BS has a fundamental technique called sectorization its used to divide
the coverage into different sectors using directional antennas typically three sectors
(we use three in our study.). Instead of relying on omni-directional antennas that
transmit signals uniformly in all directions, but sometimes more depending on net-
work needs. This targeted transmission approach not only improves signal quality
within each sector also helps mitigate interference between neighboring cells b
keeping the transmitted power within specific angles. As shown in Figure @:
sectorization is visually represented by contrasting a traditional omni-directional
layout (left) with a sectorized layout (right), where each cell is divided into smaller
directional sectors effectively increasing spatial reuse and improving signal isola-
tion. Due to the financial and logistical burden of physical reconfiguration, which
includes site modifications and hardware installation, sector configurations are of-
ten decided upon during the original network deployment phase and stay fixed [53].
However, now with the recent developments in smart antenna technologies and
beamforming techniques, adaptable and flexible sectorization is possible. Based on
user distribution and traffic load, these systems may instantly change the antenna
layouts, creating new opportunities for dynamic optimization in next-generation
networks like LTE/5G. This adaptability significantly reduces the need for manual
intervention and enables self-organizing network (SON) capabilities[22].
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Figure 1.4: Sectorization also increases the available radio resources per unit area.

Antenna Beam Direction (Azimuth Control)

An antenna’s azimuth is the horizontal direction of its principal lobe mea-
sured from geographic north. This is perhaps the most significant parameter in
directing the antenna’s coverage footprint to target service zones. With careful ad-
justment of the azimuth, network planners can concentrate signal strength where
it is most needed and reduce off-target radiation into zones that may create inter-
ference especially in neighboring cells [@] Unbalanced alignment, nearby antennas
facing each other, increases mutual interference and lead to degradation of perfor-
mance within the overlap areas. In contrast, meticulous alignment that prevents
direct overlap can clean up signals and enhance user experience in high-density
deploymentsﬁﬁ]. While azimuth adjustment can be a useful tool in the prelimi-
nary network design and planning phase, its potential for real-time optimization is
somewhat limited. This is because azimuth adjustments typically imply physical
re-orientation or complicated mechanical means, not always economically viable
or practical for dynamic situations. Additionally, the optimal azimuth direction
will likely be determined by static geographic parameters such as user hotspots,
base station locations, and terrain profile, and hence updating frequently is not
feasible. With the dawn of smart antenna and beamforming technology, however,
dynamic beam steering is emerging on the horizon. In its infancy as far as azimuth
control is concerned, the technologies hold out the possibility of eventual dynamic
realignment to prevailing traffic conditions and interference levels if the seeds are
sown for increasingly responsive and adaptive network configurations.
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Figure 1.5: Azimuth setting helps to avoid radiation in the direction of adjacent
neighbor.
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Transmit Power Control

Transmit power is probably the dominant factor on capacity and coverage
area in a cellular network. It is one of the most adjustable parameters within the
control of network planners that directly impacts signal strength and coverage,
particularly at cell edges. Using the assistance of increased transmission power,
it is feasible to increase the signal range and improve the quality of service at
the edges at the expense of trade-offs. High powers have tendency to overload
nearby cells with erroneous signals and generating co-channel interference and
network performance in general decline particularly for networks like LTE and 5G
where reuses of spectrum among nearby sites. On the other hand, powers that are
set too cautiously might not interfere but under service or expose sections of the
service area to poor signal conditions, especially indoors or in regions of obstructive
terrain [30]. To address this problem, existing mobile networks now largely depend
on adaptive power control capabilities integrated into Self-Organizing Network
(SON) architecture. These intelligent systems analyze real-time traffic demand,
user density, interference levels, and environmental conditions to adjust power
outputs dynamically. This enables the network to minimize power consumption,
optimize spectrum efficiency, and adapt dynamically to changing load patterns
throughout the day. Moreover, with green networks and green architectures, power
management passing is even more important not just for greater performance
but to reduce cost of energy and carbon footprint[29]. In future deployment,
smart power control will be essential in ensuring quality of service (QoS) and
eco-friendliness.

Antenna Tilt

Antenna tilt or vertical orientation of a cell antenna’s radiation pattern is one
of the most significant interference and signal coverage controllable parameters
Figure [L.6. It is either downtilt, in which case the direction of the antenna beam is
towards the ground, or uptilt, with the beam pointing upward, providing extended
coverage. Tilt adjustment alters the manner in which the radio signal interacts
with the environment. Greater downtilt concentrates signal power closer to the
base station, thereby enhancing signal quality in the vicinity while, simultaneously,
limiting interference with neighboring cells. Reducing the downtilt or using uptilt
extends coverage over greater distances, which may be advantageous in sparse or
rural environments but will also overshoots close-range users and produce inter
cell interference[35]. Tilt optimization can yield outstanding gains in LTE and 5G
where signal quality (SINR) enables high data rates and spectral efficiency. It is
even more useful in urban hotspots where downtilt control allows operators to serve
high user density zones like business districts in a controlled manner without signal
spillage in less profitable areas. With the recent developments on the base station
side, operators can now remotely change antenna tilt due to the introduction of
Remote Electrical Tilt (RET'), which does not require a site visit for alterations[55].
This is an effective means of responding to real-time traffic patterns, user mobility,
and interference dynamics. This responsiveness is all the more critical in 5G where
dynamic user clustering and beamforming involve steering direction of signals with
precision|21].

Moreover, intelligent tilt optimization can be utilized for load distribution
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Service Area with 15 Deg Tilt
Service Area with 6 Deg Tilt

Figure 1.6: Antenna Tilt.

between neighboring cells, offloading over-loaded areas and ensuring end-to-end
quality of service results in improved coverage and capacity. Sophisticated opti-
mization platforms can even incorporate tilt control as a part of Al-driven or re-
inforcement learning algorithms optimizing network parameters continuously for
best possible performance.

In our optimization approach, we have chosen to utilize antenna tilt configurations,
with a focus on electrical tilt, along with transmit power.

1.5 Mechanism of Antenna Tilt

In essence, antenna tilt offers the ability to control the vertical direction of
signal transmission by mechanical or electrical means. In the next section, we
provide a concise explanation of how the two mechanisms differ and state which
is the subject of research.

1.5.1 Mechanical Tilt Adjustment

Mechanical tilt is the physical adjustment of an antenna’s mounting angle so
that the main beam is directed downward toward the coverage area. Mechanical
tilt is achieved by physically rotating the entire antenna structure to obtain the de-
sired tilt. Although the shape of the antenna radiation pattern is largely preserved,
small distortions can result, such as the appearance of a notch at the tip of the
main lobe, which can further reduce interference in unintended directions[35]. Al-
though being straightforward, the mechanical tilt suffers from several drawbacks.
The rear and side lobes of the radiation pattern are not shifted in the new direc-
tion evenly, and in some cases, the rear lobe may even tilt upward, in some cases
it may lead to interference. Furthermore, implementing mechanical tilt requires
dispatching technicians to the location, making it not only costly but also inconve-
nient for repetitive or real-time network optimization. Due to this, mechanical tilt
is widely used for initial deployment or for long-term static optimizations instead
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of dynamic network optimization.

1.5.2 Electrical Antenna Tilt

Electrical tilt is the deflection of the direction of a vertical beam of an an-
tenna by electronically changing the phase of the signal between the radiating
elements[55]. Unlike mechanical tilt, this technique allows for symmetric cover-
age angle adjustment in all azimuths without repositioning the antenna hardware.
There are several versions in this category. Fixed Electrical Tilt (FET) is deployed
fixed and cannot be adjusted except in combination with mechanical techniques or
the complete replacement of antennas. Variable Electrical Tilt (VET) extends this
further in that it can have a tilt range that can be defined [5§8]. providing flexibility
to meet varying coverage demands. As illustrated in Figure ﬁ[%], the radiation
pattern for mechanical tilt (a) shows asymmetry and a less focused beam direc-
tion, while electrical tilt (b) produces a more controlled and symmetric pattern.
This distinction highlights the precision advantage of electrical tilt, especially in
environments that require dynamic coverage adaptation.

Figure 1.7: Mechanical Tilt (a) Vs Electrical Tilt (b)

A primary innovation is the Remote Electrical Tilt (RET), through which
network operators are able to vary antenna angles remotely from central control
systems without on-site manual adjustment. Not only does this conserve opera-
tional cost but also enhances flexibility in coverage and interference control. Con-
tinuous Adjustable Electrical Downtilt (CAEDT), the most advanced one, gives
computer-driven beam changes in real time and actively compensates for shifting
traffic, atmospheric, and user motion patterns. High-density site deployments and
dynamically fluctuating demand levels require a special critical role in LTE/5G
launches, where such a high degree of flexibility needs to be preserved in order to
guarantee sustainable quality of service.

1.6 Antenna Tilt Optimization Objectives

After we analysis the importance of antenna tilt and the influence that it can
offer to optimize cellular networks and its dependence on particular conditions, we
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propose that it can be optimized more and that’s what we will discuss in upcoming
subsequent, The upcoming section presents an overview of The studies we focus
on that explore how antenna tilt can be adjusted to meet different performance
objectives depending on the situation and goals.

1.6.1 Coverage and Capacity Optimization

Antenna tilt optimization is a fundamental approach for ensuring efficient
signal coverage in defined areas and improving coverage and capacity to meet user
needs. One basic technique involves the use of a uniform tilt for all base stations,
which can lead to marginal improvements over unoptimized installations[39]. Yet,
actual networks demonstrate a broad variety of topological structures and pop-
ulations of users, which call for customized tilt adaptations per cell for specific
environmental factors, urban population density or terrain variation. Customized
optimization has been found to enhance capacity by approximately 15% in UMTS
macro cell installations over standard tilt configurations, primarily by reducing
inter-cell interference via optimum beam alignment [B3]. Power distribution is
crucial in UMTS systems, and base stations distribute limited transmission power
to data and control channels. Antenna tilt optimization can significantly reduce
the power needed for basic control channels such as cell identity broadcast and
synchronization signal broadcast. Studies have shown that meticulous tilt tuning
can reduce the power of these channels by up to 60%, freeing up vast amounts of
resources for data channels [46] [45]. This re balancing optimizes the network’s
capacity, reduces congestion, and minimizes the occurrence of service disruptions,
including dropped calls or call setup failures.

For high-speed data networks, throughput is a key indicator of capacity.
Antenna tilt optimization can enhance average user throughput by as much as
30% in advanced HSPA systems, and even greater gains in LTE and 5G sys-
tems where frequency reuse across cells enhances the interference risks [2] [48] .
In Long-Term Evolution (LTE) networks, finely adjusted tilt configurations en-
hance signal-to-interference-plus-noise ratio (SINR) characteristics, especially at
cell edges, thereby making possible the utilization of advanced modulation tech-
niques and increasing edge throughput by 80% in non-uniform deployments. Such
enhancements are essential to maintaining stable service quality and minimizing
the digital divide between central cell areas and their edges[41][5]. Apart from
coverage and throughput, antenna tilt optimization assists in energy efficiency, a
problem of paramount significance in contemporary networks. Optimized tilts, via
better concentration of radiated power, reduce overall base station power consump-
tion and facilitate environmentally friendly operation of networks [10]. In hetero-
geneous networks incorporating macrocells and small cells, adaptive tilt methods
maximize load balancing through dynamic redistribution of capacity to areas of
high demand during hours of peak usage. These advances underline the sophisti-
cated role of antenna tilt in modern wireless systems, enabling the realization of
resilient and user-centric network designs.
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1.6.2 Base Station Deployment

Radio access network planning involves the optimal selection of base station
(BS) positions along with their operating modes in order to ensure that the ca-
pacity needed is delivered to intended areas of service. It is usually constrained by
a variety of real-life situations, including the limited number of sites for deploy-
ment, installation expense, target levels of coverage, and user requirement density
in each location. Within these limits, the core objective of network planning is
to deliver optimum performance at the minimum overall cost of infrastructure
deployment. Besides location, the environment for each BS transmit power, an-
tenna tilt, and sector orientation, for example its important in determining its
effective service area and overall contribution to network capacity. By optimizing
placement and settings simultaneously, operators can reduce the quantity of BSs
needed to meet performance requirements. This principle has already been suc-
cessfully proven in earlier generations like GSM and WCDMA, where the network
planners derived tremendous efficiency gains by including configuration-aware de-
ployment techniques [6][7]. With the emergence of LTE and the advent of 5G, this
becomes all the more critical. In LTE, with frequency reuse prevalent everywhere,
and in 5G, where dense deployments along with higher frequency bands are made,
Careful BS planning minimizes interference and improves spectral efficiency. As
networks evolve to handle higher traffic volumes, lower latency requirements, and
more complex environments, base station deployment must be addressed not just
as a matter of coverage, but as an enabling factor of overall capacity and quality of
service. Incorporating advanced BS parameters in the planning process continues
to be a fundamental way of lowering deployment costs while maximizing perfor-
mance in current and future wireless systems[p].

