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غير كسرية رتبة و ابتدائية شروط ذات لمعادلة حل الاقل على ايجاد من تمكننا شروط باعطاء قمنا المذكرة هذه في
ل: الصامدة النقطة يات نظر على النتائج إثبات في واعتمدنا بناخ فضاءات في المعمم هلفر اشتقاق بمفهوم خطية

عليها. المحصل النتائج لتثمين مثال بإعطاء قمنا ثم مونش. و داربو
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Résumé

Dans ce travail, nous donnons des conditions suffisante qui assurent l’éxistence de solutions

de probléme initial pour des équations différentielles fractionnaires implicites non linéaires avec

des impulsions non instantaées et dérrivée fractionnaire de Hilfer généralisée dans les espace de

Banach.

Les résultats sont basés sur les théorèmes du point fixe de Darbo et de Monch associés a la

tichnique de la mesure de la non compacité. Nous donons un exemple pour montrer l’applicabilité

de notre résultat.
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Abstract

In the present work, we give some sufficient conditions wich guarantee the existence of solutions

for a class of initial value problem for nonlinear implicit fractional differential equations with non-

instantaneous impulses and generalized Hilfer fractional derivative in Banach spaces.

The results are based on fixed point theorems of Darbo and Mönch associated with the tech-

nique of measure of noncompactness. An example is included to show the applicability of our

results.
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List of symbols and Notations

List of symbols:

We use the following notations throughout this thesis Acronyms

•FC: Fractional calculus.

•FD : Fractional derivative.

•FDE : Fractional differential equation.

•FI : Fractional integral.

Notaions:

•N : Set of natural numbers.

•R : Set of real numbers.

•C: Set of complex numbers.

•Re(α) : the real part of numbre α ∈ C

•Dn ( or dπ

d′

)
: order derivative n.

·



Introduction

Fractional calculus can be seen as a generalization of classical calculus. It should be noted

that the fractional calculus is now more attractive and many monographs and conferences are

devoted to this subject, although it is an old subject and known since the 17th century. The

advantage of fractional derivatives is that they are nonlocal operators describing the memory and

hereditary properties of many materials and processes. Recently, fractional calculus is introduced

in mathematical psychology to describe human behavior since the manner he reacts to external

influences depends on the experiences he had in the past [10].

Many authors have shown that derivatives of fractional order are better suited to the description

of various real materials and that the introduction of the fractional calculation in the modeling

reduces the number of parameters required. While fractional integral can be used for example

in order to better describe the accumulation of some quantity, when the order of integration is

unknown, it can be determined as a parameter of the regression model [23].

Due to these facts, differential equations involving fractional derivatives are more adequate to

describe many phenomena in different fields of applied sciences and engineering such as in control,

signal processing, electrochemistry, viscoelasticity, rheology, chaotic dynamics, statistical physics,

biosciences, [10, 17].

We must mention that there is no general applicable method to discuss the classical ques-

tions related to an arbitrary given fractional differential equation and that to study the existence,

uniqueness and properties of solutions, different methods are used. This includes the upper and

lower solutions method, the Mawhin theory, the decomposition method, the variational iteration

method, the homotopy method... [6, 9, 12, 13, 14, 15] Another important question regarding so-

lutions for fractional differential equations is their stability. Note that the analysis of the stability

of fractional differential equations is more complex than ordinary differential equations, due to

the fact that fractional derivatives are nonlocal and have a singular kernel. The literature on the

stability of fractional differential equations is limited and concentrated on a fractional order. We

can cite some articles dealing with the stability of solutions for systems of fractional differential

equations or for fractional differential equations [7, 8, 11, 21]. Most of them used Lyapunov direct

or indirect method without finding the explicit form of the solution.
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This memory is devoted to the study of sufficient condition for the existence of solutions

nonlinear fractional differential equations using fixed point theory. An example is included to

show the applicability of our results.

presentation

This work contains three chapters .

In chapter:1

We introduce some functions that are of fundamental importance in the theory of fractional

differential equations, Gamma function , Beta function and Mittag-Leffler.We give a characteri-

zation of a compact set in the space of continuous functions and, We give some properties and

lemmas and fixed point theorems

In chapter:2

We prove the existence result of solutions for a class of initial value problem for nonlinear

implicit fractional differential equations with non-instantaneous impulses and generalized Hilfer

fractional derivative in Banach spaces.

In chapter:3

We give aur main result, We have to change the continuous condition in g studied in chapter

two by lipschitz condition

(A′x4) The functions gk ∈ C
(
Ĩk, E

)
, k = 1, . . . ,m, and there exists l∗ > 0 such that

‖gk(t, u)− gk(t, v)‖ ≤ l∗‖u− v‖ for each u, v ∈ E, k = 1, . . . ,m

9



Chapter 1

Preliminaries

1.1 Introduction

In this parte we introduce some important functions which are used in fractional calculus. The

gamma, beta and Mittag-Leffler functions that will be used ,these functions play a very important

role in the fractioal calculation theory [7, 11, 16, 24]

1.2 Basic functions

Definition 1.2.1 E’eulre gamma function is a function which naturally extends the factorial to

numbres real and even to numbres complex

The Gamma function Γ (.) is defined by the integral

Γ (z) =

∫ +∞

0

e−ttz−1dt,

Which converges in the right half of the complex plane, that is, Re (z) > 0.

The Gamma function satisfies

Γ (z + 1) = zΓ (z) , Re (z) > 0,

and for any integer n ≥ 0, we have

Γ (n+ 1) = n!.

10



A limit definition of the Gamma function is given by

Γ (z) = lim
n→∞

n!n2

z (z + 1) ... (z + n)
, Re (z) > 0,

Some particular values of the gamma function:

1. Γ
(
1
2

)
=

√
π

2. Γ
(
−3

2

)
= 4

3

√
π

3. Γ(−1) = (−1)! = +∞

4. Γ
(
−1

2

)
= −2

√
π

5. Γ
(
3
2

)
=

√
π
2

6. Γ
(
n+ 1

2

)
=
(
n− 1

2

)
Γ
(
n− 1

2

)
=
(
n− 1

2

) (
n− 3

2

)
. . .Γ

(
1
2

)
= (2n)!

22πn

√
π

7. Γ
(
5
2

)
= 3

√
π

4

8. Γ(1) = 0! = 1

Definition 1.2.2 For every z, w such that Re (z) > 0, Re (w) > 0, the Beta function is defined

by

B (z, w) =

∫ 1

0

tz−1 (1− t)w−1 dt.

The beta function is symmetric :

B(z, w) = B(w, z) Re(z) > 0 Re(w) > 0,

an interesting formula relating the Gamma and Beta functions is

B (z, w) =
Γ (z) Γ (w)

Γ (z + w)
Re (z) > 0, Re (w) > 0.

Definition 1.2.3 A two-parameter Mittag-Leffler function, α, β ∈ R with α > 0 and β > 0, is

defined by

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
.

For β = 1, we have the one-parameter Mittag-Leffler function by means of the following series:

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)

Definition 1.2.4 Let X a Banach space, we say that f : X → X is Liphizien if and only if

‖f(x)− f(y)‖ ≤ L‖x− y‖ x, y ∈ X ,L > 0

11



1.3 fractional integrals and derivatives

In this section, we focus on the Riemann-Liouville integrals and derivatives and the Caputo

derivative since they are the most used ones in applications. We will formulate the conditions of

their equivalence and derive the most important properties. There is several types of fractional

derivatives Hadamard fractional derivative.

Definition 1.3.1 [23] The Riemann-Liouville fractional integral of order α > 0 of a function

f : (a,+∞) → R is given by:

Iαa+f (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f (s) ds,

provided that the right side is pointwise defined on (a,+∞).

Definition 1.3.2 [23] The Riemann-Liouville fractional derivative of order α > 0 of a function

f : (a,+∞) → R is given by:

Dα
a+f (t) =

1

Γ (n− α)

(
d

ds

)n ∫ x

a

f (s)

(t− s)α−n+1ds =

(
d

ds

)n
In−αa+ f (s) ,

provided that the right side is pointwise defined on (a,+∞), where n = [α] + 1, [α] denotes the

integer part of α.

Lemma 1.3.1 [16] Let α ≥ β > 0, then for f ∈ LP [a, b] (1 ≤ p ≤ ∞) the relation(
Dβ
a+I

α
a+f
)
(t) = Iα−βa+ f(t).

holds almost everywhere on [a, b]. In particular if α = β we get

(Dα
a+I

α
a+f) (t) = f(t).

