Please use this identifier to cite or link to this item:
https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BOUAMER, Chaima | - |
dc.contributor.author | KIFOUCHE, Abdessalam Encadrant | - |
dc.date.accessioned | 2025-09-21T09:09:12Z | - |
dc.date.available | 2025-09-21T09:09:12Z | - |
dc.date.issued | 2025 | - |
dc.identifier.uri | https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9835 | - |
dc.description | Spécialité : Automatique | EN_en |
dc.description.abstract | Artificial Intelligence (AI) and thermal energy systems are two distinct fields and the role of both in advancing scientific research and supporting sustainable development, making this study saturated with knowledge diversity, where deep learning was exploited to optimise the performance of geothermal heat exchangers. A feed-forward back-propagation network and a convolutional neural network were used to use the data obtained in a specific period to build an accurate predictive model that helps optimise the system performance. | EN_en |
dc.language.iso | en | EN_en |
dc.publisher | université Ghardaia | EN_en |
dc.subject | Earth-Air Heat Exchanger (EAHE), Geothermal Energy, Convolutional Neural Network (CNN),and Artificial Neural Network (ANN) , Deep Learning, Heat Transfer. | EN_en |
dc.subject | Échangeur de chaleur terre-air (EAHE), énergie géothermique, réseau neuronal convolutif (CNN), réseau neuronal artificiel (ANN), apprentissage profond, transfert de chaleur. | EN_en |
dc.title | Modeling of Geothermal EAHE Outputs Using Convolutional Neural Network and Artificial Neural Network in Ghardaia | EN_en |
dc.type | Thesis | EN_en |
Appears in Collections: | Mémoires de Master |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoire CHAIMA BOUAMER 2 - BOUAMER CHAIMA.pdf | 5.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.