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Abstract

This thesis aims to study the existence, uniqueness and stability of two types of abstract fractional
differential equations in two parts. The first part explores two different hybrid differential equations
with various conditions in Banach algebra. Whereas the second part investigates three random
fractional differential systems in generalized Banach space with different boundary conditions. The

studies in both parts were carried out using different fixed point theorems.
Résumé

Cette these vise a étudier 1'existence, 1'unicité et la stabilité de deux types d’équations diffé-
rentielles fractionnaires abstraites en deux parties. La premieére partie explore deux équations dif-
térentielles hybrides différentes avec diverses conditions dans une algebre de Banach. Alors que
la deuxieme partie étudie trois systemes différentiels fractionnaires aléatoires dans les espaces de
Banach généralisé avec différentes conditions. Les études dans les deux parties ont été menées en

utilisant différents théoremes de point fixe.
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Keywords: Hybrid fractional differential equation, {-Caputo fractional operator, hybrid boundary con-
ditions, fixed point theorem, integral boundary conditions, Ulam-Hyres stability, random coupled system,

random solution, generalized Banach spaces, random fixed point.



LIST OF SYMBOLS

We use the following notations throughout this thesis

Notations

e IN: Set of natural numbers.

R: Set of real numbers .

¢ RR": Space of n-dimensional real vectors.

e J: A finite interval on the half-axis R™.

* sup: Supremum.

¢ max: Maximum.

e I'(-): Gamma function.

¢ [P: The Riemann-Liouville fractional integral of order p > 0.

¢ DP: The Riemann-Liouville fractional derivative of orde p > 0.
¢ °DP: The Caputo fractional derivative of orde p > 0.

¢ PJP: The Katugampola fractional integral of order p > 0, p > 0.
¢ PDP: The Katugampola fractional derivative of orde p > 0, p > 0.

¢ ?DP4: The Hilfer-Katugampola fractional derivative of orde p > 0 and type g < 0, with p > 0.

i1



IP¥: The y-Riemann-Liouville fractional integral of order p > 0.

¢DP¥: The p-Caputo fractional derivative of order p > 0.

C(J,R): The space of continuous functions from the time interval | into R.
C(J,R): The Space of n time continuously. differentiable functions on | into R.
AC(J,R): Space of absolutely continuous functions on J.

LP(]): Lebesgue spaces.

L*(]): Space of functions u that are essentially bounded on J .
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INTRODUCTION

Fractional differential equations received great attention of many researchers working
in different disciplines of science and technology. In other words, some recent publica-
tions show the importance of fractional differential equations in the mathematical model-
ing of many real-world phenomena. For example ecological models [30], economic models
[50], physics [36], fluid mechanics [53]. In the literature, there are many studies on frac-
tional differential equations with distinct kinds of fractional derivatives, such as Riemann-
Liouville fractional derivative, Caputo fractional derivative, and Grunwald Letnikov frac-
tional derivative, etc. For examples, see [33, 41, 44]. Very recently, a new kind of fractional
derivative -Caputo was introduced by Almeida in [7]. The main advantage of the deriva-
tive mentioned above is the freedom of choices of the kernels of derivative by choosing
different functions 1, which gives us some well known fractional derivatives such Caputo,
Caputo-Erdelyi-Koper and Caputo Hadamard derivative. For more details on the ¢-Caputo
and fractional differential equation involving -Caputo, we refer the reader to a series of
papers [7, 8, 19] and the references cited therein.

Recently mathematicians have shown a special interest in Fractional differential equa-
tions, which resulted in plenty of research papers that have been carried out on Fractional
differential equations. That made a valuable contribution ranging from the qualitative the-
ory of the solutions of Fractional differential equations, such as existence, uniqueness, sta-
bility and controllability to the numerical analysis. Speaking in this context, the stability
analysis of functional and differential equations are important in many applications, such
as optimization, numerical analysis, etc. Where computing the exact solution is rather hard.

There are various kinds of stability, one of those types has recently received considerable



attention from many mathematicians, so-called Ulam-Hyers stability. The source of Ulam-
Hyers stability goes back to 1940 by Ulam [52], next by Hyers [27]. A variety of works have
been done by many authors in regard of the Ulam-Hyers stability of Fractional differential
equations, for example, the authors in [10] studied the existence and stability results for im-
plicit Fractional differential equations. Some recent developments in Ulam’s type stability
are discussed by Belluot, et al. [14]. Ibrahim in [28] obtained the generalized Ulam-Hyers
stability for Fractional differential equations. Some approximate analytical methods for
solving Fractional differential equations can be found in [42, 39, 23, 55], also computational
analyse of some fractional dynamical and biological models were investigated recently, see
[34, 3].

Coupled systems of fractional differential equations supplemented with a variety of
boundary conditions constitute an important field of research in view of their applications.
Such systems occur naturally in many real world situations, like fractional dynamical sys-
tems [9], disease models [15], ecological effects [30], synchronization of chaotic systems [21],
anomalous diffusion [48]. On the other hand, non-local and integral boundary conditions
are widely used where classical boundary conditions fail to examine many physical proper-
ties of the models. Some recent works regarding coupled systems of fractional differential
equations including non-local and integral boundary conditions with different approaches
can be found in [6, 5, 24].

Random differential equations are found to be of great support in developing a more
realistic mathematical modeling of the applied problems, which usually contain parame-
ters or coefficients that are often unknown or inaccurate. Therefore, it is more realistic to
consider such parameters as random variables whose behavior is governed by probabil-
ity.Random differential equations, as natural extensions of deterministic have been studied
and developed by many authors, see [1, 2, 11, 13, 22, 40, 46].

On the other hand, quadratic perturbation of nonlinear differential, also known as the
hybrid differential equations had rapid progress over the last years, this is due to its im-
portance, which lies in the fact that they include perturbations that facilitate the study of
such equations by using the perturbation techniques. These equations are also considered
as a particular case in dynamic systems. The starting point for this field when Dhage and
Lakshmikantham [17] formulated a hybrid differential equation, where they investigated
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the existence and uniqueness of the solutions to the following hybrid equation

ut) '\ _ ,
%(g(t,u(t)) —f(t,u(t)), ae. te [to,to-l— T], treR, T>0,

u(ty) =ug, ug€R.

Their results were based on the fixed point theorem for the product of two operators in
Banach algebra.

In 2012, Zhao et al. [56] extended Dhage’s work [17] to fractional order and studied the
existence of solutions to the following Riemann-Liouville type hybrid fractional differential
equation

Dg+ <%) = f(t,u(t)), ae tel0,T], 0<p<1,

u(0) =0.

After several years, Sitho et al. [45] derived a new existence result for the following hybrid

sequential integro-differential equations

Dk,

= f(tu(t),Ilu(t); tel0,T],0<pg<1,

Dy, u(t) — Y Igigi(f,u(t))]
h(t,u(t))

u(0)=0;  DJ.u(0)=0.

Outline of the thesis

In Chapter 1 we introduce some background material , such as fractional differential
equations, generalized metric space, some random fixed point theorems and random vari-
able.

Chapter 2 treats the main results concerning the existence and uniqueness of solutions

for a class of hybrid differential equations of arbitrary fractional order of the form

ap | D u(t) -2, I g (tu(t)) ap [ DI u(t) =, 117 gi(tu(t))
CD(r))-:P 0 h(t’ul(tg; = f tlu(t)lc Dg—f-lp |: - h(t,ul(th)r ‘| /t € ]/
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endowed with the hybrid fractional integral boundary conditions

u(0) =0, <DI*u(0)=0,

+ by
t=0

a

h(tu(t))

[CDZipu(t)— " Igi"’gi(t,u(t))
h(tu(t))

; ni
DI u(t) -y, 11 gi(tu(t)) _
- Ul/
t=T

DI u(t) i, 1 gi(tu(t))
h(Eu(t))

achgfj + bchgi’b

t=¢

=vp;C €],
=T

h(t,u(t))

D u(t) -5, Igi‘”gia,u(t))]
where | = [0,T], Dg+, Dg+ denotes the y-Caputo fractional derivative of order p,y respec-
tivelyand2<p<3,0<y<1,y€{q,d}, Igfp is the y-Riemann-Liouville fractional integral

of order7; >0,h € C(J x R,R\0), f € C(J x R?,R) and g; € C(J x R,R) with g;(0,0) =0;
i=1---m.ay,ay,by,by, 01,0, are real constants such that b; # 0 and

2(a¥370(8) + b ¥2 0 (T)) — ¥A(T) (2 — 6) (a ¥} (&) + b ¥}~ (T)) £0.

In Chapter 3, we study the existence, uniqueness, and Ulam-Hyers stability of solutions

for the following y-Caputo hybrid fractional sequential integro-differential equation

p
Ly

[ngi”uumrm zgi‘pgiu,u(t))]

REu(t) = f(tu(t),617%u(t)); te]=[0,T],

endowed with the hybrid fractional integral boundary conditions

u(0) =0, <DF¥u(0)=0,

() HEa () ; 0<p8<T,

[CDgi’Ju(t)—Z{”zl Igf"gz-(t,u(t))] _p [czag"fu(t)—z;":l 17 gi(tu (1))
t=¢

t=T

with

Lh =DP¥ + AD) T,
where 1 <p<2,0<g<1, CDOpﬁp, CDgip denote the -Caputo fractional derivative of or-
der p, g, respectively and I Ufp, I WE’D are the ¥-Riemann-Liouville fractional integral of order
p.q, resp y and Ip7", I &
17; >0 and > 0 respectively, h € C(] x R,R\ 0), f € C(] x R%,R), g; € C(] x R,R) with

2i(0,0) =0(i =1,...,m), and A is appropriate positive real constants.
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Chapter 4 is devoted to the existence and uniqueness results of the random coupled
system of Hilfer-Katugampola fractional derivative given by

(PDIY T u) (,9) = f(t,u(t,8),0(t,9),8)
ste]=[a,T],0€Q,
(PD'Po)(t,8) = g(t,u(t,9),0(t,9),9)

with the following initial conditions:

(1 70)(0,8) = ua(9)
;0€Q),
(1 70)(a,8) = 04(0)

where 0 <a<T<o0,0<p;<1,0<g;<landy;=p;+q:(1—p;);i=12 (Q,A)is
measurable space, u,,v, : (3 — R" are a measurable function, f,g: ] x R" x R" x (3 = R"
are given functions, PDZ 11 is Hilfer-Katugampola fractional derivative of p;(0 < p; < 1);
i=1,2and typeq;(0<gq;<1);i=1,2and? I;: Tiis generalized fractional integral of order
L—7i(vi=pi+ 49— piqi)-