Actually, there are more objectives to discuss regarding their importance in
cellular networks and Studies conducted for such objective like :

» Load Balancing Cellular networks experience non-uniform spatio-temporal
traffic variations, causing resource imbalance, where congested cells deteri-
orate QoS by increased latency and decreased throughput. Dynamic load
balancing via antenna tilt manages cell coverage and signal strength, direct-
ing traffic towards under-loaded neighbor cells. Real-time tilt adaptation
increases capacity by 15% in WCDMA [2(] and up to 40% in LTE, with
the gains growing in high-imbalance scenarios like event hotspots [34]. In
5@, single frequency reuse maximizes interference, and adaptive tilt is neces-
sary, enhanced by machine learning and Self-Organizing Networks (SONs).
In HetNets networks, specialized algorithms optimize macro and small cell
traffic for seamless communication and spectral efficiency. Antenna tilt is
a low-cost, flexible solution for rapid response to traffic changes without
compromising service quality[26].

o Self-Healing Cellular networks are susceptible to cell failures caused by
hardware or software failures that lead to poor service or total outages with
significant impact on user experience. Self-healing capability leverages au-
tomation to detect and repair such failures, minimizing downtime and man-
ual intervention[§]. Antenna tilt plays a crucial role in self-healing in the
way that it dynamically adjusts coverage to compensate for failed cells so
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that adjacent cells extend their serving areas and bridge the gap in con-
nectivity. For example, in LTE networks, SON-based tilt optimization can
autonomously detect a cell outage and redirect adjacent antennas to cover
the gap, minimizing service disruption by up to 80% in simulations[37]. Self-
healing based on machine learning, when coupled with tilt optimization,
is reported to restore coverage within minutes, increasing the reliability of
networks, in recent research on 5G networks. Such enhancements are par-
ticularly significant in dense 5G deployment, wherein failure of small cells
is ubiquitous due to complex topologies. Through the inclusion of real-time
monitoring and adaptative tilt, self-healing brings about fault-resilient net-
work performance, and therefore is highly important to wireless systems in
current times[43].

e Energy Saving With increasing operational expenditures and environmen-
tal awareness, energy efficiency is a top priority in cellular networks. Traf-
fic demands are space and time-heterogeneous and will leave certain cells
underutilized during off-peak periods. Dynamically switching off low-traffic
cells and using antenna tilt adaptations is one of the most important energy-
conserving strategies[8]. In LTE networks where the inter-site distance is 500
meters, simulations are shown to achieve 5% to 13% energy savings through
this technique, with even greater savings, (up to 20%) in 5G networks be-
cause of denser deployments of small cells. Dynamic tilt optimization fo-
cuses radiated power, lowering base station energy consumption in total
without compromising coverage continuity[13][56]. Evidence further suggests
that the integration of tilt adaptation with SONs and machine learning can
predict traffic conditions and cell switching optimization more accurately,
with 15%-25% gains in energy efficiency in urban 5G HetNets, without any
throughput or latency losses. Not only does this approach reduce operating
costs but also supports sustainable network operation, aligning with global
green initiatives[44].

1.7 Radio Propagation Modeling

Radio propagation modeling is critical for simulating cellular network perfor-
mance, because it determines the received signal strength, which influences metrics
such as coverage, capacity, and interference. In this thesis, the propagation model
is tailored to optimize antenna downtilt and transmit power in an urban macrocell
environment, using Bayesian Optimization (BO) and Genetic Algorithms (GA).
The model calculates Received Signal Reference Power (RSRP) based on transmit
power, path loss, and antenna downtilt effects, following the general structure of
the received power equation presented in Section [L.7.2. This section describes the
empirical model, path loss calculation, rationale, limitations, and downtilt loss
modeling used for the simulation.

1.7.1 Empirical Models

Empirical propagation models estimate path loss from real-world statistical
data, offering a balance between accuracy and computational simplicity for urban
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environments. This thesis adopts the COST 231 Hata model, an extension of
the Okumura-Hata model, designed for urban macrocell scenarios at frequencies
around 1800 MHz [3]. The model accounts for key parameters such as distance,
base station height, mobile height, and carrier frequency, making it suitable for
simulating LTE networks in dense urban settings. Unlike deterministic models,
which require detailed environmental data, or theoretical models, which may over-
simplify complex terrains, the COST 231 Hata model provides robust predictions
for the macrocell deployment studied in Chapter {.

1.7.2 Path Loss

Path loss represents the reduction in signal power as it propagates from the
transmitter to the receiver, influenced by distance, frequency, and environmental
factors. The COST 231 Hata model is used to compute path loss (PL) in this
thesis, expressed as[3]:

PL = 46.3+33.91og,,(f) —13.8210g(hp) — a(hm) + (44.9 — 6.5510g,,(hp)) log,,(d) + C
(1.1)

where f is the carrier frequency (1800 MHz), hp is the base station height (30 m),

hys is the mobile height (1.5 m), d is the 3D distance in kilometers, and C is an

urban correction factor (3 dB). The mobile correction term is:

a(hp) = (1.11ogyo(f) — 0.7) hag — (1.56log,o(f) — 0.8) (1.2)

The 3D distance d is calculated using the geodesic 2D distance between the trans-
mitter and receiver, adjusted for the height difference between the base station
(30 m) and mobile (1.5 m), ensuring accurate modeling of urban terrain varia-
tions. The total path loss includes an additional downtilt loss term, described in
Section , to account for antenna orientation effects.

1.7.3 Downtilt Loss Modeling

Antenna downtilt affects signal strength by focusing the radiation pattern to-
ward specific areas, reducing interference and optimizing coverage. The simulation
models downtilt loss as:

Bdowntilt — 0
Ly = max (0, %) -3 (1.3)

where Oqowntile 1S the antenna downtilt angle (0-10 degrees), 6 = arctan (%)

is the angle to the user in degrees, d is the distance in kilometers, and BW is
the antenna beamwidth (10 degrees). The loss is scaled by 3 dB per beamwidth
deviation, a gradual signal loss penalty for misaligned signals. This model is
integrated with the COST 231 Hata path loss to compute total loss:

Liotal = PL + Ly (1.4)

The downtilt loss enhances the simulation’s ability to optimize RSRP by adjusting
antenna angles, such as studies like Siomina (2005) [46], where downtilt reduced
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pilot power by up to 50%. By incorporating downtilt effects, the model supports
the BO framework’s goal of minimizing weak and over-coverage areas.

1.7.4 Rationale and Limitations

The COST 231 Hata model was selected for its applicability to urban macro-
cell environments at 1800 MHz, aligning with the LTE network configuration. Its
empirical nature ensures reliable predictions without requiring detailed environ-
mental data, which is often unavailable for large-scale simulations. The model’s
parameters (30 m base station height, 1.5 m mobile height) match the simulation
setup, and its urban correction factor accounts for building density, making it suit-
able for optimizing coverage and capacity. However, the model has limitations. It
assumes homogeneous urban environment, which may not capture specific terrain
or building variations. The model is also less accurate for distances below 50 m or
above 20 km, though the simulation’s grid resolution (50 m) mitigates this issue.
Additionally, antenna gains (Gan, Gpjr) are simplified, with directional effects
approximated via downtilt loss, which may overlook complex antenna patterns.

1.8 Problem Formulation

To design an effective optimization framework, the problem must be clearly
defined in terms of decision variables, objectives, evaluation metrics, and con-
straints. This section formalizes the optimization problem for both dynamic pa-
rameter tuning and cell placement, ensuring alignment with realistic network plan-
ning requirements. The formulation draws inspiration from [[19], who define cov-
erage and capacity optimization as a multi-objective problem, minimizing under-
coverage and over-coverage using RSRP-based metrics.

1.8.1 Decision Variables

The optimization process involves adjusting the following decision variables:

« Transmit Power (Prx): The power level (in dBm) at which each sector
of a base station transmits. For existing towers. the range is 30-50 dBm,
reflecting typical macrocell configurations [19][45]. For a new tower, the
same range applies to its three sectors.

e Antenna Downtilt (6): The angle (in degrees) at which the antenna is
tilted downward to control coverage and interference. The range is 0-10°,
based on standard electrical tilt capabilities [[L].

« Tower Location (lat, Lon): For cell placement, the geographical coordi-
nates (latitude and longitude) of a new base station within the urban area.

These variables directly influence signal strength, coverage patterns, and in-
terference, making their optimization critical for network performance. Similar to
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[19], who optimize both transmit power and downtilt to balance signal strength
and interference, our approach uses these variables to achieve comparable objec-
tives.

1.8.2 Multi-Objective Optimization

We consider a predefined area of interest that contains multiple base stations,
each comprising several sectors, all managed by a centralized controller. Two key
issues in cellular coverage are identified:

o Under-coverage: Areas where the received signal strength is insufficient to
maintain acceptable service quality.

o Over-coverage: Areas where excessive signal overlap leads to high inter-
ference levels, degrading overall network performance.

To formalize these concepts, we use the Reference Signal Received Power
(RSRP), a common LTE performance metric reported by user equipment (UE)
to represent signal level and coverage quality. An under-covered location is one
where the maximum RSRP from any sector falls below a predefined threshold.
Conversely, over-covered locations are those where the difference between the
strongest RSRP and the total RSRP received from all other interfering sectors
does not exceed a specified threshold[19)].

These thresholds are typically chosen based on receiver sensitivity, selectivity,
network density, and standard interference management practices. Common values
are —110 dBm for under-coverage and 6 dB for over-coverage [19].

A network configuration x defines the transmit power and antenna downtilt for
each sector. In our model, the downtilt can take one of eleven discrete values, while
the transmit power is treated as a continuous variable within a bounded range.
Given N antennas, the search space for all possible configurations is exponential
in N, making brute-force search infeasible[19)].

Let vy and 7y, denote the weak and over-coverage thresholds, respectively. We
represent the area as a 2D grid indexed by (i,j). Let rl(jb) denote the RSRP from
()

the serving sector b at grid point (7,]), and Y 4p 7 ; * the combined interference

from all other sectors.

Using these definitions, under-coverage and over-coverage are identified as:

(b)

Under-coverage: 1 < Yw (1.5)
Over-coverage: 71(]?0 — Z 1’1(].1]/) < Yo (1.6)
b'Zb

Minimizing both of these conflicting metrics results in a multi-objective opti-
mization problem. Since improving one objective typically worsens the other, we
aim to find a set of Pareto-optimal configurations, those in which no objective can
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be improved without degrading another. These trade-offs allow network operators
to choose a configuration that best aligns with operational priorities.

To illustrate this trade-off, we consider a linear combination of the two objec-
tives:

= argmaxz (1-A)- ), rl(].b/) (1.7)
ij b'£b

where A € [0,1] weights the trade-off between maximizing RSRP (coverage) and
minimizing interference. Rewriting in logarithmic terms:

st
* 1
= arg max E ' 10log | - (1.8)

®)(1-A
I (1=A)
where Sfj-b) and Ii(].b) represent the signal and interference power at location (i, j).

To improve optimization performance, we adopt smooth approximations of
the objectives using sigmoid functions centered around the thresholds:

Under-coverage objective: Y o(yw — 1’1(;7)) (1.9)
1j
Over-coverage objective: Za ( Z vl — 7’1(;7) + ’yo> (1.10)
ij b'#b

where o is the sigmoid function.

This smooth formulation is critical: hard thresholds produce sparse gradi-
ents that hinder learning, especially in gradient-based optimization. In contrast,
sigmoid functions offer soft, differentiable transitions, enabling denser and more
informative gradients. Though our main algorithms (Bayesian Optimization and
Genetic Algorithms) use simpler linear formulations for efficiency, these sigmoid-
based objectives better align with advanced optimization theory.

