Please use this identifier to cite or link to this item: https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOUAMER, Chaima-
dc.contributor.authorKIFOUCHE, Abdessalam Encadrant-
dc.date.accessioned2025-09-21T09:09:12Z-
dc.date.available2025-09-21T09:09:12Z-
dc.date.issued2025-
dc.identifier.urihttps://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835-
dc.descriptionSpécialité : AutomatiqueEN_en
dc.description.abstractArtificial Intelligence (AI) and thermal energy systems are two distinct fields and the role of both in advancing scientific research and supporting sustainable development, making this study saturated with knowledge diversity, where deep learning was exploited to optimise the performance of geothermal heat exchangers. A feed-forward back-propagation network and a convolutional neural network were used to use the data obtained in a specific period to build an accurate predictive model that helps optimise the system performance.EN_en
dc.language.isoenEN_en
dc.publisheruniversité GhardaiaEN_en
dc.subjectEarth-Air Heat Exchanger (EAHE), Geothermal Energy, Convolutional Neural Network (CNN),and Artificial Neural Network (ANN) , Deep Learning, Heat Transfer.EN_en
dc.subjectÉchangeur de chaleur terre-air (EAHE), énergie géothermique, réseau neuronal convolutif (CNN), réseau neuronal artificiel (ANN), apprentissage profond, transfert de chaleur.EN_en
dc.titleModeling of Geothermal EAHE Outputs Using Convolutional Neural Network and Artificial Neural Network in GhardaiaEN_en
dc.typeThesisEN_en
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
memoire CHAIMA BOUAMER 2 - BOUAMER CHAIMA.pdf5.37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.