In Chapter 5 we investigate the existence, uniqueness and Ulam-Hyers stability results
to the following nonlinear random multi-fractional equations

DI DIV u(t,8) — h(t,uy(9),0:(8),8)] = f(t,ue(9),0:(8), DIV 0 (t, 8),8);

DR¥ DI o (1, 8) — k(t,ui(8),0:(9),9)] = g(t,us(8),* Dy u(t, 8),0:(8), 9);
te]=[0,T],0€Q,
subject to the following coupled non-local integral and boundary condition

;

T
1(0,8) = x(0(9)), Dyu(0,8) =0, /0 o(7, 8)dT = x1u(, 9)
lg’Q E ]I

T
0(0,8) = p(u(8)), Dy(0,8) =0, /0 u(t,9)dT = kyo(0, )

\

where Dgf'b and Dgfﬁw are the yp—Caputo derivative of order 0 < p; <2and 0 < ¢; <1
respectively, 0; = q;,0;(i = 1,2). The integer order of the differential operator Dy, is defined
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by
1 d

Dy = ———+,
Py ar
(Q), A) is measurable space, f,g:] x R" x R* x R" x ) — R" and h,k: ] x R" x R" x
) — R" are given functions , ¢, x : R" — IR" are given continuous function, and «; are real
constants ;i =1,2.
Chapter 6 treats the existence and uniqueness of the following nonlinear random cou-

pled system of -Caputo fractional integro-differential equations

DIV u(t,9) + Ty 11 gt ui(9),00(8),8) = fo(t,ui(9),0,(9),0)
;te ], 0 e Q).

DPVo(t,8) + T 12 g i(Eur(9),04(8),9) = falt,us(8),0¢(8),8)

(u(t,9),v(t,9)) = (m(t,9),m2(t,9)), te€la—ral,r>0,
;0€Q),

(u(t,9),v(t,9)) = (&1(¢,9),8(t,9)), te[T,T+1],1>0,
where | = [a,T|, Df ilp denotes the -Caputo fractional derivative of order 1 < pi <2, IZij ad
is the ip-Riemann-Liouville fractional integral of orders 7; ; > 0, (Q), A) is measurable space,
fir&ij: ] x C([=71],R") x C([~,I],R") x QO — R" are given functions, 17; € C([a —r,a],R")
with 77;(a,¢) =0and ¢ € C([T, T + 1], R") with {(T,9) =0;j =1,2,i=1,--- ,m.
We denote by u;(s) the element of C([—7,1]) defined by

ur(s) =u(t+s), sel-rnl.
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CHAPTER 1

PRELIMINARIES AND BACKGROUND
MATERIALS

In this chapter, we recall several definition, basic concepts, notation and elementary results

that are used throughout this thesis.

1.1 Functional spaces

Let ] = [a,T] C R, set C(]) be the space of real valued continuous functions on | endowed
with the norm

Iflleo = sup{lf(E)] : £ € J}-

X! (a,T) is Banach space, (c € R,1 < p < o) of complex-valued Lebesgue measurable

functions f on J, equipped with the norm

1 fllxr = (/ab|t6f<t>|r7§);_

Note that when ¢ = %, the space X7 (a, T) coincides with the L?(a, T) space, i. e

X% (a, T)=LF(a,T).
14



1.2. FRACTIONAL CALCULUS THEORY

By L*(a,T), we denote the space of measurable function f : ] — R which are essentially
bounded equipped with norm

| fllre =inf{c >0:|f(t) <c, ae. t €]}

1.2 Fractional Calculus Theory

In this section, we recall some definitions and properties of different fractional integrals and

fractional differential operators that we will use throughout this thesis.

1.2.1 Hilfer-Katugampola fractional derivative

Definition 1.2.1. [32](Katugampola fractional integral)
The Katugampola fractional integral £, of order p > 0 left-sided is defined by

1
(I, F) (1) = %p)/t (%)p S f(s)ds,  t>ap> 0. (1.1)

where I'(.) is the Euler gamma function defined by

I'(p)= / tP=le~tdt, p > 0.
0

Definition 1.2.2. [32](Katugampola fractional derivative) The Katugampola fractional deriva-
tive PDf;, of order p > 0 left-sided is defined by

CDLF) (1) = () I A) (1)

t 0 __ op n—p-1
:—F(nl—p) (tlp%)/ (t ps> s*1f(s)ds, t>a

where n = [p] + 1 and [p] means the integer part of p.

(1.2)

Lemma 1.2.3. [38] Let x > a, P If+ and P D5+, according to (1.1) and (1.2) respectively, we have:

t —aP\F ! T(p) (xf —af\"H!
PIP ( ) :| X) = ( ) ’ 20/ >O/
[ N (%) Tp+u)\ p p="

p_ge\F1
[PDQ(t ”) ](x):0 0<p<l.
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1.2. FRACTIONAL CALCULUS THEORY

Lemma 1.2.4. [38] Let p,>0,1<p <00, 0<a<T<oo, p,c e Rand p>c. Then, for
f e X(a,T) the semigroup property is valid. That is

(PI2.PIE, £) (u) = (PP ) (u).

Lemma 1.2.5. [38] Let 0 < p < 1,0 <y <L If o € C, and *I', ¢ € CL(]), then

(PIP,PD”. ) (u) = p(u) — (1,7 ¢) (a) (”p - ”p>p1,

I'(p) P

forallu € (a,T).

(1.3)

Definition 1.2.6. [38] the Hilfer-Katugampola fractional derivative left-sided, with respect
of order 0 < p <1 and type 0 < B <1, with p > 0 is defined by

0 P.B _ (oB0-p) (109 \p(1-p)(1-p)
(oA 0 = (P (P g )PP s o),

property 1. [38]The operator Df ’f can be written as

(1—P)pDZ+; ’Y:P+ﬁ(1 - P)'

) 1- 1-
PDZf — P[f+( P)5p91a+ T P[f+

where 6, = (tp_l%).

property 2. The fractional derivative ¢ Dg’f is considered as interpolation with conve-

nient parametersof the following fractional derivative:

1.

2.

Hilfer fractional derivative when p — 1 [25].

Hilfer-Hadamard fractional derivative when p — 0 [31].

Generalized fractional derivative (Katugampola derivative) when g = 0 [32].
Caputo-type fractional derivative when =1 [33].

Riemann-liouville fractional derivative when g =0, p — 1 [33].

Hadamard fractional derivative when g =0, p — 0 [33].

Caputo fractional derivative when g =1, p — 1 [33].
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1.2. FRACTIONAL CALCULUS THEORY

8. Caputo-Hadamard fractional derivative when p =1, p — 0 [33].
9. Liouville fractional derivative when p =0, p — 1, a = 0 [33].

10. Weyl fractional derivative when f =0, p — 1,4 = —o0 [26].

1.2.2 the y-Caputo derivative

Let an increasing function ¢ : | — R satisfy ¢’ () # 0 for all ¢ € . For effortlessness, we
set Y¥(t,5) 1= ¢/(s) ( (t) — (5))* and ¥{(1) = ((t) — y(a))".

Definition 1.2.7. [8] The y-Riemann-Liouville fractional integral of a function f: [a, T| — R
is defined by

Iffpf(t):%p)/t‘lfp_l(t,s)f(s)ds, 0<a<s<t

a

Example 1.2.8. We set f(t) = ¥ (t), with g > 0,

R _ I(qg+1) +
I f(t)——r(p+q+1)‘f’5 ().

Definition 1.2.9. [8] The y-Caputo fractional derivative of order p > 0 for a function f €
C"[0,00) is defined by

t
cHpy _ 1 n—p—1 n
DPY £ (1) r(n_m/u ¥rP (L) Dif(s)ds,  O<a<s<t,

. (1 d\"
where n = [p] + 1 and Dy, = (Wa> :

Lemma 1.2.10. [8] Let p > 0. The following holds

e If f € C(],R), then

DIFITYF(t) = f(1), te].

e IffeC'(J,R),n—1<p<n,then

Ip IPCDPLIJ 2 Cklifk te ],
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1.3. RANDOM OPERATORS

Dy f(a)
K

where ¢ =

1.3 Random operators

The purpose of this section is to present some definitions and notions regarding random
operator that are essential for the study of the problems in this thesis.

We shall denote by (), ) a measurable space, where () is nonempty set of R”, £ is a
o-algebra of the Borel subsets of R".

Definition 1.3.1. Let (Q),£) and (Q),G) be two measurable spaces. A mapping F : (Q3,€) —
(Q,G) is said to be measurable if the o-algebra of Borel Q~1(G) C £ i.e.

QHG)cE&  forallGCG.

Definition 1.3.2. [46] A function f : Q) x R" — R” is called jointly measurable if f(-,v) is

measurable for all v € R"” and f(u,.) is continuous for all u € Q).

Definition 1.3.3. [46] A function f : ] x QO x R" — R" is Carathéodory if the following

conditions are satisfied:
(i) (t,u) — f(t,u,v) is jointly measurable for any v € R", and
(il) v — f(t,u,v) is continuous for any f € ] and u € Q).

Definition 1.3.4. [22] Let X be a metric space. A mapping Q : ) x X — X is Said to be

random operator if, for any u € X, Q(.,u) is measurable.

Definition 1.3.5. A random operator Q(¢) on E is called continuous (resp. compact, to-
tally bounded and completely continuous) if Q(&,u) is continuous (resp. compact, totally

bounded and completely continuous) in u for all ¢ € ()

Definition 1.3.6. [22] A random fixed point of a random operator Q is a measurable function
f:Q — X such that

flu)=0Q(u,f(u)), forall u € Q).
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1.4. GENERALIZED BANACH SPACE

1.4 Generalized Banach space

In this section, we introduce some definitions, notions and notations on generalized met-
rics spaces in the sense of Perov. Then we give definition of generalized Banach space. We
are also interested in the study of some properties of a convergent matrix.

1.4.1 Generalized metric space

First, we give some notions in R”. Let u,v € R" with u = (uq,--- ,un) and v = (v1,---,vy),
then

* Byu<ovwemeanu; <v;foralli=1,---,n.

The set R"} is defined by R, = {u € R" : u; > 0,Vi,1 <i <n}.

IfceR,thenu <cmeans u; <cforeachi=1,---,n.

The absolute value of u is |u| = (|uy|, -+, |ua|)-
e The maximum of u is max(u,v) = (max(u1,v1),- -, max(u,,vy)).