In our implementation, we adopt a simplified linear formulation for compu-
tational efficiency. Specifically, the objective function minimizes the sum of two
terms: (i) the percentage of user locations with RSRP below the weak coverage
threshold ( —80 dBm), and (ii) the percentage of locations with RSRP above the
over-coverage threshold ( —60 dBm). Formally, the objective is given by:

1Y 1Y
f(x) =— (N Zl[ri < Yuw| + N ;ﬂ[ﬂ > Yo ) (1.11)

i=1

where r; is the RSRP at location i, 9y and 7, are the weak and over-coverage
thresholds respectively, N is the total number of user locations, and 1[-] is the
indicator function. This formulation enables rapid evaluation of candidate config-
urations during optimization, while still aligning with coverage quality goals.
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1.8.3 Evaluation Metrics

To evaluate the effectiveness of network configurations, we define the following
evaluation metrics based on empirical models and regulatory constraints:

« RSRP (Reference Signal Received Power): RSRP quantifies the signal
strength received at each user location. It is computed using the COST-231
Hata path loss model, including additional loss due to antenna downtilt. For
sector i, the RSRP at location j is given by:

RSRPL] — Ptx,i - PLl‘,]' - Ltﬂt,i,j (112)

where Py ; is the transmit power (in dBm), PL;; is the path loss between
transmitter 7 and location j, and Ly, ; represents downtilt loss, estimated
from the vertical angle difference between the antenna and the user. The
final RSRP map reflects the highest RSRP received from any sector at each
location.

« Weak Coverage (%): This metric represents the percentage of user loca-
tions where RSRP falls below a threshold ( —80 dBm), indicating insufficient
signal strength. It is computed as:

1 N
Weak Coverage = N Z;]l [RSRP]' < Y| x 100% (1.13)
]:

where 7y, = —80 dBm is the weak coverage threshold, and N is the total
number of user locations.

« Over-Coverage (%): The percentage of user locations where the signal
strength is excessively high ( RSRP > —60 dBm), increasing the potential
for interference. Formally:

1 N
Over Coverage = N 2]1 [RSRP; > 7] x 100% (1.14)
]:

where 7, = —60 dBm.

» Interference (%): Interference is quantified as the proportion of locations
receiving strong signals from multiple sectors the number of user locations
that receive strong signals (RSRP > —75 dBm) from multiple sectors simul-
taneously. A location is considered to experience interference if it receives
such signals from more than one sector. This metric is computed as:

1 N M .
Interference = N];l i_zl]l[RSRPi,j > Yint] > 1] x 100% (1.15)

where M is the total number of sectors and it = —75 dBm is the interfer-
ence threshold.

e Regulatory Compliance Penalty: To enforce policy constraints, we pe-
nalize tower placements near sensitive land-use areas ( educational, health-
care). Each candidate location is evaluated against a neighborhood map,
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and penalties are accumulated based on proximity to restricted zones. The
penalty is integrated into the fitness function to discourage non-compliant so-
lutions. This ensures adherence to urban planning guidelines and real-world
deployment feasibility.

These metrics collectively ensure that the optimization framework not only
improves user coverage but also mitigates harmful interference and respects reg-
ulatory boundaries. This mirrors the multi-objective approach proposed by [[19],
with additional consideration for spatial constraints and terrain sensitivity.

1.8.4 Regulatory Constraints and Penalty Design

In practical network deployments, regulatory constraints prohibit base station
placement near sensitive areas. This study incorporates a Neighbor penalty
based on proximity to:

« Educational and Healthcare Areas: High penalty (weight=15, distance=150m)
due to strict radiation regulations.

» Residential and Civic Areas: Moderate penalty (weight=2, distance=20m).
« Commercial and Industrial Areas: Low penalty (weight=1.2, distance=12m).

« Open Spaces: No penalty (weight=0).

The penalty is integrated into the GA fitness function, ensuring compliance
with local regulations [28]. Although [19] do not explicitly model regulatory con-
straints, their focus on practical deployment aligns with our approach, as regula-
tory compliance is critical for real-world applicability.

1.8.5 Problem Decomposition (Parameter vs Placement)

To manage the complexity of optimizing network coverage under both physical
and regulatory constraints, we decompose the problem into two tractable subprob-
lems:

o Parameter Tuning: This task involves optimizing the transmit power (Pi)
and downtilt angle (0) of each sector in the existing infrastructure. The goal
is to improve signal coverage and reduce interference by fine-tuning these
parameters within predefined limits. We use Bayesian Optimization (BO)
for this subproblem because of its sample-efficient, model-based approach,
which is suited for expensive objective evaluations.

o Cell Placement: Here, the objective is to determine the optimal geographic
location (latitude, longitude) for a new base station, along with its transmit
power and downtilt configuration. Given the combinatorial and spatial na-
ture of this task and the inclusion of terrain and regulatory penalties we ap-
ply a Genetic Algorithm (GA), which is well-suited for handling non-convex,
mixed-variable search spaces.
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This two-level decomposition aligns with standard practices in real-world net-
work engineering: operators typically exhaust parameter tuning before proposing
new infrastructure deployments. A similar decomposition appears in [45] and [[19],
where power control and antenna tilt are optimized independently before infras-
tructure expansion is considered. Although there are unified joint optimization
approaches, they tend to be computationally intensive and less transparent.

To aid in clarity, Table Ell summarizes the core components of the optimiza-
tion framework, including decision variables, objectives, evaluation metrics, and
constraints.

Table 1.1: Optimization Problem Components

Component Description

Decision Variables Transmit Power (Pi), Downtilt (6), Tower Coordinates (lat, lon)

Objectives Minimize Weak Coverage and Over-Coverage
Evaluation Metrics RSRP, Interference Rate, Regulatory Compliance
Constraints Regulatory Penalties, Power and Downtilt Ranges

1.9 Conclusion

In this chapter, we focus on 4G LTE design and provides a thorough overview
of the important factors and parameters involved in cellular network planning
and optimization. Before outlining how contemporary networks have developed
from basic technologies to intricate data-centric networks, the discussion starts
with a summary of past network design advancements in cellular networks. An
in-depth evaluation of all elements that make up the LTE network was performed
with emphasis on the role that static and dynamic configuration parameters play
on frequency reuse, base station density, antenna height, sectorization, azimuth
control, transmit power and antenna tilt in capacity and general coverage. Partic-
ular attention was given to antenna tilt and its role as a major factor influencing
coverage and combating interference. Mechanical and electrical tilts were differ-
entiated and then their respective adjustment mechanisms and implications were
discussed. The chapter also discussed radio wave propagation modeling, includ-
ing empirical path loss models and downtilt loss considerations, thus highlighting
their importance from the viewpoint of realistic network planning.We developed a
framework for multi-objective optimization for antenna tilt and basestation con-
figuration, considering real-life constraints including regulatory constraints and
service level targets, thereby bridging the gap between theoretical concepts and
practical applications.

We propose an enabling framework for more intelligent and responsive deploy-
ments by separating the challenge of optimization into its constitutive elements
that is, parameter adjustment and strategic location of base stations. This frame-
work is quite relevant for next studies on self-optimizing networks, where artificial
intelligence and dynamic adaptation will be increasingly critical.
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Related Work

2.1 Introduction

This chapter presents a comprehensive review of the methods and strategies
used for optimizing cellular networks, with a particular focus on urban macrocell
environments. We begin by exploring traditional optimization methods, particu-
larly metaheuristic approaches, which have historically been applied to antenna
tilt and power control problems. Next, we examine the evolution of intelligent
techniques, including machine learning and reinforcement learning, which address
the limitations of manual and heuristic methods in dynamic network scenarios.
Throughout the chapter, we emphasize the relevance of each method to modern
network challenges and highlight the justifications for adopting Al-driven solu-
tions such as Bayesian Optimization and Genetic Algorithms. This contextual
foundation supports the design choices of our proposed optimization framework.

2.2 Related works

The ideal tilt configuration of a cell is not an isolated decision; it is intrin-
sically tied to those of adjacent cells. Performance can often be maximized by
a balance between user distribution and interference mitigation through optimal
cell isolation. Since antenna tilt adjustment is commonly restricted to discrete
values (steps of 1 or 2 degrees, say), finding the best set of them is combinatorial
in nature. Even in small networks, the number of possible tilt settings grows ex-
ponentially with the number of base stations, so exhaustive search approaches are
computationally impractical. Thus, determining the best set of tilt values in a net-
work is a highly computationally intensive problem. To correct this, researchers
have proposed a variety of intelligent optimization methods capable of produc-
ing near-optimal solutions within reasonable computational time. They include
heuristic methods, rule-based systems, and more recently Machine Learning and
evolution strategies. A short overview of these methods will be presented below,
starting from the traditional approaches,Machine Learning-based approaches and
finally Reinforcement Learning, which underpins the advanced methods proposed
in this work.
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2.2.1 Traditional Method (Meta-Heuristic)

Under the direction of certain performance measures, metaheuristic tech-
niques are a class of optimization algorithms that iteratively search the solution
space for configurations of high quality. These techniques are good at effectively
navigating high-dimensional, complicated areas, but they do not provide a glob-
ally optimal result. Due to their balance between performance and computational
feasibility, metaheuristic techniques have become widely adopted in antenna tilt
optimization, offering practical solutions within reasonable time constraints. These
algorithms typically depend on simulation or network planning tools to assess the
effectiveness of each candidate configuration based on predefined evaluation crite-
ria.

In [46] Siomina (2005), an LS-based heuristic is proposed for simultaneously
optimizing the antenna downtilt settings and the P-CPICH power in UMTS net-
works. The algorithm begins with an initial valid tilt setting and, in each iter-
ation, investigates neighbor settings by varying the tilt of one base station at a
time. The new assignment is only accepted if it leads to a reduction in the uni-
form pilot power level and coverage restrictions are still maintained. This step is
iterated until no further improvements can be made or a convergence condition is
met. Although LS is both computationally economical and memory frugal in that
it only requires updating local antenna gain matrices rather than bringing in the
full set of gains, it is beset by the local optima problem inherently. That is, it
may settle on a superior solution to that of nearby configurations but not close to
the global optimum. Despite this limitation, the approach was shown to work in
practice. In a case study of a real network scenario in Lisbon, the optimal antenna
tilt value led to a significant reduction in total pilot power up to 50% compared
to a network with no tilt or flat tilt values. Moreover, findings showed improved
cell isolation, reduced interference, and better resource utilization, especially when
electrical downtilt was used within a given range. The work gives the hope of LS-
based methods for optimization of parameters in big radio networks and provides
a baseline for comparison with more complex techniques, such as reinforcement
learning or metaheuristics, which can dominate the local search by exploring the
solution space to a greater extent.

Simulated Annealing (SA) overcomes the local optima problem of Local Search
(LS), as described in Siomina (2005)[46], by probabilistically accepting worse
neighbor solutions in order to more effectively search the solution space. The
acceptance probability of worse solutions decreases with iterations, and hence the
optimization becomes more stable, and the chance of finding a global optimum
is higher. SA has been successfully used for antenna tilt and power optimiza-

tion in UMTS and HSDPA networks with tremendous improvements compared to
LS-based methods.

In Garcia-Lozano et al. (2004)[23], SA optimized pilot power and antenna
tilt for UMTS cell load balancing in the case of inhomogeneous traffic distribu-
tions. By more evenly spreading traffic loads, the algorithm enhanced capacity
and reduced interference levels by up to 10% using globally adjusted tilts at base
stations. According to the study, a well-defined neighborhood for example, gradual
tilt changes within a restricted range improves solution quality and lowers compu-
tational effort. The starting temperature and cooling schedule are two parameters
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that the authors noted as being difficult to tune for SA, which could result in
sluggish convergence if not properly established.

Siomina et Yuan (2008)[47] applied SA to optimize base station antenna con-
figurations for HSDPA performance. SA was shown to gain 25-30% throughput
and reduce inter-cell interference compared to fixed tilt settings. The study showed
that SA is susceptible to acceptance probability of sub-optimal solutions, where
too aggressive exploration destabilizes the convergence for highly dense networks.

Siomina and Vérbrand (2006) [48] studied SA for optimized automated UMTS
service coverage and optimization of antenna configuration. They obtained 20—
35% pilot power reduction and improved cell isolation but were constrained by
increased computational complexity as the network size increased, especially in
evaluating several neighbor solutions per iteration. Hybrid solutions were sug-
gested to mitigate this limitation.

Andras Temesvary et al. (2010) [51] used SA for plug-and-play cellular net-
work self-configuration of power and antenna tilt. They achieved a 15-20% re-
duction in total transmitted power with preserved coverage but cited parameter
sensitivity as a limitation, which required tuning for scenario-specific convergence
to suboptimal values.

In all these experiments, SA beats LS on average by escaping local optima,
as in Siomina (2005)[46]. However, challenges are there in parameter tuning (e.g.,
temperature and acceptance probability), which affects convergence rate and so-
lution quality, and computational complexity in large networks. These are the
weaknesses indicating prudent neighborhood design and potentially using other
metaheuristics to enhance SA’s efficiency.

Another local Search algorithm is Tabu Search (TS), has been used in several
papers to optimize the tilt of the antenna and configuration of the base station
in 3G and UMTS networks. This method’s primary strength is to escape local
optima by having a memory of solutions recently visited so that wider exploration
of the search space may be done.

