Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9499
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDOUDOU, Yahia-
dc.contributor.authorCHEKHAR, Bakir Saber-
dc.contributor.authorBouhani, Abdelkader Supervisor-
dc.date.accessioned2025-06-25T08:18:40Z-
dc.date.available2025-06-25T08:18:40Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9499-
dc.description.abstractIn recent years, deep learning-based single image super-resolution (SISR) has attracted considerable attention and achieved significant success on advanced GPUs. Most state- of-the-art methods require a large number of parameters, memory, and computational resources, often resulting in inferior inference times on mobile devices. In this thesis, we introduce a plain convolution network augmented with a nearest- neighbor convolution module and 8-bit quantization to achieve real-time SISR on NPUs. Furthermore, we evaluate the efficiency of our network architecture by comparing ex- periments on mobile devices to select the tensor operations to implement. The model comprises only 52 K parameters, achieves 4× upscaling in 0.065 s on a Snapdragon 865 CPU smartphone, and by comparing to other SR methods, we found that our model can achieve high fidelity super resolution results while using fewer inference times.EN_en
dc.language.isoenEN_en
dc.publisheruniversité GhardaiaEN_en
dc.subjectSingle image super-resolution (SISR), Quantization, Nearest-Neighbor Con- volution, Neural Processing Unit (NPU).EN_en
dc.subjectsuper-résolution d’image unique, quantification, convolution du plus proche voisin, Unité de traitement neuronal (NPU).EN_en
dc.titleDL model for image resolution enhancement and optimization for edge devicesEN_en
dc.typeThesisEN_en
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
DOUDOU_YAHIA_CHEKHAR_BAKIR_Thesis (4) - Yahia Doudou.pdf7.9 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.