Definition 1.4.1. [46] Let X be a nonempty set. By a vector-valued metric on X, we mean a

map d : X x X — R", which satisfies the following properties
(i) d(u,v) >0forallu,v e Xifd(u,v) =0, then u = v;
(i) d(u,v) =d(u,v) forall u,v € X;
(i) d(u,v) <d(u,w)+d(w,v) for all u,v,w € X.

Definition 1.4.2. We call the pair (X,d) a generalized metric space, if and only if d;; i =

1,...,n, are metrics on X, with

dy(u,v)

dy(u,v)

The mapping d is called a generalized metric in the Perov’s sense.
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1.4. GENERALIZED BANACH SPACE

Definition 1.4.3. Let (X,d) be a generalized metric space. Let ugp € X and r = (r1,---,ry) €
R" , we denote by

B(uo,v) ={ue X :d(up,u) <r}={ueX:dj(u,u)<r,i=1,---,n}

the open ball centered at ug with radius r, and

B(up,v) ={ue X :d(up,u) <r}={ueX:dj(u,u)<r,i=1,---,n}

the closed ball centered at 1y with radius r.

Remark 1.4.4. We mention that for a generalized metric space the notions of the open set,
closed set, convergence, Cauchy sequence and completeness are similar to those in the usual

metric space.

Definition 1.4.5. The pair (E, || - ||) is called a generalized normed space. If the generalized
metric generated by the norm || - || (i.e., d(u,v) := ||ju — v||) is complete then the space

(E,|| - ]]) is called a generalized Banach space.

1.4.2 Convergent matrix

Definition 1.4.6. [51] A matrix M = (a;j)1<;j<n € Muxn(R) is said to be convergent to zero
if and only if its spectral radius p(M) is strictly less then one. In other words this means
that all the eigenvalues of M are in the open unit disc, i.e., |A| < 1; for every A € C with
det(M — AI) = 0; where I denotes the unit matrix of M, (R).

Theorem 1.4.7. Let M € M,;»»(R). The following assertions are equivalent:

1. The matrix M converge to zero.
2. M* —0ask— 0.

3. The matrix (I — M) is nonsingular and

(I-M)'=I+M+M+ -+ M+

4. The matrix (I — M) is nonsingular and (I — M)~! has nonnegative elements.

Definition 1.4.8. Let A = (a;i)1<;j<n € Muxn(R) be a nonsingular matrix. We say the ma-
trix A has the absolute value property if A~'|A| < I, where |A| = (laijl)1<ij<n-
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1.5. FIXED POINTS THEORY

Example 1.4.9. Some examples of matrices A € A, x,(R) convergent to zero which also the
property (I — A)~'|I — A| < I are as follows:

1. A= g Z),wherea,bE]KL and max(a,b) < 1.
a —c
2. A= 0 . ),wherea,b,ceR+anda+b<1,c<1.
a —a
3. A= ) b >,where a,b,c e Ry and |a —b| <1,a>1,b>0.

Definition 1.4.10. A matrix M € M« (R) is said to be order preserving( or positive) if
10 < ll and k() < k1 1rnp1y

in the sense of components.
Lemma 1.4.11. Let
—b
—c d
where a,b,c,d > 0 and detM > 0. Then M~ is order preserving.

Definition 1.4.12. [22] Let (X,d) be a generalized metric space. An operator Q : X — X is
said to be contractive if there exist a matrix M convergent to zero such that

d(Q(u),Q(v)) < Md(u,v) forall u,v € X.

1.5 Fixed points theory

1.5.1 Fixed Point Theorems in Banach Spaces

Theorem 1.5.1. [47] Let S be a non-empty closed convex subset of a Banach space E, then any
contraction mapping Q of S into itself has a unique fixed point.

Theorem 1.5.2. [29](Itoh) Let X be a nonempty, closed convex bounded subset of the separable
Banach space E and let Q : Q) x X — X be a compact and continuous random operator. Then the
random equation Q(&)u = u has a random solution.
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1.5.2 Fixed Point Theorems in Banach Algebra

Let E = C(J,R) be the Banach space of continuous real-valued functions defined on J. We
define a norm || - [| and a multiplication in E by [|u|| = sup,; [u(t)| and (uv)(t) = u(t)o(t),
for all t € J. Clearly E is a Banach algebra with above defined supremum norm and multi-

plication in it.

Lemma 1.5.3. [16](Dhage) Let S be a nonempty, convex, closed and bounded set such that S C E,
and let A: E — E and B : S — E be two operators which satisfy the following:

(1) A is contraction,
(2) B is completely continuous, and
(3) u=Au+ By, forallve S=ue€S.

Then there exists a solution of the operator equation u = Au + Bu.

1.5.3 Random Fixed Point Theorems in Generalized Banach Spaces

Theorem 1.5.4. [46] Let (Q), B) be a measurable space, let X be a real separable generalized Banach
space and let Q : Q) x X — X be a continuous random operator. Let M(9) € Muxn(R+) be a

random variable matrix such that for every ¢ € Q), the matrix M(0) converges to 0 and

d(Q(%,u1),Q(8,uz)) < M(0)d(uq,uz)

foreach uq,uy € X, ¢ € Q.
Then there exists a random variable u : Q) — X which is the unique random fixed point of Q.

Theorem 1.5.5. [46, 22, 40] Let (Q), B) be a measurable space, let X be a separable generalized
Banach space and let F : Q) x X — X be a completely continuous random operator, then either of the
following holds:

(i) the random equation Q(x,u) = u has a random solution i.e., there is a measurable function
u: Q) — X such that
Q(x,u(x)) =u(x) forall x € Q).

(ii) the set H = {u : Q — X is measurable| o(x)Q(x,u) = x} with 0 < o(x) < 1 is unbounded
on ().
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1.5. FIXED POINTS THEORY

Theorem 1.5.6. [46, 22] Let X be generalized Banach space, let K be a separable closed convex
subset of X, let Q : Q) x K — K be a continuous random operator. Suppose that Q(u,K) is compact
for every u € Q). Then Q has a random fixed point u : Q3 — K.

Lemma 1.5.7. [46] Let X be a separable generalized Banach space. Suppose that A,B: () x X — X
are random operators such that:

1. Ais a continuous random and M(8)-contraction operator,
2. B is a completely continuous random operator,

3. the matrix I — M has the absolute value property. if

N = {u : Q) — X is measurable |j(9)A(u,9) —|—;4(19)B(L,19) = u}

is bounded for all measurable mappings pu: Q) — R with 0 < u(8) < 1 on Q, then the random
equation
u=A(u,9)+ B(u,?), uecX,

has at least one solution.
Finally, we give helpful result, we need in the study of our problems.

Lemma 1.5.8. [4](Gronwall Inequality) Let p > 0,u(t),v(t) be nonnegative functions and w(t) be
nonnegative and nondecreasing function for t € J,w(t) < C, where C is a constant. If

e — gP
P

) <ot +atn) [ )p_lsp_lu(s)ds,

then
o — gP

P

' (w(t)T(p))* SR
u(t) <o(t) +wlt) i kzzl T (kp) ( > s’ ou(s)ds, te].
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CHAPTER 2

HYBRID IMPLICIT MULTI-FRACTIONAL
DIFFERENTIAL EQUATION

2.1 Introduction

In this chapter, we study the existence and uniqueness results of a fractional hybrid bound-
ary value problem with multiple fractional derivatives of i—Caputo with different orders.
Using a useful generalization of Krasnoselskii’s fixed point theorem, we have established
results of at least one solution, while the uniqueness of the solution is derived by Banach’s
tixed point. Nowadays, many researchers have shown interest in quadratic perturbations of
nonlinear differential equations. Some recent works regarding hybrid differential equations
can be found in [37, 56, 18, 45] and the references cited therein. Dhage and Lakshmikan-
tham [17] discussed the existence and uniqueness theorems of the solution to the ordinary
tirst-order hybrid differential equation with perturbation of the first type

%(g(‘t‘l(fl)(t)) — F(tu(t));  aeteltolo+T),

u(to) =1ug, Ugc R,

where tg, T € R with T >0, ¢: [to,to + T] x R - R\ 0 and f : [fp,to + T] x R — R are
continuous functions. Using fixed point theorem in Banach algebra, the authors obtained

18



2.1. INTRODUCTION

the existence results.
In [20], Dong et al, established the existence and the uniqueness of solutions for the

following implicit fractional differential equation

‘DPu(t) = f(t,u(t), DFu(t));, t€l0,T], 0<p<l1,

u(0) = uy,

where °D? is the Caputo fractional derivative, f : [0,T] x R x R — R is a given continuous
function.
Sitho et al. [45] studied existence results for the initial value problems of hybrid frac-

tional sequential integro-differential equations:

o | DTu(t) — YL ITgi(tu(t))

D H(tx(0) = f(tut), Dx(t); te],

u(0) =0, D7u(0) =0,

where DF, D7 denotes the Riemann-Liouville fractional derivative of order p, g respectively
and 0 < p,q <1, I is the Riemann-Liouville fractional integral of order n; >0, h € C(J x
R,R\0), f€C(J x R?,R) and g; € C(J x R,R) with ¢;(0,0) =0;i =1---m.

In 2019, Derbazi et al [18]. proved the existence of solutions for the fractional hybrid

boundary value problem

] = f(tu(t));, tej,

with the fractional hybrid boundary value conditions

a0 —gue)] L w0 -gtue)]
Yoowty | T ety | T

co | (1) — g(t,u(t)) cpo | () —gltul) |  _
aZD(S h(t,u(t)) t_§+b2D5 h(t,u(t)) ]t_T—UZ/(;‘e]/

where 1 < p <2,0<6<1,¢ €] and ay,ap by,by,v1,0; are real constants. Moreover, two
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2.1. INTRODUCTION

fractional derivatives appeared in the above problem are of Caputo type.
The above findings motivated us to investigate the existence and uniqueness of solutions

for a class of hybrid differential equations of arbitrary fractional order of the form!

pp | DI ut) -, 1 i(tu() | pip [ DI () =2 1 gi(ur) ] |
‘Dot | =" ita)) = f tult), Dol | =m0 stel,
2.1)
endowed with the hybrid fractional integral boundary conditions
[ u(0)=0, °D¥¥u(0)=0,
DI u(t) g, 11 gi(tu (1)) DI u(t) g, 11 gi(tu(t))
al[ T ALY RO =L
t=0 t=T
s | DELu(t) -y 17 gi(tu(t)) s | DI () —xp, 1 gi(Lu(h)) o
"Dy | — HLa() +b2° Dy | RLa() =02;6€],
\ t=¢ t=T
2.2)

where | = [0,T], Dg+, Dg+ denotes the y-Caputo fractional derivative of order p,y respec-
tivelyand2<p<3,0<vy<1,y€{q,d}, Igfp is the y-Riemann-Liouville fractional integral
of order 7; >0,h € C(] x R,R\0), f € C(] x R?,R) and g; € C(J x R,R) with ¢;(0,0) = 0;
i=1,---,m.ay,ayby,by, 01,0y are real constants such that by # 0 and

2(a2¥5 (&) + b2 ¥5(T)) — ¥o(T)(2 - 8) (a2¥y°(§) + b ¥ *(T)) #0.