Amaldi et al. (2008) [7] reported up to 20% coverage gain using TS compared
to manual configuration. Nevertheless, it was noted that TS becomes computa-
tionally demanding with growing network size.

Naseer ul Islam et al. (2010)[52] demonstrated that TS can provide up to
94% user satisfaction in the distributed WCDMA environment very near to the
outcomes of global optimization. Aspects like the adaption dynamic and the choice
of ideal cluster sizes are still difficult, though. With 15% capacity gains, Siomina et
al. (2006) demonstrated the efficacy and adaptability of TS in discrete challenges
like tilt adjustment. However, due to memory consumption, its performance was
susceptible to resource restrictions and was dependent on the original solution.

Siomina et Yang et al. (2007)[45] reported TS to be effective for small to
medium-sized networks, with 10-15% capacity improvement, but with poor scala-
bility for large deployments and with challenges in tuning parameters such as tabu
tenure.

In general, despite being promising for antenna tilt optimization due to its
capability to avoid local optima, TS is limited in practical use due to high computa-

27



Chapter 2. Related Work

tional complexity, parameter setting sensitivity, and inferior real-time applicability
in large scale or dynamic network scenarios.

Genetic Algorithms (GAs) which are meta-heuristic algorithm has been ap-
plied by reaserchers to optimize cellular network parameters like base station lo-
cation, antenna tilt, power control, and performance parameters like SINR and
throughput.

Campos and Lovisolo (2019) [14] developed GA strategies for improving mo-
bile positioning in emergency scenarios, where the DemGaBs+RTT method offered
high accuracy and low delay in Line-of-Sight environments. They emphasized the
significance of intelligent population initialization and traffic-adaptive fitness func-
tions.

Jamaa et al. (2004) [32] used GA to optimize coverage and capacity in UMTS
networks at the same time, achieving significant improvements in SINR and load
balancing but noting sensitivity to genetic operator parameters and high compu-
tational cost.

Wu et al. (2011) [b7] found GA to optimize LTE antenna designs, achieving
up to 15% improvement in throughput and better edge performance. However,
parameter tuning as well as convergence sluggishness were reported to be main
limitations.

Arslan et al. (2017)[9] employed GA in heterogeneous networks to reduce
interference and increase spectral efficiency. A dynamic, demand-aware fitness
function enhanced the performance, but real-time scalability was a problem due
to the processing requirements of GA.

Alam et al. (2024) [4] used in his paper Ant Colony Optimization (ACO),
which he designed a Cell Range Extension (CRE) based multi-objective ACO-
based scheme for small cell bias tuning. Their method optimized the SBS SINR-
and traffic-demand-dependent bias parameters dynamically, and they achieved
significant throughput (70.6 Mbps), fairness (JFI = 0.774), and call drop (0.26)
reduction. Compared to PSO and other metaheuristics, ACO was better in global
search capability and stability in ultra-dense environments. The authors stated
that scalability remains a problem as the running time of ACO increased expo-
nentially with user density, suggesting future hybrid approaches that blend ACO
with reinforcement learning for real-time learning in 5G/6G networks.

A study in 2015 by Lee, S.,and Kim, Y. H.,[36] proposes a meaningful ad-
vancement in the field of radio network planning. The study tackles the challenge
of efficiently deploying base stations (BSs) in LTE heterogeneous networks (Het-
Nets), where the growing demand for mobile data has led to a dense use of small
cells alongside traditional macro cells.
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Table 2.1: Summary of Metaheuristic approaches

References Technique Metric Contribution  Limitations
Achieved up to o
Pilot Power  50% reduction glﬁilt;:_i ltscf{zcal
% Local Reduction, in pilot power; r(I))bus ; ’ lobal
Search (LS) Isolation improved cell search &
Index isolation in capability
UMTS. :
Reduced o
interference and Sen§1tlve to
. Interference pilot power by tuning of
b, i, lid, Simulated g fuction,  10-35%; temperature
- Annealing . and cooling
51] Throughput improved
(SA) : schedule;
Gain throughput by scalability
25-30% in issues.
UMTS/HSDPA.
Delivered
Coverage .10720% . High
. improvements in .
Satisfac- computational
(M, 45, 52| Tabu tion coverage and and memor
P Search (TS) T capacity; 94% . Y
Capacity . ) requirements;
. user satisfaction o
Gain coverage in poor scalability.
WCDMA.
Improved SINR :
and throughput Requires
. SINR Im- extensive
Genetic by 15-20%;
[9. 14, B2, . provement, . parameter
: Algorithms effectively .
36, b7 Interference tuning;
(GA) ) reduced .
Reduction interference in computationally
UMTS/LTE intensive.
Achieved 70.6
Mbps Runtime
Ant Colony Throughput, throughput, increases
i Optimiza- Fairness 0.774 fairness exponentially
tion (ACO) Index, Call index, and 0.26  with user
Drop Rate  call drop rate in  density; limited
dense urban scalability.

settings.

The study points out that randomly and poorly planned deployments can lead
to "interference,” so harming overall network performance. While evolutionary
algorithms (EAs) had been applied to this problem before, the team found that
these methods often struggled with scalability in large, complex environments. To
avoid it, they use a smart correlation-based grouping strategy that clusters BSs
according to their interference relationships to improve optimization performance
using a refined genetic algorithm (GA). Unlike traditional approaches that group
randomly and have bad performance , their method uses interference patterns to
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lead grouping and to ensure consistent individual sizes during crossover. Their
simulations, backed by analytical modeling, showed that the results demonstrated
up to 20 % improvement in system throughput over random grouping approaches
and that this approach consistently delivered higher system throughput even with
fewer BSs compared to existing methods.

2.2.2 Machine Learning

Data-driven methods to improve capacity and coverage are made possible by
machine learning (ML), which has become a powerful tool for cellular network
optimization. ML enables adaptive changes that are suited to various topolo-
gies and user requirements by using algorithms to examine network parameters.
Techniques such as optimization and predictive modeling address problems like in-
terference and resource allocation. This part addresses ML techniques that can be
used for antenna tilt optimization as a foundation for adaptive network manage-
ment. These methods complement traditional techniques with greater efficiency
and performance.

Dreifuerst et al. (2021)[19] described a comparative evaluation of two state-of-
the-art machine learning algorithms Deep Deterministic Policy Gradient (DDPG)
and Bayesian Optimization (BO) for the concurrent optimization of antenna down-
tilt and transmit power in multi-sector cellular systems. They endeavored to solve
the problematic multi-objective task of minimizing both under-coverage and over-
coverage by means of a realistic simulation test bed built with the QuaDRiGa
MATLAB-based RF channel simulator and an assessment framework developed in
Python. The network was a 12x12 km? area with 5 base stations, each of 3 sectors,
and the space of configurations had 10 discrete tilt values and continuous power
values ranging from 30 to 50 dBm which made brute-force search infeasible due
to its exponential complexity. For the purpose of measuring system performance,
they defined black-box objectives as RSRP thresholds for weak and interfering
coverage area identification. These were parameterized using sigmoid functions
to enable differentiable optimization and avoid sparse gradient issues at training.
the following equations define the dual objectives of network optimization as the
minimization of both under-coverage and over-coverage. These are evaluated
over a set of spatial regions and antenna configurations.

The under-coverage is defined as:

Uij = ;a(w—rij(b)) (2.1)
The over-coverage is defined as:
Ojj = ;0 (rii(b) — o) (2.2)
where:
o 0(-) is the sigmoid function used for soft thresholding.

30



Chapter 2. Related Work

o 7ij(b) is the received signal power (RSRP) at location (3, j) from base station

o w is the lower RSRP threshold, below which a region is considered under-
covered.

e 0 is the upper RSRP threshold, above which interference from overlapping
coverage becomes problematic.

The following Figure EI is Example of an RSRP map summed over all the sec-
tors. Base stations are marked by a red circle, and all antennas are configured
to 5 downtilt and 46dBm transmit power. The upper right base station, circled,
has a strong effect on local RSRP due to being placed only 20m above ground as
opposed to 25-30m for the other sites.
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Figure 2.1: Initial RSRP

Bayesian Optimization employed Gaussian Processes with Matern-5/2 kernels and
was seeded with a space-filling Sobol sequence, followed by 500 iterations of g-
Expected Hypervolume Improvement (qEHVI). DDPG, on the other hand, em-
ployed an actor-critic neural architecture to learn continuous actions with explo-
ration via Gaussian noise and convex combinations of under and over-coverage
reward metrics the result of this algorithms is shown in Figure P.2.

While both methods far outperformed random search, BO achieved compa-
rable Pareto-optimal solutions using only 1,012 evaluations, whereas DDPG used
over 300,000 evaluations,as shown in Figure R.3.
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Figure 2.2: Comparison of RF coverage maps shows DDPG outperforms random
search by reducing under-coverage from 12% to 9% and over-coverage from 25%
to 17%.
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Figure 2.3: Pareto frontier comparison showing DDPG outperforming both BO
and random search, with a 10% average gain and a characteristic convex trade-off
curve in R

This illustrated a substantial sample efficiency benefit for BO, although slightly
better frontier quality was achieved by DDPG. The authors also noted directions
for research in the future including scaling the network, risk-averse learning, and
combining safe RL or BO techniques in order to avoid configuration that may
degrade service quality during live optimization. Their open-source code and sim-
ulations provide a reproducible and impactful baseline for future research on ML-
based coverage and capacity optimization.
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2.2.3 Reinforcement Learning

Under specific performance objectives, reinforcement learning (RL) is a class
of optimization techniques where agents learn to make decisions by interacting with
their environment and receiving feedback in the form of rewards. RL is particularly
well-suited for dynamic and complex problems like antenna tilt optimization, as
it enables systems to adapt over time without needing explicit modeling of the
environment. Even though RL doesn’t always guarantee the perfect solution,
it strikes an excellent balance between being flexible and delivering long-term
performance. Its ability to learn from real-time experience, continuously adapting
and improving, has made it a favorite for network optimization, as it doesn’t rely
solely on pre-set simulations or planning tools.

A research by Razavi, R., Klein, S., and Claussen, H. (2010)[42], the research
introduces a new method for self-adjusting LTE network optimization. This re-
search tackles the challenge of fine-tuning antenna downtilt angles in a fully au-
tomatic way, meaning each BS can adjust by itself intelligently without needing
any manual setup or human involvement. The study propose a mixed algorithm
(hybrid algorithm) that combines fuzzy logic with reinforcement learning called
FRL, allowing base stations to self-adjust the parameters in response to network
conditions, even in the presence of noisy feedback. Unlike older methods, this ap-
proach uses ideas like state and action strength to better guide learning and adapt
to changes. It was tested in a realistic LTE setup and compared with the ELF
method to show its effectiveness. The results show that the proposed algorithm
not only converges to near-optimal solutions but also delivers up to 20% improve-
ment in network performance (in terms of fitness and capacity) and demonstrates
superior adaptability, robustness in noisy conditions, and self-healing capabilities
when handling network faults. Razavi et al. (2010).

Another paper [[16] proposes an RL-based solution to dynamically optimize the
electrical tilt angle of base station antennas in mobile networks. The main objec-
tive is to improve the trade-off between coverage and capacity in a self-organized
manner, reducing manual intervention and operational costs. The authors de-
velop a distributed RL algorithm that uses real-time network metrics such as user
distribution, SINR, and throughput to make intelligent tilt adjustments. The ap-
proach integrates with Self-Organizing Network (SON) frameworks and models
the problem using a Markov Decision Process (MDP). It focuses on the downlink
of sectorized, multi-cell urban mobile networks and uses a reward function that
balances user satisfaction and overall throughput. Simulation results, carried out
in MATLAB, demonstrate up to a 30% improvement in total network data rates.
The proposed solution is adaptable to LTE and future 5G networks, enhances
user quality of experience (QoE), and minimizes the need for manual network
optimization and drive testing.
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Figure 2.4: Flowchart of the simplified algorithm for capacity and coverage opti-
mization, utilizing the base station electrical antenna tilt

2.3 Conclusion

This chapter has demonstrated the practical applicability of the proposed op-
timization techniques through a series of controlled simulations. The experimental
results validated the capability of machine learning algorithms and reinforcement
learning to reduce under-coverage and over-coverage while maintaining regulatory
compliance. The findings confirm the advantage of Al-driven methods over tra-
ditional strategies in adapting to urban deployment complexities. Overall, the
results presented in this chapter provide empirical support for the thesis hypoth-
esis, setting the stage for the coming chapter to introduce the proposed system.
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Proposed System

3.1 Introduction

This chapter outlines the proposed system for optimizing LTE network cov-
erage and capacity using intelligent algorithms. It begins by describing the overall
architecture and workflow of the system, including how optimization tasks are
carried out in sequence. We then present the two core components of the system:
Bayesian Optimization, which tunes the power and downtilt of existing antennas,
and the Genetic Algorithm, which assists in the strategic placement of new towers
when needed. Each technique is introduced with a focus on its role in improv-
ing network performance and adaptability in urban macrocell environments. The
chapter concludes by summarizing how these methods work together to provide a
scalable and adaptive optimization framework.