Lemma 1.3.2 [16] The fractional integral operator Iαa+ is bounded from Lp(a, b) (1 ≤ p ≤ ∞) into

itself

‖Iαa+f‖LP ≤ k ‖f‖Lp , k =
(b− a)α

Γ(α + 1)

Definition 1.3.3 [3] Let α > 0 and n = [α] + 1, for a function f ∈ ACn ([a, b] ,R) the Caputo

fractional derivative of order α of f is defined by:(
CDα

a+f
)
(t) = In−αD(n)f (t)

=
1

Γ (n− α)

∫ x

a

(t− s)n−α−1 f (n) (s) ds.

12



Where D = d
dt

denotes the classical derivative and ACn [a, b] = {f ∈ Cn−1 [a, b] , f (n−1) absolutely

continuous function}.

Property: Let α, β > 0 and n = [α] + 1, then the following relations hold:

Iαa+ (x− a)β−1 (t) =
Γ (β)

Γ (α + β)
(t− a)α+β−1 .

Dα
a+ (x− a)β−1 (t) =

Γ (β)

Γ (β − α)
(t− a)β−α−1 .

CDα
a+ (x− a)β−1 (t) =

Γ (β)

Γ (β − α)
(t− a)β−α−1 , β > n.

On the other hand, for k = 1, 2, ..., n, we have

Dα
a+ (x− a)α−k (t) = 0,

and for k = 0, 1, ..., n− 1

CDα
a+ (x− a)k (t) = 0,

in particular,
CDα

a+ (1) = 0.

The Riemann-Liouville fractional derivative of a constant is in general not equal to zero, in fact

Dα
a+ (1) =

(x− a)−α

Γ (1− α)
, 0 < α < 1.

Lemma 1.3.3 [23] Let α > 0, n = [α] + 1 and f : [a, b] → R be a given fonction. Assume that

Dα
a+f and CDα

a+f exist. Then

CDα
a+f (t) = Dα

a+f (t)−
n−1∑
k=0

f (k) (a)

Γ (k − α + 1)
(t− a)k−α .

Lemma 1.3.4 [23] Let α > 0, then the fractional differential equation

Dα
0+f (t) = 0.

has f (t) = c1t
α−1 + c2t

α−2 + c3t
α−3 + ...+ cnt

α−n, ci ∈ R, i = 1, 2, ..., n as solution.

Lemma 1.3.5 [23] Let α > 0, n = [α]+1. If f ∈ L1 [a, b] and fn−α ∈ ACn [a, b], then the equality

(Iαa+D
α
a+f) (t) = f (t)−

n∑
j=1

f
(n−j)
n−α (a)

Γ (α− j + 1)
(t− a)α−j .

13



holds almost everywhere on [a, b]. In particular, if 0 < α < 1, then

(Iαa+D
α
a+f) (t) = f (t)− f1−α (a)

Γ (α)
(t− a)α−1 ,

where fn−α = In−αa+ f and f1−α = I1−αa+ f .

Theorem 1.3.1 [24] Let β > α > 0, then we have

(
IαCa+ D

α
a+f
)
(t) = f (t)−

n−1∑
k=0

f (k) (a)

k!
(t− a)k .

(
Dα
a+I

β
a+f
)
(t) = Iβ−αa+ f (t) .

DmDα
a+f(t) = Dα+m

a+ f(t),m ∈ N.

Definition 1.3.4 [1] The Hadamard fractional integral of order α > 0 of a function f is defined

by:

Iαa+f (t) =
1

Γ (α)

∫ t

a

(
log

t

s

)α−1
f (s)

s
ds, a < t < b.

A more general fractional integral referred as Hadamard fractional integral of order α is given by

Iα,µa+ f (t) =
1

Γ (α)

∫ t

a

(s
t

)µ(
log

t

s

)α−1
f (s)

s
ds, a < t < b, µ ∈ R.

Definition 1.3.5 [2] The Hadamard fractional derivative of order α > 0 of a function f is defined

by:

Dα
a+f (t) =

(
t
d

dt

)n
In−αa+ f (t) , a < t < b, n = [α] + 1.

A more general fractional derivative referred as Hadamard fractional derivative of order α is given

by:

Dα,µ
a+ f (t) = t−µ

(
t
d

dt

)n
tµIn−α,µa+ f (t) , a < t < b, n = [α] + 1.

Definition 1.3.6 [18](Generalized fractional integral)Let α ∈ R+ and g ∈ L1(J). The generalized

fractional integral of order α is defined by:

(ρJ α
a+g) (t) =

∫ t

a

sρ−1

(
tρ − sρ

ρ

)α−1
g(s)

Γ(α)
ds, t > a, ρ > 0.

Where Γ(·) is the Euler gamma function defined by: Γ(α) =
∫∞
0
tα−1e−tdt, α > 0.

14



Definition 1.3.7 [18]( Generalized fractional derivative) Let α ∈ R+\N and ρ > 0. The general-

ized fractional derivative ρDα
a+ of order α is defined by;

(ρDα
a g) (t) = δnρ

(
ρJ n−α

a+ g
)
(t)

=

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(
tρ − sρ

ρ

)n−α−1
g(s)

Γ(n− α)
ds, t > a,

where n = [α] + 1 and δnρ =
(
t1−ρ d

dt

)n
.

Definition 1.3.8 [22] Let order α and type β satisfy n− 1 < α < n and 0 ≤ β ≤ 1, with n ∈ N,

and k = 0, . . . ,m. The generalized Hilfer-type fractional derivative, with ρ > 0 of a function

g ∈ Cγ,ρ (Ik), is defined by(
ρDα,β

s+k
g
)
(t) =

(
ρJ β(n−α)

s+k

(
tρ−1 d

dt

)n
ρJ (1−β)(n−α)

s+k
g

)
(t)

=
(
ρJ β(n−α)

s+k
δnρρ J (1−β)(n−α)

s+k
g
)
(t).

In this work we consider the case n = 1 only, because 0 < α < 1.

Property [18] The fractional derivative ρDα,β

s+k
is an interpolator of the following fractional deriva-

tives: Hilfer (ρ → 1), Hilfer-Hadamard (ρ→ 0+), generalized (β = 0), Caputo-type (β = 1),

Riemann-Liouville (β = 0, ρ → 1), Hadamard (β = 0, ρ→ 0+), Caputo (β = 1, ρ → 1), Caputo-

Hadamard (β = 1, ρ→ 0+) Liouville (β = 0, ρ → 1, a = 0) and Weyl (β = 0, ρ → 1, a = −∞).

Consider the following parameters α, β, γ satisfying

γ = α + β − αβ, 0 < α, β, γ < 1

Definition 1.3.9 [4] Let X be a Banach space and let ΩX be the family of bounded subsets of X.

The Kuratowski measure of noncompactness is the map µ : ΩX −→ [0,∞) defined by:

µ(M) = inf

{
ϵ > 0 :M ⊂

m⋃
j=1

Mj, diam (Mj) ≤ ϵ

}
,

where M ∈ ΩX . The map µ satisfies the following properties:

- µ(M) = 0 ⇔ M̄ is compact (M is relatively compact ).

- µ(M) = µ(M̄).

- M1 ⊂M2 ⇒ µ (M1) ≤ µ (M2) .

- µ (M1 +M2) ≤ µ (M1) + µ (M2).

15



-µ(cM) = |c|µ(M), c ∈ R.

- µ(convM) = µ(M).

Lemma 1.3.6 [4] Let D ⊂ PCγ,ρ(J) be a bounded and equicontinuous set, then (i) the function

t→ µ(D(t)) is continuous on J , and

µPCγ,ρ = max

{
max

k=0,...,m

{
sup
t∈Ik

µ

((
tρ − sρk
ρ

)1−γ

u(t)

)}
, max
k=1,...,m

{
sup
t∈Ik

µ(u(t))

}}
,

ii) µ
(∫ b

a
u(s)ds : u ∈ D

)
≤
∫ b
a
µ(D(s))ds, where

D(t) = {u(t) : t ∈ D}, t ∈ J

1.4 Generalized fractional integral and derivative

Katugampola in [3] introduced a new type of fractional derivative generalizing Riemann-

Liouville and Hadamard fractional derivatives. Later, Almeida and all in [5], introduced a general-

ization of the derivative as the left inverse of Katugampola’s fractional integral and which retains

some of the fundamental properties of the fractional derivatives of Caputo and Caputo-Hadamard,

the new derivative is called Caputo-Katugampola fractional derivative [3, 5, 19, 20]

Definition 1.4.1 [18] (Katugampola fractional integrals) Let a, b be two real and f : [a, b] → R

be an integrable function. The Katugampola fractional integrals of order α > 0, parameter ρ > 0,

of f is defined as

Iα,ρa+ f (t) =
ρ1−α

Γ (α)

∫ t

a

sρ−1 (tρ − sρ)α−1 f (s) ds.