Main result

Lemma 2.1.1. Let 2 < p < 3,0 < g < 1. For any functions F € C(J],R), H € C(J,R\ 0) and
G; € C(J,R) with G;(0) =0, i =1, ...,m, the following linear fractional boundary value problem

Dyt u(t) — oy 1 Gi(t)

Py
Dot H(D)

=F(t); 2<p<3,0<q<l,te], (2.3)

IF. Fredj, H. Hammouche, :On existence results for hybrid ¢-Caputo multi-fractional differential equations
with hybrid conditions(accepted).
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2.1. INTRODUCTION

supplemented with the following conditions

(u(0)=0, °D{*u(0)=0,

ai

Dtu(t) Lt 1 Gi(1)
H()

CDq () m I’71¢G

c ‘7 m iy
CD‘S‘P Dylut) H(lt)110+ Gi(t) +b20D‘5‘/’ H(lt)l ot ()] —uyEe],
\ t=¢ =T
(2.4)
has a unique solution, which is given by
u(t) = 1Y (HE) P E(s) ) () + ZI’W YGi(s)(t)
+ 1 (1) (16)00 — B6)0) (3~ 17F(9)) ) @5)

00 (o2 = sl @)~ batf R 7 (G6) (%506 - WD) ) ),

where

(3 d)
2(a %3 °(2) + b2 (1)) —¥3(T)(2— 0) (a¥y °(2) + b2¥} (1))’

0O =

¥y 0 () + b¥y%(T)
I(2-0)0 ’

O = Q3:1+021{%(T>.

Proof. Applying the y-Caputo fractional integral of order p to both sides of equation in (2.3)

and using Lemma 1.2.10, we get

“DYFu(t) — oy 1 Gi(t)
H(t)

= IPVE(t) + co + ¥ (1) + 2 ¥3(1), (2.6)

where cg,c1,cr € R.
Next, applying y-Caputo fractional integral of order g to both sides (2.6), we get
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2.2. EXISTENCE OF SOLUTIONS

) =1 (HORPFO) () + L7600 -

+ IW(H(S) (co o Yh(s) + cz‘If%(s))) () +c3  c3€R

With the help of conditions u(0) = 0 and ‘D%¥u(0) = 0, we find, c3 = 0 and ¢y = 0 respec-
tively. Applying the boundary conditions (2.4), and from (2.6), we obtain

c1¥o(T) + e ¥5(T) = Z—i ~IPVE(T),
and
Fo ) (2@ + b)) + g (w4700 — pa¥ (7))

—6; —6;
=0y — ap I}V F(E) — b Il TVE(T).
Solving the resulting equations for c; and ¢y, we find that

v . —0; -9
1= (5, ~ BYF(T))0a = (02 = aalf - VF(E) — bl () ) ¥Y(T),

by
_J5: —90; v
= <vz — ay PN () — bl ‘/’F(T))Q1 - (bl 1P ‘PF(T))QZ.
1
Inserting cy, c1,c2 and c3 in (2.7), which leads to the solution of system (2.5) . O

2.2 Existence of solutions

In this subsection, we prove the existence of a solution for the system (2.1)-(2.2) by applying
a generalization of Krasnoselskii’s fixed point theorem.

Theorem 2.2.1. Assume that the following hypotheses hold

(H1) The functions h € C(J x R,IR\ 0) and f € C(J x R?,R) are continuous, there exist bounded
functions L, M : ] — [0,00), such that

[, u(t)) — h(tu(t))| < L(E)[u(t) —u(t)],
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and

[f(tu(t),u(t)) = f(t,o(t),0()] < M(£) (Ju(t) —v(t)] + [u(t) —o(£)]),
forte Jand u,v,u,v € R.
(H2) There exist function ¢;,x, 0 € C(J,R) such that
|8i(t,u(t))| < @i(t)  foreach (t,u) € ] X R,

\h(t,u(t))| < x(t) foreach (t,u) €] xR,
f(tu(t), (1) < 0(t)  foreach (t,u,7) € ] x R

(H3) There exists 0 < A, M* < 1, where

A BT (X*M* WL*)( ¥§(T) |, 105" (T) z\ozwz*%n)

T(p+ 1) \1- M Tla+1)  T(q+2) | T(g+3)
¥ (T) . el ¥h @) + b2 (T)
+10(g + 25 g (IealL + 2R @9
XM 01| L* [ 1Qs¥57(T) | 2|0 [¥](T)
x(l—M**“))* br] ( T@+2)  T(3+3) )

where: L* = sup;c;|L(t)[, M* = sup,;[M(t)|, x* = sup,;[x(t)], 9" = sup,;|0(t)| and

97 =supies|@i(t); i=1,2,---,m
Then the problem (2.1)-(2.2) has at least one solution on J.

Proof. First, we choose r > 0 so that

I (¢ (1T 21 [EA(T) flon| | EH(T) .
20 s ey T Crare o Taes ) (e )
(2+4)¥5 (T) ¥ @) T
1ol F(q+03) (ool + bl 5y + ol 5 1))

n

+ YI(T).
l_zlf m+q+1) ()
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Now, we set E = C(],R), and we define B, C E as
B, ={ucE:|ul| <r}.

Clearly B, is a closed, convex and bounded subset of the Banach space E.

Let
DI u(t) — o, 117 i (t u(t))

oy (E,u(t)) ]:“m

supplemented with the conditions (3.2), then by lemma 3.1.1, we get

u(t) = 137 (h(s,u(s) LV E(5)) () +2WW&wﬂmH
Hﬂ@me%@m—%@mﬂadewyﬂ
00 (o2 = sl E€) = balf D) Y (s () (365) — BHDIHAG)) ) 0,

where F,(t) = f(t,u(t), F.(t)).

Let us define two operators Cp,,C, 5: E — E and D : E — E such that

t
Cpu(t):ﬁ /0 $PL(t, 6V Fy(s)ds, te J:

and

t
Cyosu(t) = —— / P01 ) Eu(s)ds; t€ ),

I'(p—46) Jo
and

Du(t) = h(t,u(t)); teJ.

Then, using assumptions (H1)-(H2) , we have

_ 1 b b
Cymst(t) = Cyosti)| < gy [ ¥ DR ~ Fale)lds, @9)
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and

< M(#) ([u(t) — a(t)| + |Fu(t) — Fa(t)]) (2.10)

By replacing (2.10) in (2.9) and proceeding with supermum over t, we obtain

M¥(T)
(1-M*I'(p—-0+1)

ICp—su(t) = Cp—si(t) |0 < [(-) = 5() oo,

and
[Du(t) — Du(t)[lo < L*[[u(-) = %(:) oo,
p—9o
ICp-st(B)le < oty Tt
and
[Du(t)llo < x*.

Now, we define two more operators A : E — E and B : B, — E such that

Au(e) = 17 (Du(s)Cyu(s)) 1)+ 17 (Du(s)( (#h(6)0 — ¥36)02) (3~ ) (0
.00 (02 = 02Cpo () = baCymu(1)) 17 D) (¥366) — ¥HDI () ) 1),

and

ZIW” u(s))(t).

We need to show that the two operators A and B satisfy all the conditions of Lemma 3.2.
This can be achieved in the following steps.
Step.1 First we show that A is a contraction mapping. Let u(t),(t) € B, then we have

| Au(t) — Au(t)]

glg"f(]Du )Cpui(s) — Du(s)Cpu(s |(1+|T0 505 — ¥i(s )QZD
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+ B I#(6)0 — ¥3(6)0] | Du(s) — Di(s) ) (1)
+ 100 (1936~ FEE) (Jo D) — DG + o | D) G- 0(6)
— Dit(s)Cpsii(2)| + |ba| | Dut(s)Cps1u(T) — Dii(s)Cp571(T) \)) ()
< 182 ((Iu(e)]|Spu(5) — i) + |G,) |Dus) — (s
< (14 108 - ¥3E0a]) + 2 ¥b(6)0s — Y3610 IDu(s) - D))
+ 1001 1¥3(6) ~ Y30 ¥BE) | (ID(s) — Do) (02| + I |Cy-si(E) -+ b2l |C,-(T)) )
+ [Du(s)| (|a2]Cps14(8) — Cps7(&)] + bl | Cpou(T) — cpga(m)) ().
Using the hypotheses (H1)-(H2) and taking the supremum over ¢, we get
Au() — AT o < Allu() — 7)o @11

Hence by (2.8) the operator A is a contraction mapping.

Step 2. Next, we prove that the operator B satisfies condition (2) of Lemma 3.2, that is,
the operator B is compact and continuous on B,. Therefore first, we show that the operator
B is continuous on B;.

Let u,(t) be a sequence of functions in B, converging to a function u(t) € B,. Then, by
the Lebesgue dominant convergence theorem, for all t € |, we have

m 1 t

=Y — [ Wit §) lim ¢;(s,u,(s))ds
;T(mﬂ)/a (1:5) Jix0, 81(5 1 (5))
1 1

(i +4) / (V¥ (,5)gi(s,u(s))ds.

Hence lim;,_,0 Bu,,(t) = Bu(t). Thus B is a continuous operator on B,. Further, we show
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that the operator B is uniformly bounded on B,, for any u € B,, we have

()] < sup {3 s [0 1)) s
m T’?zJF‘i(T)

<.
; 171+q+1)(’)’_r

Therefore Bu(t) <r, for all t € J, which shows that B is uniformly bounded on B,. Now, we
show that the operator B is equi-continuous. Let t,t, € ] with t; > t,.
Then for any u(t) € B,, we have

|Bu(t1) — Bu(t>)

Sl_ilf o (w+ﬂ—1(t1,s) — W (1,5) ) g4(s,u(s))ds
—|-lér ’71"“7) ‘I”7’+‘7 Y(t1,5)gi(s,u(s))ds

= ir CETES) < () = (k)19 + [ ¥ (1) — (1)),

=1

As ty — t1, so the right-hand side tends to zero. Thus B is equi-continuous. Therefore, it
follows from the Arzeld—Ascoli theorem that B is a compact operator on B,. We conclude
that B is completely continuous.