3.2 System Design and Architecture

This section outlines the architectural design and operational flow of our LTE
cellular network optimization framework. The system operates as a sequential
process, depicted in the flowchart Figure integrating Bayesian Optimization
(BO) for parameter tuning and Genetic Algorithm (GA) for new tower placement,
as detailed in Algorithm [ll. The system starts with the ”Start” phase, loading
initial network data (tower coordinates, power, and downtilt values). The first
optimization phase, "Parameter Optimization Using BO,” adjusts the transmit
power (30-50 dBm) and downtilt angles (0-10°) of existing towers, three sectors
(azimuths: 0°, 120°, 240°) to minimize weak coverage RSRP below -80 dBm and
over-coverage RSRP above -60 dBm. The ”"Evaluate Coverage/Capacity” decision
point assesses the optimized configuration; if coverage gaps persist ("No”), the pro-
cess transitions to "Run Tower Placement Optimization Using GA” to determine
the optimal location, power, and downtilt for a new tower. The suggested new
tower is added, and the process reevaluates coverage, looping until satisfactory
performance is achieved or no further improvements are possible, concluding with
the "End” phase. This iterative approach ensures adaptive network enhancement,
aligning with practical deployment strategies in urban environments.

35



Chapter 3. Proposed System

|

Yes
V
Load Initial Parametgr b Evalnate e
Network Optimization Coverage/Capacity n
(Tower Data) Using BO
A
No
Av4
Tower Update
Placement EraEEt
Using GA
- Re-run J

Figure 3.1: System workflow for LTE network optimization, integrating BO for
parameter tuning and GA for tower placement.

Algorithm 1 Global LTE Network Optimization System

1:

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Input: Network data (tower coordinates, initial powers Py € [30,50] dBm,
downtilts 6 € [0,10°]), simulation area (2000m x 2000m), user locations grid
Output: Optimized tower parameters, new tower placement (if needed), cov-
erage metrics

Initialize simulation environment: load tower data, generate user locations
grid (50m resolution)

Set coverage thresholds: weak coverage (RSRP < -80 dBm), over-coverage
(RSRP > -60 dBm)

Phase 1: Parameter Optimization with BO

: Run Bayesian Optimization (Algorithm E) to tune Pix and 0 for existing towers

Evaluate coverage: compute RSRP using COST-231 Hata model, assess weak
and over-coverage percentages
if coverage goals met (weak coverage < threshold, over-coverage < threshold)
then
Save optimized parameters and metrics
Output: Optimized configuration
End
else
Phase 2: New Tower Placement with GA
Initialize terrain grid with regulatory constraints (e.g., schools, hospitals)
Run Genetic Algorithm (Algorithm ) to optimize new tower location, Py,

Add new tower to network configuration

Re-evaluate coverage with updated configuration

if coverage goals met or no further improvement then
Save optimized parameters, new tower details, and metrics
Output: Final configuration
End

else
Repeat Phase 2 with updated network

end if

end if
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3.3 Parameter Optimization Using BO

Bayesian Optimization (BO) serves as a data-efficient strategy for optimizing
black-box functions with high evaluation costs, making it an ideal choice for tuning
cellular network parameters where each evaluation is costly in terms of time and
computation. In this work, we apply BO to process for tuning antenna parame-
ters is formalized in Algorithm P, which details both the Expected Improvement
(EI) and g-Expected Hypervolume Improvement (qEHVI) implementations to dy-
namically adjust the transmit power (Py) and antenna downtilt (0) of existing
base station sectors, aiming to enhance coverage and mitigate interference across
an urban macrocell. Two distinct implementations are explored, each employ-
ing a different acquisition function to address the optimization problem’s evolving
complexity.

Algorithm 2 Bayesian Optimization for Parameter Tuning

1: Input: Tower data (coordinates, initial Py, 6), user locations, njter = 500,
Minit = O
Output: Optimized Py € [30,50] dBm, 6 € [0,10°], Pareto front
Define search space: Py, 0;fori=1,...,T, j=1,2,3 (3 sectors per tower)
Initialize ninjt configurations using Sobol sequences
for each initial configuration do

Compute RSRP using COST-231 Hata model

Evaluate objectives: f1 (weak coverage, RSRP < -80 dBm), f, (over-
coverage, RSRP > -60 dBm)
end for
9: Option 1: Expected Improvement (EI)
10: for i = 1 to njter do
11: Fit Gaussian Process (GP) to scalarized objective: — (f1 + f2)
12: Optimize Expected Improvement: EI(x) = E[max(f(x) — f(x7),0)]
13: Evaluate new configuration, update training data
14: end for
15: Option 2: g-Expected Hypervolume Improvement (QEHVT)
16: Set reference point z,ef = [—1, —1]
17: for i = 1 to njter do
18: Fit GPs to objectives f1, fo (Matérn 5/2 kernel)

*

19: Compute dominated partitioning of current Pareto front

20: Optimize qEHVI with 10 restarts, 100 raw samples

21: Evaluate new configuration, update Pareto front and hypervolume
22: end for

23: Log Pareto front, hypervolume, and convergence data
24: OQutput: Optimal parameters, Pareto front

The BO framework relies on two core components:

« A surrogate model, typically a Gaussian Process (GP), which approxi-
mates the objective function and provides uncertainty estimates for unex-
plored configurations.

o An acquisition function, which directs the search by balancing exploration
(sampling uncertain regions) and exploitation (refining promising solutions).
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Both implementations operate over a high-dimensional search space, where
each of the T = 7 towers contributes three sectors, each with two tunable pa-
rameters (P and 6), resulting in a 42-dimensional space (6T). The parameter
bounds are set as Py € [30,50] dBm and 6 € [0°,10°], reflecting practical macro-
cell constraints [, 45]. Coverage performance is evaluated using Reference Signal
Received Power (RSRP), computed via the COST-231 Hata model with downtilt
loss, as implemented in the provided code.

3.3.1 First Implementation: Expected Improvement (EI)

In the initial implementation, we adopt a scalarized approach to simplify
the optimization process. The conflicting objectives of minimizing weak coverage
(RSRP < -80 dBm) and over-coverage (RSRP > -60 dBm) are combined into a
single objective function:

f(x) = — (Weak Coverage(x) + Over Coverage(x)) (3.1)

where x = [P 1,01, ..., Pix21,021] represents the decision vector. The BO process
starts with a diverse set of configurations (using Sobol sequences), fits a GP to the
observed data, and optimizes the Expected Improvement (EI) acquisition function:

El(x) = E[max(f(x) - f(x"),0)] (3.2)

where x™ is the current best solution. EI balances exploration and exploitation
efficiently, leveraging a single GP model, which ensures faster convergence and
lower computational overhead [49]. This approach, inspired by [[19], converges
rapidly to high-quality configurations suitable for real-time tuning, logging weak
and over-coverage percentages to analyze trade-offs post-optimization.

3.3.2 Second Implementation: g-Expected Hypervolume
Improvement (qEHVI)

Recognizing the limitations of scalarization in capturing Pareto-optimal trade-
offs, we adopt a true multi-objective optimization approach using qEHVI. The
problem is formulated with two competing objectives:

| fi(x) = Weak Coverage(x)
| f2(x) = Over Coverage(x)

£(x) (3.3)

where:

« f1(x) computes the percentage of user locations with RSRP < —80dBm
(weak coverage)

 f2(x) computes the percentage with RSRP > —60 dBm (over-coverage)

The qEHVI implementation features three key innovations:
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1. Hypervolume Maximization: The acquisition function directly optimizes
the expected hypervolume improvement (EHVI), measuring the volume of
objective space dominated by the Pareto front relative to a reference point
Ziof = [—1, —1].

2. Batch Parallelism: Evaluates ¢ = 1 candidate per iteration using:

e 10 random restarts for robustness
e 100 raw samples for global exploration

e Dominated partitioning for efficient EHVI computation

3. Adaptive Modeling: A Gaussian Process (GP) surrogate with Matérn 5/2
kernel provides uncertainty estimates, updated via exact marginal likelihood
maximization.

Advantages over scalarization:

o Preserves the Pareto-optimal trade-off surface without weight tuning
« Automatically balances exploration/exploitation via probabilistic modeling

o It scales efficiently with multiple objectives, which is crucial for future net-
work extensions.

The implementation achieves O(nlogn) hypervolume computation complex-
ity per iteration through efficient box decomposition [[L7], with convergence mon-
itored via hypervolume progression.

3.3.3 Acquisition Strategy Comparison

The transition from EI to qEHVI reflects a shift from a single-objective to a
multi-objective paradigm. EI’s simplicity suits the scalarized first implementation,
offering rapid convergence with a single GP and minimal computational cost. In
contrast, qEHVI addresses the multi-objective nature of coverage optimization,
providing a richer Pareto front by explicitly modeling trade-offs. While qEHVI
comes with increased computational overhead (hypervolume computation, multi-
ple GP fits), it outperforms EI in scenarios requiring explicit trade-off exploration,
as demonstrated by [I19] in cellular network optimization. The choice of acquisition
function thus depends on operational priorities: EI for quick tuning, qEHVI for
comprehensive trade-off analysis.

3.3.4 Problem Setup and Practical Alignment

Both implementations formulate the tuning problem over the 42-dimensional
space, with each sector’s Py and 6 independently adjustable. The encoding en-
sures modularity and scalability, aligning with real-world network management
practices where power and tilt adjustments are routine [19, #9]. Physical fea-
sibility is maintained through bound enforcement ensuring practical, deployable
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configurations. The qEHVI implementation, by preserving multi-objective data,
enables operators to select configurations based on specific coverage or interference
priorities, offering more flexibility than the EI method.

3.3.5 Visualization and Outcomes

Expected Improvement (EI) and q-Expected Hypervolume Improvement (qE-
HVI) are both incorporated into the optimization framework as acquisition meth-
ods to facilitate exploration-exploitation trade-off during the Bayesian Optimiza-
tion (BO) process. The two methods yield different insights into how optimization
evolves over time and impacts network coverage and capacity performance. Since
qEHVI is applied using a multi-objective optimization method, the system ad-
dresses weak coverage (RSRP below -80 dBm) and over-coverage (RSRP above
-60 dBm) simultaneously. The Pareto front is created through the optimization
process, and this Pareto front is illustrated as a scatter plot in which the trade-
off between the two goals is highlighted. FEvery solution point on this chart is
a non dominated configuration (no other configuration is more optimal with re-
spect to both objectives), providing network planners with a number of solutions
that compromise signal strength distribution against excessive overlap in coverage.
Additionally, the hypervolume indicator is a metric that quantifies the volume un-
der the Pareto front was tracked across iterations to monitor convergence. As the
BO algorithm progresses, the hypervolume increases, indicating improved trade-off
solutions and convergence toward optimal configurations. This evolution is visu-
alized in the hypervolume convergence plots, providing a clear progression toward
optimality. To further analyze and compare outcomes, RSRP heatmaps were gen-
erated for configurations obtained using both EI and qEHVI. These visualizations
provide spatial insights into signal strength across the urban area, highlighting re-
gions of improvement, persistent weak spots, and zones of high interference. The
side-by-side comparison reveals how each acquisition strategy influences coverage
uniformity, with qEHVTI often favoring more balanced solutions across objectives,
whereas EI tends to focus more aggressively on minimizing weak coverage, some-
times at the cost of increasing over-coverage. The combination of these visual
tools Pareto fronts, convergence plots, and RSRP heatmaps provides comprehen-
sive insight into the optimization dynamics. They not only validate the algorithmic
decisions but also empower network operators with actionable intelligence for real-
world deployment. Ultimately, this dual-acquisition approach demonstrates the
flexibility and robustness of BO in solving both rapid tuning and multi-objective
optimization problems in complex, real-world LTE environments.

3.4 Tower Placement Using Genetic Algorithm

For scenarios where BO alone cannot resolve coverage gaps, the Genetic Algo-
rithm (GA) optimizes the placement of a new tower, as described in Algorithm J.
This algorithm initializes a population of 20 candidate tower configurations, each
defined by latitude, longitude, and three sector parameters (P € [30,50] dBm,
6 € [0,10°]), evolving over 30 generations. The fitness function balances weak
coverage, over coverage, interference (multiple signals > -75 dBm), and regulatory
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penalties based on proximity to sensitive zones, computed using the Propagation
model [3]. Selection retains the top 50% of individuals, with crossover (25% prob-
ability) and mutation (1% probability) ensuring diverse exploration, while elitism
preserves the best solution [18]. The pseudocode encapsulates this evolutionary
strategy, producing optimal tower placements and associated RSRP and interfer-
ence maps for urban deployment.

