Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835
Title: Modeling of Geothermal EAHE Outputs Using Convolutional Neural Network and Artificial Neural Network in Ghardaia
Authors: BOUAMER, Chaima
KIFOUCHE, Abdessalam Encadrant
Keywords: Earth-Air Heat Exchanger (EAHE), Geothermal Energy, Convolutional Neural Network (CNN),and Artificial Neural Network (ANN) , Deep Learning, Heat Transfer.
Échangeur de chaleur terre-air (EAHE), énergie géothermique, réseau neuronal convolutif (CNN), réseau neuronal artificiel (ANN), apprentissage profond, transfert de chaleur.
Issue Date: 2025
Publisher: université Ghardaia
Abstract: Artificial Intelligence (AI) and thermal energy systems are two distinct fields and the role of both in advancing scientific research and supporting sustainable development, making this study saturated with knowledge diversity, where deep learning was exploited to optimise the performance of geothermal heat exchangers. A feed-forward back-propagation network and a convolutional neural network were used to use the data obtained in a specific period to build an accurate predictive model that helps optimise the system performance.
Description: Spécialité : Automatique
URI: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
memoire CHAIMA BOUAMER 2 - BOUAMER CHAIMA.pdf5.37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.