Step 3. Condition (3) of Lemma 3.2 holds. For any u € B,, we have

[1(t)]leo = || Au(t) + Bu(£) oo
< [[Au(®) oo + || BE(8) |0

< sup { 1y (Du(s)c,,u(s)) () + 1% <Du(s) ((wg(s)og —¥2(s )02) <b_1 - c,,u(s)) (t)

te]

#0012 =y gn(©) = 0oy (1)) ¥ ( Du(s) (¥306) ~ ¥HIH () ) 0]}
+ sup { ézgﬂﬂl’\ gi(s,1(s))] (t)}

te]

R (0 (1Q6THT) | 2/ [¥TA(T)N floa| | EH(T)
iy (Crare e ) (e )
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2+ )T yro ¥PoT
|Ql|( +Q) 0 ( ) |U |+|(12| 0 (g) l9*+|b2| 0 ( ) *
F(q+3) F(p—5—|—1) F(p—(5+1)
- (P;k ni+q
+ T
Ligrqrn o (D

Which implies ||u||c <7, and so u € B,. Hence all the conditions of Lemma 3.2 are satis-
fied. Therefore, the operator equation u(t) = Au(t) + Bu(t) has at least one solution in B,.
Consequently, there exists a solution of problem (2.1)-(2.2) in J. Thus the proof is completed.

[

2.3 Uniqueness of solutions

In the next result, we proved the uniqueness of solutions for the problem (2.1)-(2.2) based

on Banach’s fixed point theorem.
Theorem 2.3.1. Assume that (H1)-(H2) and the following hypotheses hold.

(H4) The function g; € C(J x R,R) is continuous, and there exist bounded function
K;: ] — (0,00), such that

|8t u(t)) — gi(t,u(t))| < Ki(8)[u(t) —u(t)].

If

7

m 1};’71'4-’1(T)
A+Y K0 7
i_zl "T(ni+q+1)

with Kf = sup,; [Ki(t)[;i=1,2,- - ,m.

Then the problem (2.1)-(2.2) has a unique solution.

Proof. According to lemma 2.1.1, we define the operator Q : E — E by
Qu(t) = Au(t) + Bu(t)

First, we show that Q(B;) C B,. As in the previous proof (step 3) of Theorem 3.2.1 ,we can

obtain
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Forue B,and t e |

1Qulo < x"8"

7w H(mng“(n z|nz|11’8“<T>)<|m|+ ) )
T(p+1)I(g+1) I'(q+2) I'(q+3) b1l T(p+1)
(2+4)¥5 (T) ¥h0(¢) ¥T)
IoX r(q;3) (|vr+\ar—( 5T \—r(pO_M)ﬂ)

n

19*—|-‘b2

1{/’71"“7('1") <r,

+
l_er 77qu+1)

This shows that Q(B,) C B,. Next, we prove that the operator Q is a contraction. For
u,u € B,

1Qu(-) — Qu(:)[leo < [[Au(-) — AU(:)[leo + [|Bu(-) — Bii(+) |0
and

[[Bu(-) = Buu(:)]|eo

< up{z; | ©F 1 ,5) 1G5 m) —&-(sﬂ(s))\ds} 212)

ey L T(i+9)
<) . Ki (T
< m (T)fJu(-) = u(-) llo-

from (2.11) and (2.12), we get

[Qu(t) — Qu(t)]lo < <A+Z NCEYEN

)‘Y”’+q(T)> [(-) = %() oo

This implies that Q is a contractive operator. Consequently, by Theorem 2.3.1, we conclude
that Q has a unique fixed point, which is a solution of problem (2.1)-(2.2). This completes
the proof. O
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24 Example

Consider the following fractional hybrid differential equation

c 4 _v3 i c 4 _yv3 it
D& u(t)-x3, 11 g,(tum]:f( (1) DE [D w() -, gt “)D;te[o,l]

(

CDZ

ht, u(t)) h(t, M(t))

1(0) =0, D0+u(0) 0,

h(t, u(t))

3.
o | “Datu(-x [ gi(tu(t)
h(t,u(t))

3.
DX () -5, 1 g (bt >>]
t=1

3
et | DA u(t) - 1 gi(tu(t) it D4 w(t) =X, 11 gi(tu(h))
% D8+ = h(tul(t))+ +% DS* h(t,ul(t))+ =2,
\ t:% t=1
(2.13)
where
nit L sinu(s) it 1 lu(s)|
ZI gi(tu(t) S)_IO+<8(s+1)2>(t)+10+<2n\/81+322+|”(5)|>(t)
Zit  sinu(s)
+ D0 ————==) (1),
0F (37r\/49+s >()
and
e 3t cosu(t 1
and
3.
3 [Dgr () — K3 gt u(t))
A it u(D))
1 |u(t)] ( {Dmu()—i 1’7’ gi(tu(t ))}
60/ + 81 (3+|u(t>| e (D)
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Here
5 3 1 3 7 4
= — —_ — — — — — — — — — — o 2
]9 2/ q 4/ m 3/ 171 3/ 172 2/ 173 31 0 5/ ai ’
7 2 7 4
as 13/ bl 71 b2 / ’ U1 2/ U2 ’ 5 5/

_ sinu(t) 1 lu(t)] sinu(t)

8786+ 2T ket ¥ T sV

The hypothesis (H1), (H2) and (H4) is satisfied with the following positives functions:

o3 1 1
= =9 =—— '\, () =Ky(t) =,
1 1
H=Ky(t)=———, @s(t)=Ks(t)=——
rl) =kl = e P =00 =5 e
and 3
_ € L 3
X0 =5 a0 Tt T
which gives
1 1 3 1 1 1
w0 Tap X Ty T Ty T T g = =0y

With the given data, we find that
0y ~1.81820508, ), ~0.60797139, 3 ~1.60797139,
and the hypothesis (H3) is satisfied by
A ~0.48820986 < 1.
By Theorem 2.2.1, the problem (2.13) has a solution on [0,1].

Also, we have
A i K ‘I’U‘Jr% (T) ~0.61782704 < 1
+ — L ¥ ~ 0. < 1.
i=1 1—'(1]1' + %) 0

In the view of Theorem 2.3.1 problem (2.13) has an unique solution.
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CHAPTER 3

HYBRID FRACTIONAL SEQUENTIAL
INTEGRO-DIFFERENTIAL EQUATION

3.1 Introduction

This Chapter study the existence, uniqueness, and Ulam-Hyres stability of solutions for
the following y-Caputo hybrid fractional sequential integro-differential equation' (for short
yp-Caputo HFSIDE)

14
Ly

cpTY H—y" 7% o (b u(t ;
[ ot g ))] = f(tu(t), o1 u(t)); te]=[0,T); G0

endowed with the hybrid fractional integral boundary conditions
u(0) =0, “D*u(0)=0,

| }. (3.2)
DIV Ut~ " i (b u(h))
) P Oseest

t=¢
'E. Fredj, H. Hammouche, M. S. Abdo, W. Albalawi and A. H. Almaliki, : A study on y-Caputo type

hybrid multi fractional differential equations with hybrid boundary conditions. Journal of Mathematics, ID
9595398(2022).

DI u(t) -2ty 1 it (1))
h(tu(t))

t=T

32



3.1. INTRODUCTION

with
P _cphi¥ p—Ly
Ly ="Dyi +ADy, 7,
where 1 <p<2,0<g<1, CDgﬁp, CDgip denote the -Caputo fractional derivative of or-
der p, g, respectively and Igi;w, Igfp are the -Riemann-Liouville fractional integral of order
#7; >0 and > 0 respectively, h € C(] x R,R\ 0), f € C(] x R%,R), g; € C(] x R,R) with
2i(0,0) =0; (i=1,...,m), and A is appropriate positive real constants.
Using an advantageous generalization of Krasnoselskii’s fixed point theorem, we es-
tablish results of at least one solution, whereas the uniqueness of the solution is derived
from Banach’s fixed point. Besides, the Ulam-Hyers stability for the analyzed problem is

investigated by applying the techniques of nonlinear functional analysis.

Main result

Lemma 3.1.1. Let 1 < p <2,0 < q <1. For any functions F € C(],R), H € C(J,R\ 0) and
Gi € C(J,R) with G;(0) =0, i =1, ...,2, the following linear fractional boundary value problem

p
Ly

c q;wu _ym 77i;l\b .
[ DI u(t) H(th)l Ip¥ Gl(t)] =F(t); te], (3.3)

supplemented with the conditions
u(0) =0, DI u(0)=0,

(3.4)

CDWP _ym 1771'?4’(;1, chﬂP _ym I’?i?WGi
[ ez <t>] :p[ g (t)] ocpier
=T t=¢
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3.1. INTRODUCTION

has a unique solution, that is

u(t)zlgip (H(S)/O i 11/]1:( )y (T)e—A(‘I’o(s)—‘Po(r))dT) (t)
. (/ P (o) (1)e M BN %)y

o / PWE(e )e—Awo(c)—‘fo(r))dT)

x%l&’f(H(s)(l e~ Mols )) +ZI’7’+WG

(3.5)

where A = (1 + pe=*¥0(8) — e=o(T) — o) £0, and A € RT.

Proof. Applying the i-Riemann-Liouville fractional integral of order p — 1 to both sides of

(3.3), and using Lemma 1.2.10, we arrive

Dy u(t) — XL 17V Gi(h)
H(t)

Dy u(t) — S 137 Gi(t)

chiP
H(t) (3.6)

= Ié’:l”pF(t) + co; co€R,

by multiplying ¢ (t)e*Y0() to both sides of (3.6), we find that

vt 4 [P u(t) — DI 19 Gih)
dt H(t)
DIV u(t) — LI, 119 Gy(t) (3.7)
! Ao () 0+ i=1 1
+ AP (t)e H(D)
= ' ()OI + cop! (1),
On the other hand, we have
d [Dgfu(t) - S BYGH) o] _ e d [ DEEu() — T Y Gi(t)
dt H(t) ' dt H(t)
. (3.8)
chﬂPu( t) — Y IWZIPG( t)
/ A¥o(t) 0t i=1"0+
+ Ay’ (t)e H(D)
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3.1. INTRODUCTION

From (3.7) and (3.8), we find that

d [Dgtult) — S VG ey
dt H(t) '

] = 10RO (0T + oy (1T,

Integrating from 0 to ¢, and using the fact that G;(0) =0(i =1, ...,m), and from the condition
CDg’ipu(O) = 01in (3.4), we have

CDgip”(t) — Yt Igfl]Gi(t) Ao(t) —
H(t) '

Igfl"lpF(T)tp’(T)eWO(T)dT

(e_)‘%(t)_1> +c1; e

QO\H_

0
+/\

By multiplying e~*¥0(!) to both sides, we get

Dy u(t) — T 137 Gi(t)
H(t)

_ /t 15:1;1/11:(T)IP/(T)e—)\(‘PO(t)—‘FO(T))dT
0

€O (1 _ —A¥o(t) —A¥o(t)
+ 1 (1 e >+cle .