Definition 1.4.2 [18] (Katugampola fractional derivative) Let 0 < a < b < ∞ be two real

f : [a, b] → R be an integrable function. The Katugampola fractional derivative of order α > 0,

and parameter ρ > 0, is defined as

Dα,ρ
a+ f (t) =

(
t1−ρ

d

dt

)n
In−α,ρa+ f (t)

=
ρ1−n+α

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1 (tρ − sρ)n−α−1 f (s) ds.

16



proposition 1.4.1 We have the following properties for Katugompola fractional integral and deriva-

tive.

Dα,ρ
a+

(
Iα,ρa+

)
f (t) = f (t) ,

Iα,ρa+

(
Iβ,ρa+

)
f (t) = Iα+β,ρa+ f (t) ,

lim
ρ→1

Iα,ρa+ f (t) =
1

Γ (α)

∫ t

a

(t− s)α−1 f (s) ds,

lim
ρ→0+

Iα,ρa+ f (t) =
1

Γ (α)

∫ t

a

(
log

t

s

)α−1

f (s)
ds

s
,

lim
ρ→0+

Dα,ρ
a+ f (t) =

1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1

f (s)
ds

s
,

lim
ρ→1

Dα,ρ
a+ f (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1 f (s) ds.

Definition 1.4.3 [3](Caputo-Katugampola fractional derivative) Let 0 < a < b <∞ be two real,

ρ > 0 be a positive real number and f ∈ ACn ([a, b] ,R). The Caputo-Katugampola fractional

derivative of order α > 0 of the function f is defined by:

CDα,ρ
a+ f (t) = In−α,ρa+

(
t1−ρ

d

dt

)n
f (t)

=
ρ1−n+α

Γ (n− α)

∫ t

a

sρ−1 (tρ − sρ)n−α−1

(
t1−ρ

d

dt

)n
f (s) ds

=
ρα−n+1

Γ (n− α)

∫ t

a

s(ρ−1)(1−n)f
(n)

(s)

(tρ − sρ)α−n+1 ds,

where n is the smallest integer greater than α.

Property:

1- When ρ = 1, the Caputo-Katugampola derivative coincides with Caputo derivative.

2- In the case 0 < α < 1 and ρ > 0, then

CDα,ρ
a+ f (t) =

ρα

Γ (1− α)
t1−ρ

d

dt

∫ t

a

s(ρ−1) (f (s)− f (a))

(tρ − sρ)α
ds,

3- If f ∈ C [a, b] then
CDα,ρ

a+ I
α,ρ
a+ f (t) = f (t) ,

and if f ∈ C1 [a, b] then

Iα,ρCa+ Dα,ρ
a+ f (t) = f (t)− f (a) .
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4- If f (a) = 0, then the Caputo Katugampola and the Katugampola fractional derivatives coincide.

Moreover if both types of derivatives exist then

CDα,ρ
a+ f (t) = Dα,ρ

a+ f (t)−
f (a) ρα (tρ − sρ)−α

Γ (1− α)
.

We give some property and lemmas:

Lemma 1.4.1 [3] Let t > sk, k = 0, . . . ,m. Then, for α ≥ 0 and β > 0, we have[
ρJ α

s+k

(
sρ−sρk
ρ

)β−1
]
(t) = Γ(β)

Γ(α+β)

(
tρ−sρk
ρ

)α+β−1

,[
ραD+

k

(
sρ−sρk
ρ

)α−1
]
(t) = 0, 0 < α < 1.

Lemma 1.4.2 [18, 22] Let α > 0, 0 ≤ γ < 1 and k = 0, . . . ,m. Then, ρJ α
s+k

is bounded from

Cγ,ρ (Ik) into Cγ,ρ (Ik)

Proof: Let α > 0, 0 ≤ γ < 1 , k = 0, . . . ,m and u ∈ Cγ,ρ (Ik) , we have

∣∣∣∣∣
(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
u
)
(t)

∣∣∣∣∣ ≤
(
tρ − sρk
ρ

)1−γ ∫ t

s+k

sρ−1

(
tρ − sρ

ρ

)α−1 |u(s)|
Γ(α)

ds

≤ 1

Γ(α)

∫ t

s+k

∣∣∣∣∣sρ−1

(
tρ − sρ

ρ

)α−1

u(s)

(
sρ − sρk
ρ

)1−γ (
sρ − sρk
ρ

)γ−1
∣∣∣∣∣ ds

≤ M

Γ(α)

∫ t

s+k

sρ−1

(
tρ − sρ

ρ

)α−1(
sρ − sρk
ρ

)γ−1

ds

≤ M

Γ(α)
.ρJ α

s+k

(
tρ − sρk
ρ

)γ−1

≤M.
Γ(1− (1− α))

Γ(α− (1− γ) + 1)

(
tρ − sρk
ρ

)α−γ+1

≤M.
Γ(α)

Γ(α + γ)

(
tρ − sρk
ρ

)α−γ+1

≤ Γ(α)

Γ(α + γ)

(
tρ − sρk
ρ

)1−α(
tρ − sρk
ρ

)α−γ+1

≤ Γ(α)

Γ(α + γ)

(
tρ − sρk
ρ

)α−2γ+2

≤ Γ(α)

Γ(α + γ)

(
tρk+1 − sρk

ρ

)α−2γ+2

≤ Γ(α)

Γ(α + γ)

(
bρ − aρ

ρ

)α−2γ+2

18



<∞.

Then ρJ α
s+k
u ∈ Cγ,ρ (Ik) .

Lemma 1.4.3 [22] Let 0 < a < b < ∞, α > 0, 0 ≤ γ < 1, u ∈ Cγ,ρ (Ik) and k = 0, . . . ,m. If

α > 1− γ, then ρJ α
s+k
u ∈ C ([sk, tk+1] , E) and(

ρJ α
s+k
u
)
(sk) = lim

t→s+k

(
ρJ α

s+k
u
)
(t) = 0

Proof: Since u ∈ Cγ,ρ[sk, sk+1], then
(
tρ−sρk
ρ

)1−γ
u(t) is continuous on [sk, sk+1] and∣∣∣∣∣

(
tρ − sρk
ρ

)1−γ

u(t)

∣∣∣∣∣ ≤M, x ∈ [sk, sk+1]

for some positive constant M . Consequently,∣∣∣(ρJ α
s+k
u
)
(t)
∣∣∣ ≤ 1

Γ(α)

∫ t

s+k

∣∣∣∣∣sρ−1

(
tρ − sρ

ρ

)α−1

u(s)

∣∣∣∣∣ ds
≤ 1

Γ(α)

∫ t

s+k

∣∣∣∣∣sρ−1

(
tρ − sρ

ρ

)α−1

u(s)

(
sρ − sρk
ρ

)1−γ (
sρ − sρk
ρ

)γ−1
∣∣∣∣∣ ds

≤ M

Γ(α)

∫ t

s+k

sρ−1

(
tρ − sρ

ρ

)α−1(
sρ − sρk
ρ

)γ−1

ds

≤ M

Γ(α)
.ρJ α

s+k

(
tρ − sρk
ρ

)γ−1

and by lemma 1.4.1, we can write

≤M.
Γ(1− (1− α))

Γ(α− (1− γ) + 1)

(
tρ − sρk
ρ

)α−γ+1

(1.1)

≤M.
Γ(α)

Γ(α + γ)

(
tρ − sρk
ρ

)α−γ+1

as the right-hand side of 1.1 tends to zero when t→ s+k

Lemma 1.4.4 [18] Let α > 0, 0 ≤ γ < 1, k = 0, . . . ,m, and g ∈ Cγ,ρ (Ik). Then,
(
ρDα

s+k

ρJ α
s+k

)
(t) =

g(t), for all t ∈ Ik, k = 0, . . . sm

Lemma 1.4.5 [18] Let 0 < α < 1, 0 ≤ γ < 1, k = 0, . . . ,m. If g ∈ Cγ,ρ (Ik) and ρJ 1−α
s+k

g ∈

C1
γ,ρ (Ik) , then for all t ∈ Ik, k = 0, . . . ,m,

(
ρJ α

s+k

ρDα
s+k
g
)
(t) = g(t)−

(
ρJ 1−α

s+k
g
)
(sk)