Algorithm 3 Genetic Algorithm for Tower Placement

1: Input: Existing tower data, user locations, terrain grid, popsi,e = 20,
generations = 30

2: Output: New tower location (lat, lon), P, 6, coverage metrics

3: Initialize population: pPopsize individuals, each with random lat &
[32.47,32.50], lon € [3.65,3.70], Pix 123 € [30,50] dBm, 61,3 € [0,10°]

4: for gen =1 to generations do

5: for each individual do

Compute RSRP for existing towers and new tower using COST-231

Hata model

T: Evaluate fitness: — (Weak + Over + Interference + Penalty)

8: Weak: RSRP < -80 dBm, Over: RSRP > -60 dBm

9: Interference: Percentage of users with multiple signals > -75 dBm

10: Penalty: Weighted sum based on proximity to sensitive zones

11: end for

12: Select top 50% of individuals by fitness

13: Preserve best individual (elitism)

14: while population size < popsize do

15: if random() < 0.25 then

16: Perform crossover: combine attributes (lat, lon, Py, 0) from two
parents

17: else

18: Generate new random individual

19: end if

20: end while

21: Mutate individuals: perturb lat, lon (+0.01°), Px (1 dBm), 6 (+1°)
22: end for
23: Output: Best tower configuration, RSRP map, interference map

3.4.1 Motivation and Problem Description

Adding new base stations helps resolve coverage gaps and manage increasing
traffic load and capacity demands in urban. The placement must consider existing
towers, user distribution and regulatory constraints. GA is chosen for its ability to
handle multi-objective combinatorial problems where machine learning optimizes
complex network layouts.

3.4.2 GA Encoding and Individual Structure

Each individual in the GA population represents a candidate tower configu-
ration:
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« Location: Latitude (lat € [32.47,32.50]) and longitude (lon € [3.65,3.70]).

o Transmit Powers: Three values (Pix 1, Pix2, Pix3 € [30,50] dBm) for the
tower’s three sectors.

« Downtilts: Three values (61,605,603 € [0,10] degrees) for the sectors.
An individual is represented as a structured data object: {lat, lon, txpowers, downtilts}.

The population size is 20, ensuring sufficient exploration without excessive com-
putational cost [14, [15].

3.4.3 Fitness Function Design

The fitness of a configuration is calculated via a composite fitness function
combining:

« Weak Coverage Percentage: Proportion of users experiencing RSRP be-

low -80 dBm.

o Over-Coverage Percentage: Proportion of users with RSRP above -60
dBm.

o Interference Level: Percentage of users receiving multiple strong signals
(above -75 dBm).

e Regulatory Penalties: Penalties weighted according to proximity sensitive
zones (schools, hospitals, highways) using a spatial terrain grid.

The objective function is defined as:

Fitness(x) = —(WeakCoverage(x) + OverCoverage(x) + Interference(x) 4+ Penalty(x))
(3.4)

This formulation allows the algorithm to favor configurations that balance
service quality and regulatory compliance[l5].

3.4.4 Evolutionary Strategy

The GA evolves the population over 30 generations using the following mech-
anisms:

o Selection: The top 50% of individuals, ranked by fitness, are retained to
preserve high-performing solutions.

o Crossover: With 25% probability, two parent individuals are randomly se-
lected, and their attributes (location, powers, downtilts) are combined using
a single-point crossover, producing offspring with blended traits.

e Mutation: With 1% probability per parameter, values are perturbed by
Gaussian noise with a standard deviation of ( £ 0.01° for location, + 1 dBm
for power), constrained within bounds to maintain feasibility.
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o Elitism: The best individual is always preserved, ensuring no loss of optimal
solutions.

This strategy, is implemented in our GA, balances exploration and exploitation,
leveraging the population-based nature of GA to explore diverse placement options,
a contrast to BO’s sequential sampling[15].

3.5 Conclusion

In this chapter, we presented our proposed optimization system for improving
the coverage and capacity of cellular networks. The system consists of two key
phases. First, we used Bayesian Optimization to adjust the antenna parameters
(transmit power and downtilt) of existing towers. We applied two techniques:
Expected Improvement (EI) for fast single-objective optimization and qEHVTI for
handling multiple objectives like reducing both weak and over-coverage. If these
adjustments were not enough to fix the coverage problems, we used a Genetic
Algorithm (GA) to find the best locations for adding new towers. This method
helps fill the remaining weak coverage areas in a smart and cost-effective way.
Overall, the system combines parameter tuning and intelligent tower placement to
optimize the network progressively. In the next chapter, we will test this system
and show how well it improves the network’s performance, and we will evaluate
the performance on a simulation environment and extract the results to compare
the two methods.
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Experiments and Results

4.1 Introduction

This chapter presents the experimental framework and results derived from
the proposed optimization models for enhancing coverage and capacity in LTE
cellular networks. The primary objective of this chapter is to evaluate the perfor-
mance and effectiveness of two distinct strategies: (1) the optimization parameters
of existing base stations using Bayesian Optimization (BO), and (2) the strate-
gic placement of a new base station using a Genetic Algorithm (GA). Subsequent
sections detail the simulation setup, dataset preparation, and optimization config-
urations, followed by a discussion of experimental results, including metrics such
as Reference Signal Received Power (RSRP), interference levels, and coverage
quality.

4.2 Simulation Environment

The simulation environment is designed to replicate an urban macrocell LTE
network in Ghardaia, Algeria, covering a 2 km X 2 km area centered at approxi-
mately (32.4806° N, 3.6860° E), derived from the mean coordinates of base stations
in the dataset Section and Figure @ shows the area of study with the ploting
of cell locations. The environment integrates geographical, user distribution, and
network parameter assumptions to support two optimization tasks: (1) tuning the
transmit power and antenna downtilt of existing towers using BO, and (2) deter-
mining the optimal location, power, and downtilt for a new base station using GA,
as described in Chapter 3.
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Figure 4.1: 2 km X 2 km Simulation area in Ghardaia, Algeria showing tower
locations.

The geographical area is defined based on the tower coordinates, with bounds
extending 1 km north, south, east, and west from the center (latitude: 32.4716°
to 32.4896°, longitude: 3.67535° to 3.69665°). A grid of potential user locations is
generated using a uniform mesh with a resolution of 50 m for the BO based opti-
mization and 100 m for the GA-based new tower placement. The grid is created by
discretizing latitude and longitude with steps of 0.000009° and 0.000012°, respec-
tively, corresponding to approximately 1 m in the Ghardaia region. This results
in approximately 1500 user locations at 50 m resolution, representing a uniform
distribution of potential users across the urban area, which simplifies the modeling
of demand in the absence of specific user data Figure shows the distribution of
this grids over the area.

Figure 4.2: User Grid in the Area

The network operates at a carrier frequency of 1800 MHz, typical for LTE
urban deployments, with base stations assumed to be 30 m above ground and
user devices at 1.5 m, reflecting standard macrocell and mobile heights. The radio
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propagation model employs the COST 231 Hata model for urban environments,
incorporating a 3 dB correction factor, as detailed in Section [1.7.2. Path loss is
calculated using a 3D distance metric that combines geodesic 2D distance with
height differences, ensuring accurate modeling of signal attenuation. Antenna
downtilt effects are modeled with a loss function that applies a 3 dB penalty per
10° beamwidth deviation, as described in Section , enabling precise control of
signal directionality to minimize interference and optimize coverage.

The BO simulation optimizes the transmit power and downtilt angles for three
sectors per existing tower, with fixed azimuths at, aiming to minimize weak cover-
age (RSRP < -80 dBm) and over-coverage (RSRP > -60 dBm). The GA simulation
places a new tower within the simulation area, optimizing its coordinates, power,
and downtilt for three sectors, while considering terrain constraints and regula-
tory weights for neighboring areas ( 150 m exclusion zones around educational
and health facilities). Terrain is simulated as a grid of urban land types (e.g., res-
idential, commercial, open space), with weights penalizing tower placement near
sensitive areas, enhancing the realism of the new tower placement.

Key performance metrics include RSRP, calculated as the maximum signal
strength across all sectors and towers at each user location, interference (per-
centage of locations receiving multiple signals > -75 dBm), and coverage quality.
The simulation environment leverages the System Concept we explained earlier,
building on prior work such as [46], which demonstrated up to 50% pilot power
reduction through downtilt optimization. This setup expected to provides a robust
platform for evaluating the proposed BO and GA strategies in a realistic urban
LTE context.

The Table Ell summarized the simulation parameters define the experimen-
tal setup for optimizing LTE network performance using Bayesian Optimization
and Genetic Algorithm approaches. The table encapsulates critical aspects of
the simulation environment to ensure clarity, reproducibility, and transparency
of the study. It includes details such as the simulation area, the configuration
of base stations, and coverage thresholds. Additionally, it specifies the frequency,
performance metrics, and optimization parameters. The optimization settings out-
line the Bayesian Optimization configuration, including the qExpectedHypervol-
umelmprovement and Ei acquisition function and 500 iterations, alongside Genetic
Algorithm parameters. This comprehensive summary facilitates understanding
and replication of the experimental framework.
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Table 4.1:

Simulation Parameters for LTE Network Optimization Experiments

Parameter Category Details

Simulation Area

Approximately 2000 m x 2000 m

Latitude range: 0.0180° (centered at mean
tower coordinates)

Longitude range: 0.0213° (centered at mean
tower coordinates)

Grid resolution: 50 m (Bayesian Optimiza-
tion), 100 m (Genetic Algorithm)

Number of towers: 7

Towers and Antennas

Antennas: 3 sectors per tower (azimuths at
0°, 120°, 240°)

RSRP

Calculated using COST 231 Hata model
Range: -250 dBm to -40 dBm

Frequency and Bandwidt

Frequency: 1800 MHz
andwidth: LTE bandwidth (can be ad-
justed according to the study)

Simulation Iterations

500 + 5 initial points (BO), 30 generation
(GA, adjustable)

Simulation Tools

Tools: Python, NumPy, Pandas, Matplotlib,
PyTorch, BoTorch, geopy
Environment: Urban macrocell scenario

Weak coverage (RSRP < -80 dBm)

Performance Metrics Over-coverage (RSRP > -60 dBm)

Interference (RSRP > -75 dBm from multi-
ple sources)

Parameters to Optimize

Transmission power: 30 to 50 dBm per sector
Downtilt angle: 0 to 10 degrees per sector;
GA also optimizes tower location (lat, lon)

Bayesian Optimization

Acquisition function: qEHVI And EI
Iterations: 500

Initial points: 5

Reference point: [-1.0, -1.0] for hypervolume
calculation

Population size: 20
Mutation rate: 0.01 per parameter

Genetic Algorithm Crossover rate: 0.25

Parameters:  Transmission power (30-50
dBm), Downtilt (0-10°), Latitude, Longi-
tude
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4.3 Dataset Description

The dataset used in this study is derived from OpenCelllD, a crowdsourced
database of cellular base station locations, providing real-world tower coordinates
for the Ghardaia region [40]. The primary dataset contains 7 LTE base stations
with key attributes including latitude (1lat), longitude (lon) and sector-specific
metadata. Additional attributes, such as power and downtilt, were augmented
due to incomplete data in the OpenCelllD source and the privacy of the operators,
ensuring compatibility with the simulation requirements.

4.3.1 OpenCellID Data and Cleaning

The OpenCelllD dataset includes 7 towers with coordinates ranging from
32.4771° to 32.4857° N and 3.6819° to 3.6941° E, defining the simulation area.
Each tower entry contains metadata such as radio (LTE), mcc (603, Algeria),
range, samples, created, updated, averageSignal, and elevation (487-496
m). However, critical parameters for radio propagation modeling, namely trans-
mit power (power_1, power_2, power_3) and downtilt angles (angle_1, angle 2,
angle_3), were incomplete or missing ( downtilt values set to 0°, some power
values at 0 dBm). To address this, the dataset was cleaned by focusing on lat
and lon as the primary spatial inputs, with power and downtilt values randomly
assigned within realistic ranges: 30-50 dBm for power and 0-10° for downtilt,
reflecting typical LTE macrocell configurations.

Data cleaning involved validating the dataset for completeness and consis-
tency. Entries with missing or invalid lat or lon values were discarded. Power
values outside the range were replaced with random values within the range that
we selected, and all downtilt angles, initially set to 0°, were similarly reassigned.
Validation checks in the GA-based simulation ensured that power and downtilt
values adhered to these constraints, reverting to a simulated dataset if violations
were detected. This process ensured that the dataset was suitable for modeling
RSRP and interference across the simulation area.