(3.9)

Next, applying y-Riemann-Lipuville fractional integral of order g to both sides of (3.9), and
using Lemma 1.2.10, we get

u(t) =179 (H(s) ( /0 7R () (r)e O ¥olgr 4 D (1 — e~ N0le))
(3.10)
+ cpeMYols )) +ZI”1+WG )(t) +c; 2 ER.

With the help of conditions CDgipu(O) =0, u(0) =0 and G;(0) =0(i = 1,...,m), we find
c1 = ¢ = 0. Then, we apply the third condition of (3.4) in (3.10), we obtain

T
/ P P! (r)e BN %) gr 4 2 (1 _ e*“’o(ﬂ)
0 )

0 / TR (1)e —A(%(@)%(r))dH%(1_6—%(5)).
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Some computations give us

A

T _ ¢ .
o =7 (/0 [5:1'4’1?(1—)1’0’(T)e—/\(‘Yo(T)—‘Fo(T))dT _ p/o [g+1'1/’1:(1-)1//(T)e—)\(‘l’o(é)—‘fo(T))dT>_

Inserting cp,c; and ¢, in (3.10), which leads to the solution (3.5). Conversely, by Lemma
1.2.10 and by taking CDg’ip on both sides of (3.10), we obtain

ey _ym pliY e~ t
Dy u(t) ie1 Lyt Gi(t) :/ [7":1"1#1—”(7)1’0’(T)e_A(TO(t)_TO(T))dT
H(H) 0o °

T
N ( / 1T Ry (z)e MHo(T)-¥o(0) g (3.11)
0
1 — e—/\‘l’o(t)

S
Ly _ _
_p/o Iéﬂ F(t)y (1)e M%) To(T))dT)T

Next, operating ¢ Dg’:/) + )LCDg: "% on both sides of above equation, with the help of Lemma
1.2.10, we get

Py p—Ly
Dy + ADf )

DY u(t) - T, Igf”cz(t)]

t T
_ [Cng:P‘l'/\CDg:l;lP} (/0 15;1}¢F(T)¢/(T)e—/\(‘i’o(f)—‘l’o(f))dr—|— </0 Igfl;wP(T)l[J/(T)

% e~ MFo(T)=¥o(7) g1 _ p/é Ig:l;lPF(T)l/J/(T)e_)\(TO(C)_‘YO(T))dT> 1-— eAA‘Fo(t)>
0

t
; -1 “Lyp - - c W -
= [CDg;pJF/\CD& w}/o Ig+ Y (T)IP'(T)e A(¥o(t)=¥o(7)) g7 )?CDgﬁpe A¥o(t)

_ COCD(F)’:L'V’e—A‘YO(t)
t
:CDg:MPLp'l(t)%JFA}/ 7B (t)e Aol —¥o(0) g7
0
—epP WPy
— F().

Now, it remains to review the boundary conditions (3.4) of our problem . Substitution
t = 0 in (3.5) with the fact that G;(0) =0;i =1,---,m, leads to #(0) = 0. Next, we apply
CDg"f on (3.5), then we substitute t = 0, it follows that CDg’ip u(0) = 0. We substitute t =T
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and t = ¢, we find that the two resulting equations are equal and from it we get that

“DYFu(t) -~ ot 1YGi()
H()

DIYu(t) — Ty IV Gi(t)
H(b)

t=T t=¢

This means that u(t) satisfies (3.3) and (3.4). Therefore, u(t) is solution of problem (3.3)-
(3.4). O

Lemma 3.1.2. For F € C(],R) and H € C(]J,R \ 0), we have

/‘Pq 1 ts // ¥r=2( () dory! (T)eHFo(s)—¥0(0) g g

‘I’p+q_1(T)
~ AL(p+4q)(q) (

— e M0W) | H || F o

¥r- 2(, o~ A(¥0(T) ¥ (1)) TH(T) — e Mo(T

| [ [ ey e i <% B ) Il
YrAo) F0(2)~¥o(x) @) g

@) [ [ o S F ooy o) | < E 1 o) .,

Proof. To prove the property (1), we have

TYP2(t,0) _‘I’gil(r)
/ =T

and

YD) A Yo gr < To8) [T A

¥ e)
~ AL(p)

From the above integrals and left side of (1), we get

-1 P=2(
/ T tS / / ¥ (o)doy' (T)e™ ¥o(s)=Yo(7)) g1 ds

-1 p—1 s
< |l Fll /0 wr(g'”}r(;)) (1= e %009 s

(1—e M),
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(1—e‘w0m) Pea-1(t,s)  p1
e A TRk

(1 =) || H ool F|co

< [[Hleol[F[loo

_ETH)
~ Al(p+9)

The proofs of properties (2) and (3) are similar to the proof of (1). O

Now, we consider the following assumptions:

(H1) h € C(J x R,R\0), F € C(J x R?,R), and there exist positive and bounded functions
L(t) and M(t), such that

|h(t,u) —h(t,u)| < L(t)|u —ul,

and
|f(tu1,up) — f(1,70,70) | < M(t) (Jug — | + |up — a|),

fort € [ and uq,uy,uq,ur € R.

(H2) There exist functions ¢;, x,® € C(J,R) such that
|gi(t,u)| < @;(t) foreacht,uec] xR,
|h(t,u)| <x(t) foreachtue]xTRR,
|f(t,u,u)| <0O(t) foreacht,u,uc]xRxR.

(H3) There exist constants 0 < A,Y < 1, such that

1 . e*)\‘IJQ(T)

- <Axﬂw*+YIﬂw)<:L (3.12)

where

_YTNT) ST =TT ()

I'(p+q) I(y+p+g-1) +Aﬂq+D
) (ETHT) Ty =¥ TP A(T)
X(Oe )( I'(p) I(y+p-1) )
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- p—1 ¢ 5 _ Y+p—2 z
so(t=e ) (N e )

IR () ¥I(T) ¥, L
oo g ()

w1 M) ¥ ).

3.2 Existence of solutions

In this subsection, we prove the existence of a solution for the problem (3.1)-(3.2) by apply-

ing Dhage fixed point theorem.
Theorem 3.2.1. Suppose (H1)-(H3) holds, then the problem (3.1)-(3.2) has at least one solution in
C(J,R).

Proof. First, weset: L* =sup,;|L(t)[, M* =sup,; | M(t)|, x* =sup;c; |[x(t)[, 8" =sup,;[0(t)]
and ¢ = sup,;|@i(t)[;i =1,---,m. We choose r, such that

_ —A¥(T) _
N G )(‘1’5” Y1) | YA

A I(@T(p+q) T(@+1)A

p—1 - p—1 C, -
(Mg () = g (e WC))))

NPTIVINS CH. 1 A CO R
izlr(ﬂi"'q"'l) :

Now, we define B, C C(],R) as
Bi={u€ckE:|u|eo<r}
Define two operators C: C(J,R) — C(J,R) and D: C(J,R) — C(J,R) as

Cult) = o5 [, (W) = 9 f (s TP u()ds, te],

and

Du(t) =h(t,u(t)), te].
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Then, using assumptions (H1)-(H2) , we have for u,7 € B,, and each t € |
Cu(t) - Ca(t)|
= ﬁ/oth“'sﬂf (s,u(s), 61" u(s)) = f (s,1(s), 61" i(s)) |ds
: ﬁ/ t‘I”’*z(t'”M(S) (Iuts) =) + 5 [ 47 ) u(e) (o)) as

< M) = TOllo =55 /w 2(t,5) rw‘;l)wg(s))ds
S(pr_l(T) o

ot (D po o ¥ )M () — ) s
and -
Yo (T) o
|Cu(t)] < r(op_l)ﬁ ,
also

[Du(t) — Du(t)| <L*Ju(-) —u(- )], |Du(t)] <x™

Now, we also consider two operators A : C(J,R) — C(J,R) and B : B, — C(J,R) defined by

Au(t _zq¢<pu / Cu(z)y (t)e M <>—%<f>>dr><t>
1 _
+ 51 (Du( )(1 —e A‘*’o<5>>)(t)
< / Cult (D) ~Yo(t)) g _ / Cult lp(r)e—A(%(é)—%(r))dT),
and

ZI’W"’ u(s))(t).

We need to prove that A and B satisfy all assumptions of lemma . This can be proven in the
forthcoming steps.

Step.1 A is a contraction map. Indeed, let u(t),u(t) € By. Then

| Au(t)—An(t)]

glg;¢(}Du(s)\/Os}Cu(r) () [/ (7)eMY¥ols)= “I’o<f>>dr> (t)
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IW(|Du — Du(s \/|Cu ) (x)e(¥ols (T))dr>(t)

58 (Dol (=) Yoo ewto - cucoly'e

x e~ M¥o(T)=Yo(1) g 4 p/ |Cu(t) — Ciu(r) |¢/(T)e?\(‘1’o(é)‘Yo(T))dT>
0
—i—l ¢(|Du Dﬁ(s)‘(l e~ Mols ) (/ |Cu(7)
A ot
« e MDD %o(D) g7 _ / ‘ |c:u(r)|zp'(r)e—A(‘Fo(C)—“’o(T))dT).
0
Using Lemma 3.1.2 and the hypotheses (H1)-(H2),we obtain

| Au(t)—Au(t)|
B T LL G YUY ST (y = 1Y TPTTH(T)
B (p+4)

A F(y+p+q-1)

¥I(T) e (Y5 H(T) | ST(y = 1)¥ TP H(T)
s (=) i+ oo )

B ¥ E) T(y— DY
+p<1_e WO(C)>( OF(P() '+ wf('w)rpo—l) ( ))>>

e [(FTH(T) ¥(T)
+”< (p+q) « AMg+DI(p—1)

X ((1 - e*WO<T>)‘Pg*2(T) +p<1 - e*“’o@)

_|_

Moreover,

1 — e*/\YO(T)

Au(t) - AT(H)]|w < 5

(AX*M* +YL*19*>Hu(-) — () [ eo- (3.13)

Hence by (3.12), A is a contraction map.
Step 2. B is compact and continuous on B;.