Γ(α)

(
tρ − sρk
ρ

)α−1
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Lemma 1.4.6 [18] Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β − αβ and k = 0, . . . ,m. If u ∈ Cγ
γ,ρ (Ik),

then
ρJ γ

s+k

ρDγ

s+k
u = ρJ α

s+k

ρDα,β

s+k
u

and
ρDγ

s+k

ρJ α
s+k
u = ρDβ(1−α)

s+k
u

1.5 Fixed point theorems

Fixed point theory is an important topic with a large number of applications in various fields of

mathematics. The fixed point theorems concern a function f satisfying some conditions and admits

a fixed point, that is f(x) = x. Knowledge of the existence of fixed points has pertinent applications

in many branches of analysis and topology. Following if the conditions are imposed on the function

or on the set, different fixed point theorems are given, we cite the following[16, 21, 22, 24]

Theorem 1.5.1 (Banach contraction principle)

Let T be a contraction on a Banach space X. Then T has a unique fixed point.

Theorem 1.5.2 (Schauder fixed point theorem)

Let Ω be a nonempty closed bounded and convex subset of a normed space. Let N be a continuous

mapping from Ω into a compact subset of Ω, then N has a fixed point in Ω.

Theorem 1.5.3 (Krasnoselskii fixed point theorem)

. Let Ω be a closed bounded and convex nonempty subset of a Banach space X. Suppose that A

and B map Ω into X such that

(i) A is continuous and compact.

(ii) B is a contraction mapping.

(iii) x, y ∈ Ω, implies Ax+By ∈ Ω.

Then there exists x ∈ Ω with x = Ax+Bx.

The criteria for compactness for sets in the space of continuous functions C([a, b]) is the following.

Theorem 1.5.4 (Arzela-Ascoli theorem) A set Ω ⊂ C([a, b]) is relatively compact in C([a, b]) if

the functions in Ω are uniformly bounded and equicontinuous on [a, b].
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We recall that a family Ω of continuous functions is uniformly bounded if there exists M > 0 such

that

‖f‖ = max |
x∈[a,b]

f(x)| ≤M, f ∈ Ω.

The family Ω is equicontinuous on [a, b] , if ∀ ε > 0, ∃δ > 0 such that ∀t1, t2 ∈ [a, b] and ∀f ∈ Ω,

we have

|t1 − t2| < δ ⇒ |f(t1)− f(t2)| < ε.

Theorem 1.5.5 (Mönch fixed point Theorem )

Let D be a closed, bounded and convex subset of a Banach space X such that 0 ∈ D, and let T be

a continuous mapping of D into itself. If the implication

V = con vT (V ), or V = T (V ) ∪ {0} ⇒ µ(V ) = 0

holds for every subset V of D, then T has a fixed point.

Theorem 1.5.6 (Darbo’s fixed point Theorem )

Let D be a non-empty, closed, bounded and convex subset of a Banach space X, and let T be a

continuous mapping of D into itself such that for any non-empty subset C of D,

µ(T (C)) ≤ kµ(C)

where 0 ≤ k < 1, and µ is the Kuratowski measure of noncompactness on X. Then T has a fixed

point in D. Now, we consider the Ulam stability for problem.
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Chapter 2

Nonlinear Implicit Generalized

Hilfer-Type Fractional Differential

Equations with the continuous g

condition

2.1 Introduction

This work was studied by A.salim and all, we establish existence results for the initial value

problem of a nonlinear implicit generalized Hilfer-type fractional differential equation with non-

instantaneous impulses,

(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),

(
ρDα,β

s+k
u
)
(t)
)
; t ∈ Ik, k = 0, . . . ,m (2.1)

u(t) = gk(t, u(t)); t ∈ Ĩk, k = 1, . . . ,m (2.2)(
ρJ 1−γ

a+ u
) (
a+
)
= ϕ0 (2.3)

Where ρDα,β

s+k
and ρJ 1−γ

a+ are, respectively, the generalized Hilfer-type fractional derivative of order

α ∈ (0, 1) and type β ∈ [0, 1] and generalized fractional integral of order 1−γ, (γ = α+β−αβ), ρ >

0, ϕ0 ∈ E Ik := (sk, tk+1] ; k = 0, . . . ,m, Ĩk := (tk, sk] ; k = 1, . . . ,m, a = s0 < t1 ≤ s1 < t2 ≤ s2 <

. . . ≤ sm−1 < tm ≤ sm < tm+1 = b <∞, u
(
t+k
)
= limϵ→0+ u (tk + ϵ) and u

(
t−k
)
= limϵ→0− u (tk + ϵ)

represent the right and left hand limits of u(t) at t = tk, f : Ik×E×E → E is a given function and

22



gk : Ĩk×E → E; k = 1, . . . ,m, are given continuous functions such that
(
ρJ 1−γ

s+k
gk

)
(t, u(t))

∣∣∣
t=sk

=

ϕk ∈ E, where (E, ‖ · ‖) is a real Banach space.

Consider the weighted Banach space

Cγ,ρ (Ik) =

{
u : Ik → E : t→

(
tρ − sρk
ρ

)1−γ

u(t) ∈ C ([sk, tk+1] , E)

}
,

Where 0 ≤ γ < 1, k = 0, . . . ,m, and

Cn
γ,ρ (Ik) =

{
u ∈ Cn−1 (Ik) : u

(n) ∈ Cγ,ρ (Ik)
}
, n ∈ N,

C0
γ,ρ (Ik) = Cγ,ρ (Ik) .

Also consider the Banach space PCγ,ρ(J) =
{
u : (a, b] → E : u ∈ Cγ,ρ (∪mk=0Ik) ∩ C

(
∪mk=1Ĩk, E

)
and there exist

u
(
t−k
)
, u
(
t+k
)
, u
(
s−k
)
, and u

(
s+k
)

with u
(
t−k
)
= u (tk)

}
, 0 ≤ γ < 1,

and
PCn

γ,ρ(J) =
{
u ∈ PCn−1(J) : u(n) ∈ PCγ,ρ(J)

}
, n ∈ N

PC0
γ,ρ(J) = PCγ,ρ(J)

With the norm

‖u‖PCγ,ρ = max

{
max

k=0,...,m

{
sup
t∈Ik

∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ

u(t)

∥∥∥∥∥
}
, max
k=1,...,m

{ sup
t∈Ĩk

‖u(t)‖}

By L1(J), we denote the space of Bochner-integrable functions f : J −→ E wit et

‖f‖1 =
∫ b

a

‖f(t)‖dt.

2.2 Existence of solutions

Definition 2.2.1 [24] Let f : Ik × E → E be a function such that f
(
·, u(·), ρDα,β

s+k
u(·)

)
∈

C (Ik, E) , k = 0, . . . ,m, for any u ∈ Cγ,ρ (Ik) . The function u ∈ Cγ
γ,ρ (Ik) is a solution of the

differential equation, for 0 < α < 1, 0 ≤ β ≤ 1,(
ρDα,β

s+k
u
)
(t) = f

(
t, u(t),ρDα,β

s+k
u(t)

)
, for each , t ∈ Ik, k = 0, . . . ,m (2.4)
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if and only if u satisfies the following Volterra integral equation,

u(t) =

(
ρJ 1−γ

s+k
u
) (
s+k
)

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
1

Γ(α)

∫ t

sk

(
tρ − sρ

ρ

)α−1

sρ−1f
(
s, u(s), ρDα,β

s+k
u(s)

)
ds

(2.5)

where γ = α + β − αβ.