Each tower is configured with three sectors, corresponding to azimuth angles
of 0°, 120°, and 240°, standard for tri-sector macrocell deployments. The power_1,
power_2, and power_3 fields represent the transmit power for each sector, while
angle 1, angle 2, and angle_3 denote the downtilt angles. These parameters
were optimized in the BO simulation to adjust existing tower performance and in
the GA simulation to configure the new tower. The fixed azimuths ensure consis-
tent sector coverage, while the variable power and downtilt allow the algorithms
to balance coverage and interference, as discussed in Chapter [l|. a summuray of
the dataset attribute is shown in Table .2
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Table 4.2: Summary of Key Dataset Attributes
Attribute Type | Description

lat, lon Float Geographic coordinates (latitude and lon-
gitude) of each tower

radio String | Technology type (LTE)

mcc Integer | Mobile Country Code (603 for Algeria)

cell Integer | Cell international id

power_1,2,3 | Float | Transmit power (in dBm) for each of the
three sectors

angle_1,2,3 | Float | Electrical downtilt angle (in degrees) for
each sector

4.3.2 Terrain and Regulatory Mapping

To enhance the realism of the new tower placement, the GA simulation in-
corporates a simulated terrain model, dividing the simulation area into a grid of
urban land types (residential, commercial, educational, health, open space). Each
cell in the grid is randomly assigned a type, with the probability 20% of a non-
open space designation, reflecting the urban diversity of Ghardaia. Regulatory
constraints impose minimum distance requirements and penalty weights for tower
placement near sensitive areas: 150 m and 15 weight for educational and health
facilities, 20 m and 2 weight for residential areas, and 50 m and 5 weight for
highways. These constraints penalize placements that violate zoning regulations,
ensuring practical deployment feasibility. The terrain model is integrated into the
GA’s fitness function, balancing coverage, interference, and regulatory compliance.

4.4 Experiments

This section presents and analyzes the experimental results of the proposed
optimization framework. Two main experiments were conducted to evaluate the
performance of the system: (1) overall network optimization using a sequential
Bayesian Optimization (BO) and Genetic Algorithm (GA) approach, and (2)
multi-objective optimization using a qEHVI-based BO strategy. All experiments
were performed on a system equipped with an Intel i7 processor, 32GB RAM, and
an NVIDIA RTX 4060 GPU with 8 GB of memory, running Ubuntu 24.04.1 LTS.

4.4.1 Experiment 1: Overall Optimization

This experiment evaluates the first implementation discussed in Section ,
which combines Bayesian Optimization using the Expected Improvement (EI) ac-
quisition function with a Genetic Algorithm executed sequentially. The objective
was to extract optimal transmit power and downtilt settings per sector and identify
potential new cell locations to improve network performance.

For evaluation, we defined weak coverage as the percentage of the area with an
RSRP below -80 dBm and over covergae with an RSRP more than -60 dbm. The
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target was to reduce weak coverage to below 20% and over-coverage to below 15%.
These thresholds are configurable and can be adjusted based on the operator’s
strategic goals. Additionally, the number of newly placed towers was treated as a
soft constraint, subject to optimization and cost considerations.

Initial RSRP
Weak: 80.3% | Over: 2.0%

-0
32.4875 -50
32.4850 -60
32.4825 -70
; -80
32.4800
-90
32.4775
~100
32.4750
-110
32.4725
-120

3.6775 3.6800 3.6825 3.6850 3.6875 3.6900 3.6925 3.6950
Longitude

Latitude
RSRP (dBm)

Figure 4.3: Initial RSRP heatmap of the study area

Figure @ shows the initial RSRP distribution across the study area. At this
stage, the network exhibited approximately 80.3% weak coverage and 2.0% over-
coverage. Each grid cell’s RSRP was computed using a path loss model, and the
highest received power from all available towers was considered. Signal strengths
between -60 and -80 dBm were considered acceptable to excellent.

After running BO for 220 iterations, the optimization resulted in 39.8% weak
coverage and 8.6% over-coverage, as shown in Figure §.4. The signal strength
distribution improved considerably, extending beyond the immediate vicinity of
towers. However, over-coverage increased due to overlapping strong signal areas,
as further illustrated in the interference map in Figure §.5. A summary of the
performance improvement is presented in Figure @g
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Figure 4.4: RSRP heatmap after first optimization
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Figure 4.8: Pareto frontier for the BO optimization

As shown in Figure , the BO algorithm converged after approximately 40
iterations. Although the optimization improved network performance, the weak
and over-coverage values did not meet the predefined thresholds. Therefore, a
new tower was added using the GA module with a population size of 20 and
30 generations. Table details the optimized configuration of the 8 towers,
including the new tower (ID 7) at latitude 32.4865 and longitude 3.6936. The
table lists the transmit power (in dBm) and downtilt angles (in degrees) for each
sector. Notably, the new tower’s sectors are configured with high power (50 dBm)
and a mix of downtilt angles (0° and 10°), enhancing coverage in previously weak
areas. Figure and Figure §.1( (interference map) show the updated RSRP
distribution and interference patterns after placing the new tower, achieving a
final weak coverage of 13.1% and over-coverage of 12.3%.
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Figure 4.9: RSRP heatmap after adding a new tower
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Figure 4.10: Interference map after adding a new tower

Table 4.3: Optimized Tower Configuration in Experiment 1

Tower ID | Latitude | Longitude | Power 1 | Angle 1 | Power 2 | Angle 2 | Power 3 | Angle 3
0 32.4780 3.6887 46.94 10.00 48.54 10.00 36.26 0.00
1 32.4778 3.6874 50.00 0.00 50.00 0.00 50.00 6.55
2 32.4771 3.6941 42.96 10.00 50.00 1.91 38.17 10.00
3 32.4827 3.6823 30.00 10.00 36.14 0.00 35.54 0.00
4 32.4857 3.6819 40.61 10.00 50.00 10.00 50.00 1.66
5 32.4812 3.6842 30.00 0.00 44.97 10.00 50.00 0.00
6 32.4811 3.6829 50.00 0.00 36.34 0.00 40.20 0.00
7 32.4865 3.6936 50.00 0.00 50.00 10.00 50.00 0.00

4.4.2 Experiment 2: Multi-Objective Optimization

In this experiment, we evaluated the performance of the second implementa-
tion discussed in Section E, which leverages qEHVI-based Bayesian Optimiza-
tion for true multi-objective optimization. The same simulation environment and
initial dataset were used as in Experiment 1. The optimization again aimed to
reduce weak coverage below 20% and over-coverage below 10%.

Initially, the network exhibited 80.3% weak coverage and 2.0% over-coverage,
as shown in Figure §.3. After the first run of BO over 500 iterations, the system
achieved 41.7% weak coverage and 8.3% over-coverage (Figure Y.11)). Although
performance improved, the values were still above the desired thresholds.
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Figure 4.14: Pareto frontier after first BO run

As the stop condition was not met, the GA module proposed a new tower,

and the BO was rerun. The second
over-coverage, as shown in Figure

meet the stop criteria.
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Figure 4.16: BO convergence for the second run

A third GA iteration was then executed, resulting in a final BO optimization
phase. This third optimization achieved performance that satisfied the predefined
coverage criteria. Figure shows the optimized RSRP distribution, while Fig-
ures |4_g§ and §.19 illustrate the convergence and Pareto frontier, respectively.
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Figure 4.17: RSRP heatmap after third BO run
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Table 4.4: Optimized Tower Configuration in Experiment 2

Tower ID | Latitude | Longitude | Power 1 | Angle 1 | Power 2 | Angle 2 | Power 3 | Angle 3
0 32.4780 3.6887 50.00 3.40 38.54 10.00 40.21 6.38
1 32.4778 3.6874 32.72 2.62 50.00 0.00 50.00 1.93
2 324771 3.6941 40.87 10.00 43.16 10.00 50.00 1.80
3 32.4827 3.6823 50.00 10.00 48.29 8.16 39.49 0.00
4 32.4857 3.6819 34.36 5.43 39.98 0.00 49.39 6.59
5 32.4812 3.6842 50.00 0.00 38.24 1.00 41.42 0.41
6 32.4811 3.6829 41.01 6.62 50.00 0.00 37.43 1.08
7 32.4743 3.6798 39.42 5.82 50.00 5.43 35.53 6.22
8 32.4861 3.6919 34.88 0.41 31.06 2.92 50.00 6.17

Table @ summarizes the final optimized configuration of the nine towers,
including two newly introduced towers Tower 7 (located at latitude 32.4743, lon-
gitude 3.6798) and Tower 8 (at latitude 32.4861, longitude 3.6919) which were
added to improve coverage in previously underserved regions. The table provides
detailed values for transmit power and downtilt angle across the three sectors of
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each tower. Power levels range from 31.06 to 50.00 dBm, while downtilt angles
span from 0.00° to 10.00°, complying with 3GPP and system constraints [[].

In particular, Tower 7 demonstrates a balanced configuration with moderate
transmit powers (35.53 to 50.00 dBm) and mid-range downtilt angles (5.43 to
6.22 °), effectively enhancing coverage while minimizing interference. Tower 8, on
the other hand, is characterized by lower transmit powers (31.06-34.88 dBm for
sectors 1 and 2) and various down-tilt settings (0.41-6.17 °), tailored to comple-
ment the surrounding network topology. This optimized configuration, visualized
in Figure E‘, achieved a significantly improved RSRP distribution, satisfying
the optimization termination criteria with notable reductions in weak coverage
and controlled over-coverage. The results demonstrate the system’s ability to
incrementally enhance coverage through combined optimization and strategic de-
ployment of additional infrastructure. The gEHVI-based multi-objective Bayesian
Optimization framework efficiently explored trade-offs between weak coverage and
over-coverage, guiding the optimization process toward more balanced and robust
configurations that adhere to predefined performance thresholds.

4.4.3 Results and Discussion

This section presents a comprehensive analysis of the outcomes obtained from
the two experiments conducted in this study. The evaluation is based on the op-
timization of radio parameters primarily transmit power and downtilt as well as
the strategic placement of new towers to improve network coverage and capacity.
The two experiments differ in their optimization strategies: the first uses a sequen-
tial Bayesian Optimization (BO) with Expected Improvement (EI) and Genetic
Algorithm (GA), while the second employs a true multi-objective Bayesian Op-
timization using the q-Expected Hypervolume Improvement (qEHVI) acquisition
function.

Experiment 1: Sequential Optimization with EI and GA Initially, the
network_exhibited 80.3% weak coverage and 2.0% over-coverage, as visualized in
Figure . This poor performance highlighted the necessity for optimization,
particularly in improving signal strength across underserved areas.

After applying BO for 220 iterations, the network improved to 39.8% weak
coverage and 8.6% over-coverage. The resulting heatmap in Figure demon-
strates a significant expansion of signal strength coverage, especially in previously
weak zones. This is further illustrated in Figure {.6, which shows a 50% reduction
in weak coverage, albeit with a 320% increase in over-coverage. While this trade-
off is expected due to signal overlapping between neighboring sectors, it raises
potential interference concerns.

Figure @ confirms this, displaying increased interference in zones where sig-
nal strength from multiple sectors overlaps. Figure @ shows that the BO al-
gorithm converged early, around the 40th iteration, indicating stable improve-
ments and diminishing returns in subsequent iterations. The Pareto frontier (Fig-
ure @.14)), although used here primarily for illustration, shows the trade-off surface
between weak and over-coverage under single-objective optimization.
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Since the optimization did not meet the stop conditions (< 20% weak and
< 10% over-coverage), a new tower was added using GA (30 generations, 20 popu-
lation size). The new deployment, shown in Figure {.9, helped further densify the
network. This additional tower reduced the weak coverage to 13.1% and increased
over-coverage to 12.3%. as shown in Figure §.9. Interference behavior post-GA
is illustrated in Figure {.10, which indicates a more balanced coverage footprint,
though over-coverage slightly exceeded the target threshold.

Experiment 2: Multi-Objective Optimization with qEHVI The second
experiment began with the same initial network conditions as Experiment 1. How-
ever, this experiment aimed to jointly minimize weak coverage and over-coverage
using true multi-objective Bayesian Optimization with qEHVI, reflecting a more
realistic operator scenario.

After 500 iterations, the first BO run achieved 41.7% weak coverage and 8.3%
over-coverage, as shown in Figure #.11]. Although coverage improved, the stop
condition was not met. Figure ¢.14 and Figure Y.13 display the performance
improvements and convergence. Figure @.14 shows the Pareto front indicating
balanced optimization trade-offs across the two objectives.