Firstly, we prove that B is continuous on B,. Let u,(t) be a sequence such that u, (t) — u(t)
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in B,. It follows from Lebesgue dominant convergence theorem that, for all f € ],

m
Jim, Bun (1) = lim )

771"‘(])/ 1Y’?i-&-ﬁl—l(t,S) gi(s,un(s))ds

/ W1 (15) (s, u(s))ds,

= lim
n—y00
m
; 771+q

Hence limy,_, Buy,(t) = Bu(t). Thus B is a continuous on B,. Besides, we prove that B is

uniformly bounded on B,. Indeed, for any u € B,, we have

m \1;771’+QT i}
IButt) o < 3o o e <

= T'(ni+qg+1
Therefore ||Bu|| <r, for all t € ], which implies that B is uniformly bounded on B,.
Now, we show that B is equicontinuous. Let t1,t, € ] with t; > t,. Then for any u(t) € By,

we have

m *
Pi ( + 1i+q nit+q >
Bu(t;) — Bu(ty)| < ) ————=(2(¢(t1) — ()" T+ ¥y "(t2) =¥y "(t1)])-
|Bu(t1) — Bu(tz) _Z(ﬂz+q+1) (p(t) — 9(t2))" 7+ [¥g (t2) — ¥ (1)
As ty — t1, |Bu(t1) — Bu(tz)| — 0. This means that B is equicontinuous. Thus, Arzeld-Ascoli
theorem shows that B is a compact operator on B,.
Step 3. We prove that u = Au + Bu, forallu € B, = u € B,.
For any u € B;, we have

(1 —e0m) ( ¥y ET)

() leo <

A I(@T(p+q) T(@+1)A

(T o) 0 )

['(p) “T(p)
e W YT
XX +Z (171+q+1)(P

<r

4

*

which implies ||u|| <7, that’s mean u € B,. Hence all assumptions of lemma (3.2)are satis-
fied. So, the equation u(t) = Au(t) 4+ Bu(t) has at least one solution in B,. Moreover, there
exists a solution of the problem (3.1)-(3.2) in J. O
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3.3 Uniqueness of solutions

Here, we prove the uniqueness theorem of (3.1)-(3.2) relying on Banach’s fixed point theo-
rem

Theorem 3.3.1. Suppose that (H1)-(H2) and the following hypothesis holds.

(H4) gi € C(] x R,R), and there exist positive and bounded function K;(t), such that
18i(t,u) — gi(t,u)| < Ki(t)|u — .

If
1 — e~ A¥o(T) m

= (MM YL ) 4 Y

B — ) (3.14)
A lzll"r]1+q+1) (T) <

then the problem (3.1)-(3.2) has a unique solution.

Proof. We set the operator Q : C(J,R) — C(J,R) as

Qu(t) = Au(t) + Bu(t).

We set K* = sup, . [Ki(t)[;i=1,2,--- ,m

First, we show that Q(B,) C B,. As in the previous proof (Step 3) of Theorem 3.2.1, we can
obtain

Forue By,andte |

(=e™®) (e | e e
toutle = ety * (0 ™)

¥©) v, e (T
R eme)) Jow s Bl

<R.
This shows that Q(B,) C B,. Next, we prove that Q is a contraction. For u,% € B,

1Qu(-) = Qu(-)[leo < [[Au(-) = Au(-)[loo + [|Bu(-) — Bu(:)lloo

Page-43-



3.4. STABILITY ANALYSIS

and
|Bu(-) — Bui(-)]|oo
Si‘é?{flw/ Els ) ST
Z m+q+1)%+q(T)||u(')—ﬁ(-)Hoo-

From (3.13),(3.14) and (3.15), we get

o= A¥o(T

[Qu(-) — Qu(:)leo < (1 Ax*M*+YL*z9*>

*

+ZZF (n; +q+1)1¥m+q(T)> () = () |loo-

As E <1, T'is contractive map. Consequently, by Banach’s fixed point theorem, we conclude
that T has a unique fixed point, which is a solution of (3.1)-(3.2). O]

3.4 Stability analysis

In this portion, we discuss the Ulam-Hyres and generalized Ulam-Hyres stabilities of the
solution of the proposed problem. We adopt the following definitions from [43].
Let e > 0. Consider the subsequent inequality:

DI u(t) — 2, 17 g (t,u(t))

Ly 0) I

¥

u(t), 6l Pu(t))| < te]. (3.16)

Definition 3.4.1. The problem (3.1)-(3.2) is said to be Ulam-Hyres stable if there exists C; >0
such that for each ¢ > 0 and for each solution w € C(J,R) of (3.16), there exists a solution
u € C(J,R) of (3.1)-(3.2) with

jw(t) —u(t)|| <Cre, te].

Definition 3.4.2. The problem (3.1)-(3.2) is said to be generalized Ulam-Hyres stable if there
exists © € C(R",R") with ®(0) = 0 such that, for each solution w € C(J,R) of (3.16), there
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3.4. STABILITY ANALYSIS

exists a solution u € C(]J,R) of (3.1)-(3.2) with
lw(t) —u(t)|| <Ok), te].

Remark 3.4.3. A function w € C(J,R) satisfies the problem (3.1)-(3.2), if there exists a ¢ €
C(J,R) (which depends on w) such that

@) |pt)| <& te],

(ii) fort €],

DI w(t) — 2 1Y gi(t,w(t))

L) o) = f(tw(t),61]%w(t)) + ¢(t).

Theorem 3.4.4. Let (H1) and (H3) are fulfilled. Then the problem (3.1)-(3.2) is Ulam-Hyres and
generalized Ulam-Hyres stable

Proof. Letw € C(],R) be a solution of the inequality (3.16) for each ¢ > 0. Then from Remark
3.4.3 and Lemma 3.1.1, we have

w(t)

= 1 (s, 066)) [ (£ 0000, 01 0(0)) + 0(0) () ()0 Ho e ) )
([ “”(f<t w(0),317% (1) + §(1)) (D) (r)e MHD oy

o [ (o), 03 (D) +9(0) (D (e 0T
xxfgf(h(s,w(s))(l ) ) 0) + L (s 0(6) 1)

Then, by Remark 3.4.3, Lemma 3.1.1 and (H1)-(H3), we obtain

|w(t) — Qu(t)| =

1 (s, w(s)) [P gey/ (e IO ) 1
0
n ( / 1P (o)l (1)e M)~ ¥0(0) g

, / P g () (T)e- A(%(g)—%m)dT)
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< 1 (s ) (1-M0) ) 1)
<ex Q.

where,

¥ R IS (I (O T
Q:[O‘EW@U<M&+mHm+(ﬁnw<“*Awm>

YU . ¥{(T)
g WW) '

Which is satisfied inequality (3.16).then for each t € J,we have
jw(t) —u(t)]
S
w(t) - 1Y (h(s,u(S))/O I(',ﬁwf(f,u(T),(SIgpr(T))w'(T)@A(YO(S)TO(T))dT) (t)

4 (/ IP 1¢f(’[ u(t ),Mgfpu(r))l/J’(T)e_)‘(TO(T)_TO(T))dT
o / (2, u(T), Mgfpu(r))wl(f)e—ulfo@)—%(r»ﬁ)

ilgf(h(s,u(s))(l e~ ¥ols )) +21’77”‘/’g,sus))(t)

< |w(t) — Gw(t)| + |Gw(t) — Gu(t)|
. 1— e*/\YO(T)

A
Zrm+q+nwmﬂnwm»—wﬂm

i=1

(AX*M* + YL*ﬂ*)

+

Then o
X
() = ()l < e
=1

where,
m >k

B, = (AX*M* n YL*ﬁ*) +y

\1;771+QT.
Z:1F171+q+1) (T)
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*

Q
By setting Cr = 1 _XH

, wWe obtain

lw(t) —u(t)| < Cre.

Therefore, the problem (3.1)-(3.2) is Ulam-Hyres stable.
Similarly, for ® € C(R*,IR") such that ©(e) = Cse along with @(0) = 0, the solution of
the problem (3.1)-(3.2) is generalized Ulam-Hyers stable. [

3.5 Example

Consider the following y-Caputo HFSIDE

(

D}t +3°D3]

4.
D3 u(t) -~y I gi(tu(t)) 1
= S IO v ] = f(t,u(t), zléf u(t));t €[0,1],

é;t
w(0) =0, °DI'u(0)=0, a1

4

G

4.
[mgjumz? I gt ))]
=

h(tu(t))

4.
CDgfu(t)fZ? i () _
h(t, u(t)) -
\ t=1

[e)1$}]

where
21’7’ gi(tu(t))(s)
= 1 (45 (sV/52 1 +-sins +cosu(s)) ) (1) + 1§f(%) (t)
+ly <1z?2—+(1;> O+ (e o)
h(t,u(t)) = e_ttsi%(t) + 610(t2 +1),
and

f(tu(t), ;I@ (1) = \/ti781<1—||11|(ft)(|t)| + arctan @IZ’ u(t)))
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Here
BT . 7 ; 2 5,1
p_zl q_5/ — 7]1_4/ 7]2_31 ;73_31 774_61 _2/
57 s
’)/ - 2/ P - 13/ - 6/
and
, sinu(t) sin?u(t)
—t\/tz—i—l—i-smt—i-cosut , = — = —
5 (1)) 2 a6+ 2 8= (1)

. 1 )l
3tv64 + 132+ |u(t)|

The hypothesis (H1), (H2) and (H4) are satisfied with the following positives functions:

et et 241 3 1
L(t) = , t) = + , M(t)=9(t) = ———, Ki(t)=-—,
() G X0 = s B M=o = 2 kil =g
1 1
t\/tz —|—2 — —  Ka(t) = = ———
2 (PZ( ) 471'\/@ 3( ) (PS( ) 12(t—|—1)2
and
Ky
D=0l =5 o
which gives
L'=3 X =5 M=0=2 K= ¢ 5 K=¢m=5_
Ks=p3=15 Ki=gu=7,

With the given data, we find that
A ~0.45595101, A ~5.3500159, Y ~2.8388423,

and the hypothesis (H3) is satisfied by

1—e? 4 K
Ax*M* +YL*9*) + ~ 03153266651 < 1.
) (Ax ) ; NOETESi
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In the view of Theorem 3.3.1, the problem (3.17) has an unique solution. In addition, The-
orem 3.4.4 ensures that (3.1)-(3.2) is Ulam-Hyres and generalized Ulam-Hyres stable. As
shown in Theorem 3.4.4, for every € > 0 if w € IR satisfies

“DI¥w(t) — Tty 1 gilt, (1)

Ly i, w(t)

¥

— f(t,w(t), s w(t))| <& te0,1],

then there exists a unique solution u € R such that
\w(t) —u(t)|| < Cre, te[0,1].

where
Cf ~0.81 <1.

