المستودع الرقمي في جامعة غرداية

DL model for image resolution enhancement and optimization for edge devices

عرض سجل المادة البسيط

dc.contributor.author DOUDOU, Yahia
dc.contributor.author CHEKHAR, Bakir Saber
dc.contributor.author Bouhani, Abdelkader Supervisor
dc.date.accessioned 2025-06-25T08:18:40Z
dc.date.available 2025-06-25T08:18:40Z
dc.date.issued 2025
dc.identifier.uri https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/9499
dc.description.abstract In recent years, deep learning-based single image super-resolution (SISR) has attracted considerable attention and achieved significant success on advanced GPUs. Most state- of-the-art methods require a large number of parameters, memory, and computational resources, often resulting in inferior inference times on mobile devices. In this thesis, we introduce a plain convolution network augmented with a nearest- neighbor convolution module and 8-bit quantization to achieve real-time SISR on NPUs. Furthermore, we evaluate the efficiency of our network architecture by comparing ex- periments on mobile devices to select the tensor operations to implement. The model comprises only 52 K parameters, achieves 4× upscaling in 0.065 s on a Snapdragon 865 CPU smartphone, and by comparing to other SR methods, we found that our model can achieve high fidelity super resolution results while using fewer inference times. EN_en
dc.language.iso en EN_en
dc.publisher université Ghardaia EN_en
dc.subject Single image super-resolution (SISR), Quantization, Nearest-Neighbor Con- volution, Neural Processing Unit (NPU). EN_en
dc.subject super-résolution d’image unique, quantification, convolution du plus proche voisin, Unité de traitement neuronal (NPU). EN_en
dc.title DL model for image resolution enhancement and optimization for edge devices EN_en
dc.type Thesis EN_en


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


بحث متقدم

استعرض

حسابي