We consider the following linear fractional differential equation studied by A.Salim and al(
ρDα,β

s+k
u
)
(t) = ψ(t), t ∈ Ik, k = 0, . . . ,m (2.6)

Where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions

u(t) = gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m (2.7)

(
ρJ 1−γ

a+ u
) (
a+
)
= ϕ0 (2.8)

Where γ = α+β−αβ and ϕ0 ∈ E, and let ϕ∗ = max {‖ϕk‖ : k = 0, . . . ,m}. The following theorem

shows that the problem (2.6),(2.8) has a unique solution given by

u(t) =


ϕk
Γ(γ)

(
tρ−sρk
ρ

)γ−1

+
(
ρJ α

s+k
ψ
)
(t), t ∈ Ik, k = 0, . . . ,m

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m
(2.9)

Lemma 2.2.1 [22] Let α > 0, β > 0, 1 ≤ p ≤ ∞, 0 < a < b <∞. Then, for g ∈ L1 ([sk, tk+1]) , k =

0, . . . ,m, we have (
ρJ α

s+k

ρJ β

s+k

)
(t) =

(
ρJ α+β

s+k
g
)
(t)

Theorem 2.2.1 [24] Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. If ψ : Ik → E

k = 0, . . . ,m, is a function such that ψ(·) ∈ C (Ik, E) , then u ∈ PCγ
γ,ρ(J) satisfies the problem

(2.6)− (2.8) if and only if it satisfies (2.9).

Proof: Assume u satisfies (2.6)− (2.8). If t ∈ I0, then(
ρDα,β

a+ u
)
(t) = ψ(t)

definition2.2.1 implies we have the solution can be written as

u(t) =

(
ρJ 1−γ

a+ u
)
(a)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds
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If t ∈ I1, then we have u(t) = g1(t, u(t)).

If t ∈ I1, then definition2.2.1 implies

u(t) =

(
ρJ 1−γ

s+1
u
)
(s1)

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
1

Γ(α)

∫ t

s1

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
ϕ1

Γ(γ)

(
tρ − sρ1
ρ

)γ−1

+
(
ρJ α

s+1
ψ
)
(t)

If t ∈ Ĩ2, then we have u(t) = g2(t, u(t)).

If t ∈ I2, then definition2.2.1implies

u(t) =

(
ρJ 1−γ

s+2
u
)
(s2)

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
1

Γ(α)

∫ t

s2

(
tρ − sρ

ρ

)α−1

sρ−1ψ(s)ds

=
ϕ2

Γ(γ)

(
tρ − sρ2
ρ

)γ−1

+
(
ρJ α

s+2
ψ
)
(t)

Repeating the process in this way, the solution u(t) for t ∈ (a, b] can be written as

u(t) =


ϕk
Γ(γ)

(
tp−sρk
ρ

)γ−1

+
(
ρJ α

s+k
ψ
)
(t), t ∈ Ik, k = 0, . . . ,m

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m

Conversely, for t ∈ I0, applying ρJ 1−γ
a+ on both sides of (2.9) and using Lemma1.4.1 and lemma2.2.1

We get (
ρJ 1−γ

a+ u
)
(t) = ϕ0 +

(
ρJ 1−γ+α

a+ ψ
)
(t) (2.10)

Next, taking the limit as t→ a+ of (2.10) and using Lemma1.4.3 with 1−γ < 1−γ+α, we obtain(
ρJ 1−γ

a+ u
) (
a+
)
= ϕ0 (2.11)

which shows that the initial condition
(
ρJ 1−γ

a+ u
)
(a+) = ϕ0, is satisfied. Next, for t ∈ Ik, k =

0, . . . ,m, apply operator ρDγ

s+k
on both sides of (2.9) Then, from Lemma1.4.1 and Lemma1.4.6 we

obtain

(
ρDγ

s+k
u
)
(t) =

(
ρDβ(1−α)

s+k
ψ
)
(t) (2.12)

Since u ∈ Cγ
γ,ρ (Ik) and by definition of Cγ

γ,ρ (Ik) , we have ρDγ

s+k
u ∈ Cγ,ρ (Ik) , and then (2.12)

implies that (
ρDγ

s+k
u
)
(t) =

(
δρ
ρJ 1−β(1−α)

s+k
ψ
)
(t) =

(
ρDβ(1−α)

s+k
ψ
)
(t) ∈ Cγ,ρ (Ik) (2.13)
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As ψ(·) ∈ C (Ik, E) and from Lemma1.4.2, it follows that(
ρJ 1−β(1−α)

s+k
ψ
)
∈ Cγ,ρ (Ik) , k = 0, . . . ,m (2.14)

From (2.13. 2.14)a and by the definition of the space Cn
γ,ρ (Ik), we obtain(

ρJ 1−β(1−α)
s+k

ψ
)
∈ C1

γ,ρ (Ik) , k = 0, . . . ,m

Applying operator ρJ β(1−α)
s+k

on both sides of (2.12) and using Lemma1.4.5 . Lemma1.4.3 and the

next property

property[24] The operator ρDα,β

s+k
can be written as

ρDα,β

s+k
= ρJ β(1−α)

s+k
δρ
ρJ 1−γ

s+k
= ρJ β(1−α)

s+k

ρDγ

s+k
, γ = α + β − αβ, k = 0, . . . ,m

We have (
ρDα,β

s+k
u
)
(t) = ρJ β(1−α)

s+k

(
ρDγ

s+k
u
)
(t)

= ψ(t)−

(
ρJ 1−β(1−α)

s+
k

ψ

)
(sk)

Γ(β(1−α))

(
tρ−sρk
ρ

)β(1−α)−1

= ψ(t),

That is, 2.6 holds. Also, we have easily for u ∈ C
(
Ĩk, E

)
,

u(t) = gk
(
t, u
(
t−k
))
, t ∈ Ĩk, k = 1, . . . ,m

This completes the proof.

As a consequence of Theorem 2.2.1, we have the following result:

Lemma 2.2.2 [24] Let γ = α + β − αβ where 0 < α < 1, 0 ≤ β ≤ 1, and k = 0, . . . ,m, let

f : Ik × E × E → E, be a function such that f(·, u(·), w(·)) ∈ C (Ik, E) , for any u,w ∈ PCγ,ρ(J).

If u ∈ PCγ,ρ(J), then u satisfies the problem (2.1)− (2.3) if and only if u is the fixed point of the

operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined by

Ψu(t) =


ϕk
Γ(γ)

(
tρ−sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t), t ∈ Ik, k = 0, . . . ,m

gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m
(2.15)

Where h ∈ C (Ik, E) , k = 0, . . . ,m is a function satisfying the functional equation

h(t) = f(t, u(t), h(t))
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Also, by Lemma 1.4.2,Ψu ∈ PCγ,ρ(J).

The following hypotheses will be used in the sequel:

(Ax1) The function t 7→ f(t, u, w) is measurable on Ik, k = 0, . . . ,m, for each u,w ∈ E, and the

functions u 7→ f(t, u, w) and w 7→ f(t, u, w) are continuous on E for a.e. t ∈ Ik, k = 0, . . . ,m, and

f(·, u(·), w(·)) ∈ Cβ(1−α)
γ,ρ (Ik) for any u,w ∈ PCγ,ρ(J)

(Ax2) There exists a continuous function p : [a, b] −→ [0,∞) such that

‖f(t, u, w)‖ ≤ p(t), for a.e. t ∈ Ik, k = 0, . . . ,m, and for each u,w ∈ E

(Ax3) For each bounded set B ⊂ E and for each t ∈ Ik, k = 0, . . . ,m, we have

µ
(
f
(
t, B,

(
ρDα,β

s+k
B
)))

≤ p(t)µ(B)

where ρDα,β

s+k
B =

{
ρDα,β

s+k
w : w ∈ B

}
(Ax4) The functions gk ∈ C

(
Ĩk, E

)
, k = 1, . . . ,m, and there exists l∗ > 0 such that

‖gk(t, u)‖ ≤ l∗‖u‖ for each u ∈ E, k = 1, . . . ,m

(Ax5) For each bounded set B ⊂ E and for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ (gk(t, B)) ≤ l∗µ(B), k = 1, . . . ,m

Set p∗ = supt∈[a,b] p(t)

We are now in a position to state and prove our existence result for the problem (2.1]-(2.3) based

on Mönch’s fixed point theorem.