A new tower was introduced using GA, and a second BO run was performed.
As shown in Figure §.15, the optimization further reduced weak coverage to 32.9%,
although over-coverage slightly increased to 9.0%. The convergence of the second
BO run is illustrated in Figure §.16.

In the third and final phase, another tower was added, and BO was executed
again. Figure .17 shows the resulting optimized heatmap, achieving significantly
enhanced signal distribution. The convergence and Pareto frontier are detailed
in Figures §.1§ and @, respectively. This final run showed a more favorable
trade-off curve and converged closer to the target performance metrics, satisfying
the predefined coverage criteria.

The multi-objective approach (Experiment 2) allowed for more refined control
over both objectives, leading to more consistent improvement in weak coverage
while managing the increase in over-coverage. In contrast, Experiment 1 showed
faster convergence but exhibited higher variance in the balance between objectives.

in order to compare the performance of the proposed Al-driven framework, it
is instructive to consider how Bayesian Optimization (BO) for parameter tuning
and Genetic Algorithms (GA) for tower placement compare to traditional heuristic
or rule-based methods, as discussed in the literature. Traditional approaches, such
as Local Search and Simulated Annealing, iteratively explore solution spaces to
adjust base station parameters like antenna tilt, often relying on predefined rules
or heuristic evaluations. These methods, while computationally feasible for smaller
networks, are prone to converging at local optima, limiting their effectiveness in
dynamic urban environments with high user density and complex topography.
Rule-based methods, commonly employed in Self-Organizing Networks, depend
on static configurations and manual adjustments, which struggle to adapt to real-
time changes in network demand or interference patterns. Other metaheuristic
techniques, such as Tabu Search, offer improved exploration but face scalability
challenges and sensitivity to parameter tuning, making them less suitable for large-
scale urban deployments.
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In contrast, the BO-based approach in this study dynamically optimizes base
station parameters, achieving significant improvements in signal distribution. In
Experiment 1, BO reduced weak coverage from 80.3% to 39.8%, and with GA’s
addition of a new tower, further to 13.1%, demonstrating robust adaptability to ur-
ban network challenges. Experiment 2’s multi-objective BO approach, by jointly
optimizing weak and over-coverage, achieved a balanced configuration with two
new towers, meeting target criteria. These results highlight BO’s ability to effi-
ciently navigate complex solution spaces, avoiding the local optima traps common
in traditional heuristics like Local Search. The GA-based tower placement further
enhances performance by strategically addressing coverage gaps, incorporating reg-
ulatory constraints (exclusion zones near sensitive areas) that rule-based methods
often handle manually or oversimplify.

The literature suggests traditional methods, such as Simulated Annealing,
can reduce interference or pilot power but require extensive iterations and care-
ful parameter tuning, which may not scale well in dense networks. Tabu Search,
while effective for smaller networks, incurs high computational costs and memory
demands, limiting its practicality for real-time applications. The proposed frame-
work, by leveraging BO’s probabilistic modeling and GA’s evolutionary search,
offers greater flexibility and efficiency, as evidenced by the rapid convergence in
Experiment 1 (after 40 iterations) and the balanced trade-offs in Experiment 2.
Unlike rule-based methods that rely on static thresholds, the Al-driven approach
adapts to dynamic conditions, reducing the need for manual intervention.

However, the Al-based solutions share some challenges with traditional meth-
ods, such as computational complexity in large-scale networks. The reliance on
a simplified propagation model and simulated terrain data may also introduce
inaccuracies, a limitation also present in heuristic approaches that use idealized
assumptions. Even with the existing of this challenges, the proposed framework’s
ability to integrate real-time parameter tuning with strategic infrastructure plan-
ning positions it as a more adaptive and effective solution for urban LTE op-
timization compared to traditional methods, with potential scalability to future
technologies like 5G. This discussion underscores the advantages of Al-driven op-
timization in addressing the complexities of modern cellular networks, providing
a foundation for further advancements in intelligent network management.

Overall, the experiments validate the effectiveness of using Bayesian Opti-
mization (with EI and qEHVI) in combination with Genetic Algorithms for both
parameter tuning and cell placement. Table @ details the transmit power (in
dBm) and downtilt angles (in degrees) for each sector across all towers in Ex-
periment 1 (EI) and Experiment 2 (qEHVI), highlighting distinct optimization
approaches. Experiment 1 frequently employs extreme power settings (e.g., 50
dBm in 15 sectors across towers 0-7), whereas Experiment 2 uses more intermedi-
ate values (e.g. 34.36-50 dBm for tower 4). Key differences include tower 4, sector
2, where EI sets 50 dBm and 10°, but qEHVTI opts for 39.98 dBm and 0°, reducing
overspill to balance coverage and interference. Another notable case is tower 5,
sector 1, with EI at 30 dBm and 0°, contrasted by qEHVI’s 50 dBm and 0°, en-
hancing signal strength in weak areas. These refined settings in qEHVI contribute
to achieving the target coverage thresholds, unlike EI’s higher over-coverage. The
visual results demonstrate substantial signal distribution improvements, reduced
weak coverage zones, and increased area-wide coverage uniformity.
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Table 4.5: Comparison of Transmit Power and Downtilt Settings for All Towers in
Experiment 1 (EI) and Experiment 2 (¢EHVI)

Tower ID | Sector | Experiment 1 (EI) | Experiment 2 (qEHVI) | Power Diff. (dBm) | Downtilt Diff. (°)
Power Downtilt Power Downtilt
1 46.94 10.00 50.00 3.40 +3.06 -6.60
0 2 48.54 10.00 38.54 10.00 -10.00 0.00
3 36.26 0.00 40.21 6.38 +3.95 +6.38
1 50.00 0.00 32.72 2.62 -17.28 +2.62
1 2 50.00 0.00 50.00 0.00 0.00 0.00
3 50.00 6.55 50.00 1.93 0.00 -4.62
1 42.96 10.00 40.87 10.00 -2.09 0.00
2 2 50.00 1.91 43.16 10.00 -6.84 +8.09
3 38.17 10.00 50.00 1.80 +11.83 -8.20
1 30.00 10.00 50.00 10.00 -+20.00 0.00
3 2 36.14 0.00 48.29 8.16 +12.15 +8.16
3 35.54 0.00 39.49 0.00 +3.95 0.00
1 40.61 10.00 34.36 5.43 -6.25 -4.57
4 2 50.00 10.00 39.98 0.00 -10.02 -10.00
3 50.00 1.66 49.39 6.59 -0.61 +4.93
1 30.00 0.00 50.00 0.00 -+20.00 0.00
5 2 44.97 10.00 38.24 1.00 -6.73 -9.00
3 50.00 0.00 41.42 0.41 -8.58 +0.41
1 50.00 0.00 41.01 6.62 -8.99 +6.62
6 2 36.34 0.00 50.00 0.00 +13.66 0.00
3 40.20 0.00 37.43 1.08 -2.77 +1.08
1 50.00 0.00 39.42 5.82 -10.58 +5.82
7 2 50.00 10.00 50.00 5.43 0.00 -4.57
3 50.00 0.00 35.53 6.22 -14.47 +6.22
1 - - 34.88 0.41 - -
8 2 - - 31.06 2.92 - -
3 - - 50.00 6.17 - -

4.5 Conclusion

In this chapter, we evaluated the proposed optimization techniques within a
simulated LTE network environment tailored to the urban context of Ghardaia.
The experiments demonstrated the capacity of Bayesian Optimization to enhance
network performance by adjusting existing tower parameters, significantly reduc-
ing weak and over-coverage areas. Concurrently, the Genetic Algorithm-based
placement of a new tower proved effective in identifying optimal locations that
balance coverage enhancement with interference control and regulatory compli-
ance. The simulation results confirm that intelligent parameter tuning and in-
frastructure planning can substantially improve signal distribution and network
efficiency in a realistic urban macrocell scenario. The combination of real-world
data, a validated propagation model, and domain specific constraints ensures that
the outcomes are both scientifically grounded and practically relevant.
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Conclusion and Perspectives

This thesis presents a transformative Al-driven framework for optimizing cov-
erage and capacity in LTE cellular networks, specifically tailored to urban macro-
cell environments like Ghardaia, Algeria. By integrating Bayesian Optimization
(BO) and Genetic Algorithms (GA), it offers a robust, adaptive solution to en-
hance network performance, providing actionable insights for operators seeking to
meet escalating user demands efficiently. We recommend this approach for urban
LTE deployments and as a foundation for future 5G networks, emphasizing its
scalability and practical relevance.

The rapid increase in mobile data traffic, fueled by smart devices and mul-
timedia services, places unprecedented stress on LTE networks, particularly in
high-density urban environments of complex topographies. It is challenging to
offer strong coverage and sufficient capacity due to dynamic interference, user
densification, and regulatory constraints. This issue is significant because proper
connectivity is the backbone of today’s communication, trade, and public safety
and requires new solutions to bypass the shortcomings of conventional rule-based
approaches dependent on static settings and human tuning, resulting in inefficiency
and high operational expense.

The proposed framework addresses these challenges by leveraging Al to op-
timize network performance dynamically and strategically. BO adjusts trans-
mit power (30-50 dBm) and antenna downtilt (0-10°) of existing base stations,
using Expected Improvement (EI) for rapid single-objective optimization and ¢-
Expected Hypervolume Improvement (qEHVI) for multi-objective trade-offs, min-
imizing weak coverage (RSRP < -80 dBm) and over-coverage (RSRP > -60 dBm).
When parameter tuning is insufficient, GA optimizes new tower placement, bal-
ancing coverage, capacity, interference, and regulatory constraints like proximity
to sensitive areas (e.g., schools, hospitals). This dual approach outperforms tradi-
tional heuristic methods, offering adaptability, cost-effectiveness, and scalability,
with insights applicable to 5G and beyond.

The motivation to develop an Al-driven solution stems from the need for
adaptive, efficient network management in dynamic urban environments. The
framework answers key research questions posed in the introduction: BO effectively
tunes parameters to balance coverage and capacity, reducing weak coverage by up
to 50% in simulations; real-time adjustments mitigate interference in dense areas;
GA optimizes new tower locations, adhering to regulatory constraints; and the
integrated BO-GA approach outperforms traditional methods in flexibility and
performance. These results validate the potential of Al to transform network
optimization, delivering robust, scalable solutions.
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Despite its advancements, the framework faces limitations inherent to wire-
less networks and AI applications. The computational complexity of BO and GA
poses challenges for real-time, large-scale deployments, requiring significant pro-
cessing power. The reliance on cleaned OpenCelliD data and synthetic terrain
models introduces potential inaccuracies, as real-world data may be incomplete
or inconsistent. Regulatory and logistical constraints, such as zoning restrictions
and installation costs, complicate tower placement, demanding precise integration
into the GA fitness function. Additionally, the COST-231 Hata model, while ef-
fective, simplifies propagation dynamics, potentially overlooking complex urban
effects like multipath fading.

The experiments, conducted in a 2 km x 2 km simulated urban area in
Ghardaia, demonstrate significant improvements. Experiment 1 (El-based BO
and GA) reduced weak coverage from 80.3% to 13.1% and increased over-coverage
to 12.3% after adding one tower, with rapid convergence after 40 iterations. Exper-
iment 2 (QEHVI-based BO) achieved a final configuration with two additional tow-
ers, meeting target criteria (weak coverage < 20%, over-coverage < 10%) through
refined multi-objective optimization. These results, visualized in RSRP and inter-
ference maps, confirm enhanced signal distribution, reduced coverage gaps, and
controlled interference, validating the framework’s effectiveness in urban LTE set-
tings.

This work lays a robust foundation for self-optimizing cellular networks, with
far-reaching implications for wireless communications. Future research will explore
two primary directions: network scaling and risk-averse optimization. Scaling to
larger geographic areas with hundreds or thousands of cells is critical for real-world
deployment, where centralized optimization may be infeasible. Distributed or hier-
archical Al approaches could address this, leveraging parallel processing to manage
large search spaces. Risk-averse optimization will ensure parameter configurations
avoid unacceptable service quality, such as large coverage gaps, by incorporating
robust constraints into BO and GA models. Additionally, updating the propa-
gation model to include ray-tracing or advanced techniques will enhance realism,
capturing complex urban effects like reflections and diffraction. Other extensions
include adding reinforcement learning to enable real-time adaptability, leveraging
crowdsourced user information or satellite imagery for improved accuracy, and en-
suring energy efficiency and self-healing capabilities for green, resilient networks.
Ghardaia or similar city field trials will validate these extensions, bridging the gap
between simulation and real-world deployment, and extending the framework to
5G and beyond.
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