Theorem 2.2.2 [24] Assume (Ax1) (Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − αρ

ρ

)α}
< 1 (2.16)

then the problem 2.1− 2.3 has at least one solution in PCγ,ρ(J)

proof: Consider the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined in 2.15 and the ball BR :=

B(0, R) =
{
w ∈ PCγ,ρ(J) : ‖w‖PCγ,ρ ≤ R

}
, such that

R ≥ ϕ∗

(1− l∗) Γ(γ)
+

p∗

(1− l∗) Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α
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For any u ∈ BR, and each t ∈ Ik, k = 0, . . . ,m, we have

‖Ψu(t)‖ ≤ ‖ϕk‖
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
‖h(s)‖

)
(t)

≤ ϕ∗

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
1

Γ(α)

∫ t

sk

(
tρ − sρ

ρ

)α−1

sρ−1‖h(s)‖ds

By Lemma 1.4.1 we have

‖Ψu(t)‖ ≤ ‖ϕk‖
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
p∗

Γ(α + 1)

(
tρ − sρk
ρ

)α
Ther fore∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ

Ψu(t)

∥∥∥∥∥ ≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
tρ − sρk
ρ

)1−γ+α

≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

And for t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(t)‖ ≤ l∗‖u(t)‖ ≤ l∗R

Hence

‖Ψu‖PCγ,ρ ≤ l∗R +
ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

≤ R.

Ther fore
ϕ∗

Γ(γ)
+

p∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

≤ (1− l∗)R.

ϕ∗

(1− l∗)Γ(γ)
+

p∗

(1− l∗)Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

≤ R.

This proves that Ψ transforms the ball BR into itself. We shall show that the operator Ψ : BR → BR

satisfies all the assumptions of Theorem 1.5.5The rest of the proof will be given in several steps.

Step 1: Ψ : BR → BR is continuous. Let {un} be a sequence such that un → u in PCγ,ρ(J).

Then for each t ∈ Ik, k = 0, . . . ,m, we have.∥∥∥∥∥((Ψun) (t)− (Ψu)(t))

(
tρ − sρk
ρ

)1−γ
∥∥∥∥∥ ≤

(
tp − sSk
ρ

)1−γ (
ρJ α

s+k
‖hn(s)− h(s)‖

)
(t),

Where hn, h ∈ C (Ik, E) ; k = 0, . . . ,m, such that

hn(t) = f (t, un(t), hn(t))

h(t) = f(t, u(t), h(t))
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For each t ∈ Ĩk, k = 1, . . . ,m, we have.

‖((Ψun) (t)− (Ψu)(t))‖ ≤ ‖(gk (t, un(t))− gk(t, u(t)))‖

Since un → u then we get hn(t) → h(t) as n → ∞ for each t ∈ (a, b], and since f and gk are

continuous. then we have

‖Ψun −Ψu‖PCγ,p
→ 0 as n→ ∞

Step 2 : Ψ (BR) is bounded and equicontinuous.

Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.

Next. let ϵ1, ϵ2 ∈ Ik, k = 0, . . . ,m, ϵ1 < ϵ2, and let u ∈ BR. Then

∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu) (ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu) (ϵ2)

∥∥∥∥∥
≤

∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ1)−

(
ϵρ2 − sρk
ρ

)1−γ (
ρJ α

s+k
h(τ)

)
(ϵ2)

∥∥∥∥∥
≤
(
ϵρ2 − sek
ρ

)1−γ (
ρJ α

ϵ+1
‖h(τ)‖

)
(ϵ2) +

1

Γ(α)

∫ ϵ1

sk

∥∥τ ρ−1H(τ)h(τ)
∥∥ dτ

Where

H(τ) =

[(
ϵρ1 − sρk
ρ

)1−γ (
ϵρ1 − τ ρ

ρ

)α−1

−
(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − τ ρ

ρ

)α−1
]

Then by Lemma 1.4.1, we have ∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu) (ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu) (ϵ2)

∥∥∥∥∥
≤ p∗

Γ(1 + α)

(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − ϵρ1
ρ

)α
+ p∗

∫ ϵ1

sk

∥∥∥∥H(τ)
τ ρ−1

Γ(α)

∥∥∥∥(τ ρ − sρk
ρ

)γ−1

dτ,

and for each t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu) (ϵ1)− (Ψu) (ϵ2)‖ ≤ ‖(gk (ϵ1, u (ϵ1)))− (gk (ϵ2, u (ϵ2)))‖

As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is bounded

and equicontinuous.

Step 3: The implication of Theorem 1.5.5 holds.

Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D) ∪ {0}, therefore the function

t −→ d(t) = µ(D(t)) are continuous on J . By (Ax3),Ax5 ) and the properties of the measure µ.
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for each t ∈ Ik, k = 0, . . . ,m. we have

(
tρ − sρk
ρ

)1−γ

d(t) ≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t) ∪ {0}

)

≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)

≤
(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
p(s)µ(D(s))

)
(t)

≤ p∗
(
bρ − aρ

ρ

)1−γ (
ρρJ α

s+k
d(s)

)
(t)

≤
[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
‖d‖PCγ,ρ .

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

d(t) ≤ µ (gk(t,D(t))) ≤ l∗d(t)

Thus for each t ∈ (a, b], we have

‖d‖pCγ,ρ ≤ L‖d‖p.Cγ,p

From (2.16) we get ‖d‖pCγ,ρ = 0, that is, d(t) = µ(D(t)) = 0, for each t ∈ (a, b], and then D(t)

is relatively compact in E. In view of the Ascoli-Arzela Theorem, D is relatively compact in BR

Applying now Theorem 1.5.5 we conclude that Ψ has a fixed point u∗ ∈ PCγ,ρ(J). which is solution

of the problem (2.1)-(2.3).

Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ
γ,ρ(J). Since u∗ is the

unique fixed point of operator Ψ in PCγ,ρ(J). then for each t ∈ J , we have

Ψu∗(t) =


ϕk
Γ(γ)

(
tρ−sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t), t ∈ Ik, k = 0, . . . ,m,

gk (t, u
∗(t)) , t ∈ Ĩk, k = 1, . . . ,m.

Where h ∈ C (Ik, E) ; k = 0, . . . ,m, such that

h(t) = f (t, u∗(t), h(t))

For t ∈ Ik; k = 0, . . . ,m, applying ρDγ

s+k
to both sides and by Lemma 1.4.1 and Lemma 1.4.6, we

have
ρDγ

s+k
u∗(t) =

(
ρDγ

s+k
ρJ α

s+k
f (s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

s+k
f (s, u∗(s), h(s))

)
(t)
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Since γ ≥ α, by (Ax1). the right hand side is in Cγ,ρ (Ik) and thus ρDγ

s+k
u∗ ∈ Cγ,ρ (Ik) which

implies that u∗ ∈ Cγ
γ,ρ (Ik) . And since gk ∈ C

(
Ĩk, E

)
; k = 1, . . . ,m, then u∗ ∈ PCγ

γ,ρ(J). As a

consequence of Steps 1 to 4 together with Theorem (3.2.1), we can conclude that the problem (2.1)

(2.3) has at least one solution in PCγ,ρ(J)

Our second existence result for the problem (2.1)-(2.3) is based on Darbo’s fixed point theorem.

Theorem 2.2.3 [24] Assume (Ax1) (Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − αρ

ρ

)α}
< 1. (2.17)

Ther the problem (2.1)-(2.3) at least one solution in PCγ,ρ(J).

Proof: Consider the operator Ψ defined in (2.15). We know that Ψ : BR −→ BR is bounded and

continuons and that Ψ(BR) is equicontinuous. We need to prove that the operator Ψ is an L−

contraction. Let D ⊂ BR and t ∈ Ik, k = 0, . . . ,m. Then we have

µ

((
tρ − spk
ρ

)1−γ

(ΨD)(t)

)
= µ

((
tp − sρk
ρ

)1−γ

(Ψu)(t) : u ∈ D

)

≤
(
bρ − aρ

ρ

)1−γ {(
ρJ α

s+k
p∗µ(u(s))

)
(t), u ∈ D

}
By Lemma 1.4.1 we have for t ∈ Ik, k = 0, . . . ,m.

µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)
≤
[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
µPCγ,ρ(D)

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ((ΨD)(t)) ≤ µ (gk(t,D(t))) ≤ l∗µ(D(t))

Hence. for each t ∈ (a, b], we have

µPCγ,ρ(ΨD) ≤ LµPCγ,ρ(D)

So. by (2.16) the operator Ψ is an L contraction. As consequence of Theorem (1.5.6) and using

Step 4 of the last result, we deduce that Ψ has a fixed point which is a solution of the problem

(2.1)-(2.3).
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Chapter 3

Nonlinear Implicit Generalized

Hilfer-Type Fractional Differential

Equations whit the lipschitz condition

on g

3.1 Introduction

We have to change the continuous condition in g by lipschitz condition (A′x4)

3.2 Existence of solutions

We consider the following linear fractional differential equation studied in chapter two given by :(
ρDα,β

s+k
u
)
(t) = ψ(t), t ∈ Ik, k = 0, . . . ,m (3.1)

Where 0 < α < 1, 0 ≤ β ≤ 1, ρ > 0, with the conditions

u(t) = gk(t, u(t)), t ∈ Ĩk, k = 1, . . . ,m (3.2)

(
ρJ 1−γ

a+ u
) (
a+
)
= ϕ0 (3.3)

Where γ = α+ β − αβ and ϕ0 ∈ E, and let ϕ∗ = max {‖ϕk‖ : k = 0, . . . ,m}. but we consider The
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following hypotheses will be used in the sequel:

(Ax3) For each bounded set B ⊂ E and for each t ∈ Ik, k = 0, . . . ,m, we have

µ
(
f
(
t, B,

(
ρDα,β

s+k
B
)))

≤ p(t)µ(B)

where ρDα,β

s+k
B =

{
ρDα,β

s+k
w : w ∈ B

}
(A′x4) The functions gk ∈ C

(
Ĩk, E

)
, k = 1, . . . ,m, and there exists l∗ > 0 such that

‖gk(t, u)− gk(t, v)‖ ≤ l∗‖u− v‖ for each u, v ∈ E, k = 1, . . . ,m

(Ax5) For each bounded set B ⊂ E and for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ (gk(t, B)) ≤ l∗µ(B), k = 1, . . . ,m

Set p∗ = supt∈[a,b] p(t)

We are now in a position to give our maine result for the problem (3.1]-(3.3) based on Mönch’s

fixed point theorem.

Theorem 3.2.1 [24] Assume (Ax1)-(Ax3),(A′x4)and(Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − αρ

ρ

)α}
< 1 (3.4)

then the problem 3.1− 3.3 has at least one solution in PCγ,ρ(J).

proof: Consider the operator Ψ : PCγ,ρ(J) → PCγ,ρ(J) defined in 2.15 and the ball BR :=

B(0, R) =
{
w ∈ PCγ,ρ(J) : ‖w‖PCγ,ρ ≤ R

}
, such that

R ≥ ϕ∗

(1− l∗) Γ(γ)
+

p∗

(1− l∗) Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

+
M

1− l∗

M = ‖gk(t, 0)‖

For any u ∈ BR, and each t ∈ Ik, k = 0, . . . ,m, we have

‖Ψu(t)‖ ≤ ‖ϕk‖
Γ(γ)

(
tρ − sρk
ρ

)γ−1

+
(
ρJ α

s+k
‖h(s)‖

)
(t) ≤ ϕ∗

Γ(γ)

(
tρ − sρk
ρ

)γ−1

+ p∗
(
ρJ α

s+k
(1)
)
(t)

By Lemma 1.4.1 we have∥∥∥∥∥
(
tρ − sρk
ρ

)1−γ

Ψu(t)

∥∥∥∥∥ ≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
tρ − sρk
ρ

)1−γ+α

≤ ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α
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And for t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu)(t)‖ ≤ ‖(Ψu)(t)− ‖(Ψu)(0)‖+ ‖(Ψu)(0)‖ ≤ l∗‖u‖+M ≤ l∗R +M

M = ‖gk(t, 0)‖

Hence

‖Ψu‖PCγ,ρ ≤ l∗R +
ϕ∗

Γ(γ)
+

p∗

Γ(α + 1)

(
bρ − aρ

ρ

)1−γ+α

+M ≤ R.

M = ‖gk(t, 0)‖

This proves that Ψ transforms the ball BR into itself. We shall show that the operator Ψ : BR → BR

satisfies all the assumptions of Theorem 1.5.5The rest of the proof will be given in several steps.

Step 1: Ψ : BR → BR is continuous. Let {un} be a sequence such that un → u in PCγ,ρ(J).

Then for each t ∈ Ik, k = 0, . . . ,m, we have.∥∥∥∥∥((Ψun) (t)− (Ψu)(t))

(
tρ − sρk
ρ

)1−γ
∥∥∥∥∥ ≤

(
tp − sSk
ρ

)1−γ (
ρJ α

s+k
‖hn(s)− h(s)‖

)
(t),

Where hn, h ∈ C (Ik, E) ; k = 0, . . . ,m, such that

hn(t) = f (t, un(t), hn(t))

h(t) = f(t, u(t), h(t))

For each t ∈ Ĩk, k = 1, . . . ,m, we have.

‖((Ψun) (t)− (Ψu)(t))‖ ≤ ‖(gk (t, un(t))− gk(t, u(t)))‖ ≤ l∗‖un − u‖

Since un → u then we get hn(t) → h(t) as n → ∞ for each t ∈ (a, b], and since f and gk are

continuous. then we have

‖Ψun −Ψu‖PCγ,p
→ 0 as n→ ∞

Step 2 : Ψ (BR) is bounded and equicontinuous.

Since Ψ(BR) ⊂ BR and BR is bounded, then Ψ(BR) is bounded.

Next. let ϵ1, ϵ2 ∈ Ik, k = 0, . . . ,m, ϵ1 < ϵ2, and let u ∈ BR. Then

∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu) (ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu) (ϵ2)

∥∥∥∥∥
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≤

∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ
1

Γ(α)

∫ ϵ1

sk

sρ
(
ϵρ1 − sρ

ρ

)α−1

h(s)ds,−
(
ϵρ2 − sρk
ρ

)1−γ
1

Γ(α)

∫ ϵ2

sk

sρ
(
ϵρ2 − sρ

ρ

)1−γ

h(s)ds,

∥∥∥∥∥
≤ 1

Γ(α)

∫ ϵ1

sk

sρ

[(
ϵρ1 − sρ

ρ

)1−γ (
ϵρ1 − sρk
ρ

)α−1

−
(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − sρ

ρ

)α−1
]
‖h(s)ds‖

+

(
ϵρ2 − sρk
ρ

)1−γ
1

Γ(α)

∫ ϵ2

ϵ1

sρ
(
ϵ2 − sρ

ρ

)α−1

‖h(s)ds‖

≤
(
ϵρ2 − sek
ρ

)1−γ (
ρJ α

ϵ+1
‖h(τ)‖

)
(ϵ2) +

1

Γ(α)

∫ ϵ1

sk

∥∥τ ρ−1H(τ)h(τ)
∥∥ dτ

Where

H(τ) =

[(
ϵρ1 − sρk
ρ

)1−γ (
ϵρ1 − τ ρ

ρ

)α−1

−
(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − τ ρ

ρ

)α−1
]

Then by Lemma 1.4.1, we have ∥∥∥∥∥
(
ϵρ1 − sρk
ρ

)1−γ

(Ψu) (ϵ1)−
(
ϵρ2 − sρk
ρ

)1−γ

(Ψu) (ϵ2)

∥∥∥∥∥
≤ p∗

Γ(1 + α)

(
ϵρ2 − sρk
ρ

)1−γ (
ϵρ2 − ϵρ1
ρ

)α
+ p∗

∫ ϵ1

sk

∥∥∥∥H(τ)
τ ρ−1

Γ(α)

∥∥∥∥(τ ρ − sρk
ρ

)γ−1

dτ,

and for each t ∈ Ĩk, k = 1, . . . ,m, we have

‖(Ψu) (ϵ1)− (Ψu) (ϵ2)‖ ≤ ‖(gk (ϵ1, u (ϵ1)))− (gk (ϵ2, u (ϵ2)))‖

As ϵ1 → ϵ2, the right-hand side of the above inequality tends to zero. Hence, Ψ(BR) is bounded

and equicontinuous.

Step 3: The implication of Theoren 1.5.5 holds.

Now let D be an equicontinuous subset of BR such that D ⊂ Ψ(D) ∪ {0}, therefore the function

t −→ d(t) = µ(D(t)) are continuous on J . By (Ax3),Ax5 ) and the properties of the measure µ.

for each t ∈ Ik, k = 0, . . . ,m. we have

(
tρ − sρk
ρ

)1−γ

d(t) ≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t) ∪ {0}

)

≤ µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)

≤
(
tρ − sρk
ρ

)1−γ (
ρJ α

s+k
p(s)µ(D(s))

)
(t)

≤ p∗
(
bρ − aρ

ρ

)1−γ (
ρρJ α

s+k
d(s)

)
(t)

≤
[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
‖d‖PCγ,ρ .
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And for each t ∈ Ĩk, k = 1, . . . ,m, we have

d(t) ≤ µ (gk(t,D(t))) ≤ l∗d(t)

Thus for each t ∈ (a, b], we have

‖d‖pCγ,ρ ≤ L‖d‖p.Cγ,p

From (3.7) we get ‖d‖pCγ,ρ = 0, that is, d(t) = µ(D(t)) = 0, for each t ∈ (a, b], and then D(t)

is relatively compact in E. In view of the Ascoli-Arzela Theorem, D is relatively compact in BR

Applying now Theorem 1.5.5 we conclude that Ψ has a fixed point u∗ ∈ PCγ,ρ(J). which is solution

of the problem (3.1)-(3.3).

Step 4: We show that such a fixed point u∗ ∈ PCγ,ρ(J) is actually in PCγ
γ,ρ(J). Since u∗ is the

unique fixed point of operator Ψ in PCγ,ρ(J). then for each t ∈ J , we have

Ψu∗(t) =


ϕk
Γ(γ)

(
tρ−sρk
ρ

)γ−1

+
(
ρJ α

s+k
h
)
(t), t ∈ Ik, k = 0, . . . ,m,

gk (t, u
∗(t)) , t ∈ Ĩk, k = 1, . . . ,m.

Where h ∈ C (Ik, E) ; k = 0, . . . ,m, such that

h(t) = f (t, u∗(t), h(t))

For t ∈ Ik; k = 0, . . . ,m, applying ρDγ

s+k
to both sides and by Lemma 1.4.1 and Lemma 1.4.6, we

have
ρDγ

s+k
u∗(t) =

(
ρDγ

s+k
ρJ α

s+k
f (s, u∗(s), h(s))

)
(t)

=
(
ρDβ(1−α)

s+k
f (s, u∗(s), h(s))

)
(t)

Since γ ≥ α, by (Ax1). the right hand side is in Cγ,ρ (Ik) and thus ρDγ

s+k
u∗ ∈ Cγ,ρ (Ik) which

implies that u∗ ∈ Cγ
γ,ρ (Ik) . And since gk ∈ C

(
Ĩk, E

)
; k = 1, . . . ,m, then u∗ ∈ PCγ

γ,ρ(J). As a

consequence of Steps 1 to 4 together with Theorem (2.2.1), we can conclude that the problem (3.1)

(3.3) has at least one solution in PCγ,ρ(J) Our second existence result for the problem (3.1)-(3.3)

is based on Darbo’s fixed point theorem.

Theorem 3.2.2 [24] Assume (Ax1)-(Ax3),(A′x4)and (Ax5) hold. If

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α}
< 1

ther the problem (3.1)-(3.3) at least one solution in PCγ,ρ(J).
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Proof: Consider the operator Ψ defined in (2.15). We know that Ψ : BR −→ BR is bounded and

continuons and that Ψ(BR) is equicontinuous. We need to prove that the operator Ψ is an L−

contraction. Let D ⊂ BR and t ∈ Ik, k = 0, . . . ,m. Then we have

µ

((
tρ − spk
ρ

)1−γ

(ΨD)(t)

)
= µ

((
tp − sρk
ρ

)1−γ

(Ψu)(t) : u ∈ D

)

≤
(
bρ − aρ

ρ

)1−γ {(
ρJ α

s+k
p∗µ(u(s))

)
(t), u ∈ D

}
By Lemma 1.4.1 we have for t ∈ Ik, k = 0, . . . ,m.

µ

((
tρ − sρk
ρ

)1−γ

(ΨD)(t)

)
≤
[
p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α]
µPCγ,ρ(D)

And for each t ∈ Ĩk, k = 1, . . . ,m, we have

µ((ΨD)(t)) ≤ µ (gk(t,D(t))) ≤ l∗µ(D(t))

Hence. for each t ∈ (a, b], we have

µPCγ,ρ(ΨD) ≤ LµPCγ,ρ(D)

So. by (3.7) the operator Ψ is an L contraction. As consequence of Theorem (1.5.6) and using

Step 4 of the last result, we deduce that Ψ has a fixed point which is a solution of the problem

(3.1)-(3.3)

3.3 Example

Let

E = l1 =

{
v = (v1, v2, . . . , vn, . . .) ,

∞∑
n=1

|vn| <∞

}
Be the Banach space with the norm

‖v‖ =
∞∑
n=1

|vn| .

Consider the following initial value problem with non-instantaneous impulses(
1D

1
2
,0

s+k
u
)
(t) = f

(
t, u(t),

(
1D

1
2
,0

s+k
u
)
(t)
)
, t ∈ (1, 2] ∪ (e, 3], k ∈ {0, 1} (3.5)

u(t) = g(t, u(t)), t ∈ (2, e] (3.6)
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(
1J

1
2

1+u
)
(1+) = 0 (3.7)

Where
a = t0 = s0 = 1 < t1 = 2 < s1 = e < t2 = 3 = b,

u = (u1, u2, . . . , un, . . .)

f = (f1, f2, . . . , fn, . . .)

1D
1
2
,0

s+k
u =

(
1D

1
2
,0

s+k
u1, . . . ,

1D
1
2
,0

s+k
u2, . . . ,

1D
1
2
,0

s+k
un, . . .

)
,

g = (g1, g2, . . . , gn, . . .) ,

fn

(
t, un(t),

(
1D

1
2
,0

s+k
un

)
(t)
)
=

(2t3+5e−2)|un(t)|

183e−t+3

(
1+∥u(t)∥+

∥∥∥∥∥
(

1D
1
2 ,0

s+
k

u

)
(t)

∥∥∥∥∥
)

with t ∈ (1, 2] ∪ (e, 3], k ∈ {0, 1}, n ∈ N, and

gn (t, un(t)) =
|sinun(t)|

105e−t+5+1
, t ∈ (2, e], n ∈ N

We have

Cβ(1−α)
γ,ρ ((1, 2]) = C0

1
2
,1
((1, 2]) = {h : (1, 2] → E : (

√
t− 1)h ∈ C([1, 2], E)},

and

Cβ(1−α)
γ,ρ ((e, 3]) = C0

1
2
,1
((e, 3]) = {h : (e, 3] → E : (

√
t− e)h ∈ C([e, 3], E)}

With γ = α = 1
2
, ρ = 1, β = 0 and k ∈ {0, 1}. Clearly, the continuous function f ∈ C0

1
2
,1
((1, 2]) ∪

C0
1
2
,1
((e, 3]). Hence the condition (Ax1) is satisfied. For each u,w ∈ E and t ∈ (1, 2] ∪ (e, 3],

‖f(t, u, w)‖ ≤ 2t3 + 5e−2

183e−t+3
.

Hence condition (Ax2) is satisfied with

p(t) =
2t3 + 5e−2

183e−t+3
,

and

p∗ =
54 + 5e−2

183
.

And for each u ∈ E and t ∈ (2, e] we have

‖g(t, u)− g(t, v)‖ ≤ ‖u− v‖
105e5−e + 1

.

And so the condition (A′x4) is satisfied with l∗ = 1
105e5−e+1

The condition(3.4) of Theorem (3.2.1)

is satisfied, for

L := max

{
l∗,

p∗Γ(γ)

Γ(α + γ)

(
bρ − aρ

ρ

)α}
≈ 0.7489295248 < 1.
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Let Ω be a bounded set in E where 1D
1
2
,0

s+k
Ω =

{
1D

1
2
,0

s+k
v : v ∈ Ω

}
, k ∈ {0, 1}. Then by the properties

of the Kuratowski measure of noncompactness, for each u ∈ Ω and t ∈ (1, 2] ∪ (e, 3], we have

µ
(
f
(
t,Ω, 1D

1
2
,0

s+k
Ω
))

≤ p(t)µ(Ω)

and for each t ∈ (2, e],

µ(g(t,Ω)) ≤ l∗µ(Ω)

Hence conditions (Ax3) and (Ax5) are satisfied. Then the problem (3.5) − (3.7) has at least one

solution in PC 1
2
,1([1, 3])
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CONCLUSION

We have studied the existence of solutions for a class of initial value problem for nonlinear

implicit fractional differential equations with non-instantaneous impulses and generalized Hilfer

fractional derivative in Banach spaces. We have change the continuous condition in g by lipschitz

condition. our main results are based on Darbo and Mönch fixed point theorems associated with

the technique of measure of noncompactness.

In perspective, we will project these results in other fractional differential problems.
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