Hence, the problem (3.17) is Ulam-Hyres and generalized Ulam-Hyres stable.
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CHAPTER 4

RANDOM HILFER-KATUGAMPOLA
FRACTIONAL DIFFERENTIAL COUPLED
SYSTEMS IN GENERALIZED BANACH
SPACE

4,1 Introduction

In this Chapter, we study the existence and uniqueness results of Hilfer-Katugampola ran-

dom nonlinear fractional differential coupled system in a generalized Banach space’ given

by:

(PD2Y M) (t,0) = f(t,u(t,8),0(t,8),8)
;te]=1a,T),0€Q, (4.1)

(°DP0)(t,8) = g(t,u(t, 8),0(t,9), )

IR, Fredj, H. Hammouche and M. Benchohra :Random Coupled Hilfer-Katugampola Fractional Differential
Systems in Generalized Banach Spaces (submitted).
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4.1. INTRODUCTION

with the following initial conditions:

(P17 " u) (8, 9) = ug(9)
;0€Q), (4.2)
(P17"20) (a,8) = v4(9)

where0<a<T<o0,0<p;<1,0<g;<landy;=p;+qi(1—p;);i=12 (Q,A)is
measurable space, 1,,v, : (3 — R" are a measurable function, f,g: ] x R" x R" x (3 = R"
are given functions, PDZ i is Hilfer-Katugampola fractional derivative of p;(0 < p; < 1);
i=1,2and typeq;(0<g; <1);i=1,2and” I;; 7i is generalized fractional integral of order
L= i(vi = pi + q: — pii)-

The results are obtained upon some random fixed point theorems such as Perov’s ran-
dom fixed point theorem, the random nonlinear alternative of the Leray-Schauder type and

Schauder’s random fixed point theorem.

Main results

Lemma 4.1.1. Let f,g: ] x R" x R" x O — R, i = 1,2 such that f(-,u(-,9),v(-,9),8) € Cy, o
and g(-,u(-,9),0(-,9),8) € Cy, o forall ® € Q and any u(8),v(8) € C. Then the coupled systems
(4.1)-(4.2) are equivalent to the problem of solution of the following system of fractional integral
equations

Cug(8) (P —a\T 1 e e\

2—1 t _ n—1
0 ) ey (5 o
4.3)

(

Hypotheses:

Now, let us introduce the following assumptions.
(H1) The functions f,g are Carathéodory.

(H2) There exist measurable and bounded functions k;,I; : 3 — (0,00);i = 1,2 such that:
1f(t,u1,01,8) = f(t,u2,02,8)[| < k1(9)[[ur — | + 1 (8)[|o1 — 02,
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and
g (t,ur,01,8) — g(t,uz,v2,8)|| < k2(9)|lu1 — uz|| + L2(8)[[v1 — v2]|,

fora.e.t € |, and each u;,v; € R",i =1,2.
(H3) There exist measurable and bounded functions a;,b; : Q — (0,00);i = 1,2 such that:

1f(t,u,0,9) || < ar(8)][ul| + b1 (9) 0],

and
Ig(t,u,v,8)[| <ax(9)|lul + b2(8)|ol],

for a.e.t € |, and each u,v € R".

4.2 Existence and Uniqueness

Theorem 4.2.1. Assume that the hypotheses (H1) and (H2) hold. If for every ¢ € (), the matrix

TP —gP P1 r( ) TP —gf pitr2—7 F( )

( o ) L (®) ( o > 1 ()
M(9) = ,

TP —gf p2+r1—72 T(7y1) TP g P2 I(72)

(%5*) i ®  (T57) m @)

converges to zero, then the coupled system (4.1)-(4.2) has a unique random solution.

Proof. From lemma 4.1.1, we define the operators Q1:C x Q) — C,, pand Q2:C x Q — C,, »
by

(Qi(u,2))(,8)

- ?Zfﬁi (tp ; ap)w i r(;l) /at (tp ; Sp)pl_ls”‘lf (s,u(s,8),0(s,9), 8)ds,
and

(Qz(1,0)) (t,9)

F () el (55) 7 seomone
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4.2. EXISTENCE AND UNIQUENESS

Consider the operator Q : C x (2 — C defined by

(Q(w,0))(t,9) = ((Qu(u,0))(£,8), Q2(u,0))(£,)).

From (H1), we have f are Carathéodory functions; then ¢ — f(t,u(t,9),v(t,9),9) are mea-
p2—1
surable functions for every t € ], and the product (%) s*=1f(s,u(s,9),v(s,9),0) of

continuous and a measurable function is also measurable, consequently,

9 = (Qu(u,0))(t,9) and & — (Qa(,v))(t,9),

are measurable. As a result Q is a random operator on C x Q) into C.

Now, we proof that the operator Q is contractive .

Forall ¢ € Q, (u1,v1), (uz,v2) € C,and t € |, we have
o —ge\1Tm g \1In
(1) @t e - (F0) T @ en) )

1— t -1
S(tﬂ—aﬂ) mo /(tp—sp)’”l -1
4 T'(p1) Ja 14

X || f(s,u1(s,9),u2(s,9),8) — f(s,01(s,8),02(s,9),9)||ds

< (ﬂ);ap)l—’h r(;l) /at <tP;Sp>pl_1Sp1(k1(19)Hu1(s,z9) — uy(s, )|

+ 11(8)[|v1(s,9) — va(s,9)|)ds

< (tp ; ”p>1_% F(;l) (kl(ﬂ)llm(.,ﬂ) —uy(-9)lc,,, /at (tp ; Sp)m_l

4 (sP—af n-1
X ( . ) ds+ 11 (8)]|o1(,9) — 0a(-, 8)lc,.,

x/f(fﬁ—sp)pl_lsp_l <SP_aP>’72—1dS>
a © %

< () el @) 0) — sl e,

o p1+m)
TP — gP\ P1t7127n r(,),z)
+ ——L(®)||v1(-,9) —va(-, 0 .
(55) T S @l - ot Dle,,
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Therefore;

H (Ql(ulzvl)) (,19) — (Ql(uz,vz)) (,19)

C71,,D
¢ —aP\"  T(1)
< ki(9)||uq(-,8) — us(-, 9
_( . ) sk (8) [ (,8) ~ - D,
TP — gP\ P1t7127n r(’)’z)
+ —=—L(N)]||v1(-, ) —va(-, 0 )
( : ) o 2 h(®)or(-8) = va(- Ol

In the same way of above inequality, we get

[ (Qa(ir1,00)) (- 8) = (Qa(2,22)) (-, 9)

< (TP _ap)r’er%—vz F(’h)

C’Yz,P

ka(9)[|ur (-, 9) —u2(-,9)llc,, ,

0 I'(p2+71)
TP —af\"  T(72)
" ( p ) I'(p2 + ’)’2)12(19)”01('/19) - 02("19)”@243'

Thus;

QU 00,0, (Quz,02)(8) ) < M@ (1, 0),01(-8)), (ua(-,8),v2(-,9))),

where,

d((ul(-,ﬂ),vl(-,ﬁ)),(uz(-,ﬁ),vz(.,g))> _ ( [ur(+,8) —ua2(-,9)llc,,, >

[01(-,8) = v2(-, B)llc,,,

As for every ¢ € ), the matrix M(¢) converges to zero, this implies that Q is a M(9)-
contractive operator. Consequently, by theorem 1.5.4, we conclude that Q has a unique
tixed point, which is a random solution of systems (4.1)-(4.2). This completes the proof. [

4.3 Existence result

Our next result is upon the fixed point theorem 1.5.5

Theorem 4.3.1. Under the assumptions (H1) and (H3), the coupled systems (4.1) and (4.2) has at
least one random solution.

Proof. We need to proof that the operator Q satisfies all conditions of theorem 1.5.5. The
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proof is divided into four steps.
step 1. Q(.,., ) is continous.
Let (u,,vy) be a sequence such that (u,,v,) — (4,v) € Casn —oo. Foralld € O, t € |, we

have

(5 ”p)l_%<Ql<un,vn>><t,z9> (% ”p)l_%@au,v))(t,mH

<(tP—aP>1‘71 1 /f(tp—sp>pl_1sp—1
L P T(p1) Ja P

f(s,un(s,98),v4(s,9),8) — f(s,u(s,9),v(s,9),9)

X ds

TP — aP\ P!
<(%57) o et Dm0 0) = 04000,

Combining the Carathéodory property of f with the Lebesgue dominated convergence the-
orem, as 1 — +00, we get

—0—0asn— +oo.

H (Q1(un,vn)) (-, 0) — (Q1(1,0)) (-, 9)

Likewise, we obtain
| (Qa(,00)) (- 8) - (Qz<u,v>><-,z9> .
TP —aP\"?  T(7,
S( P ) F(P2+’Yz Hg in(, ), vn(-,ﬂ),ﬂ)—g(~,u(~,19),v(~,19),z9)Hcmj.

As g is Carathéodory, we get

[ (Qa(un,0)) (- 8) ~ (@2 0)) (8| —0asn — +eo

C’Yz,P

Moreover,

H (1, 0n)) (-, 9) — (Q(u,0))(-,9) ‘C—>Oasn—>+oo.

So the operator Q(+, -, ¢) is continuous.
step 2. Q(+,-,¢) maps bounded sets into bounded sets in C.
Letr >0 ,and
B :={(uv)eC: ulc,,<nlvlc,, <r}
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Forall 9 € O, (u,v) € B, and t € ], we have

H e

1-m
) (Qi(1,0)) (t,8)

= H?ZEYIBH " (tp P )1 ’ /at (tp _SP) | f(s,u(s,9),0 9)||ds
T () ( Dlcy, [ (”;SP)’“

L [sP—aP\ "M~ 1 Erw —go\ Pl
w gP—1 ( 5 ) ds + 171(19)||U('/19)Hc'rz,p/ ( 0 )
a

p_ g\ 7271
x gP~1 (S pa ) ds)

|ua ()] T(y1) (tP—a"\" T'(72)
<—+r<( ( ) 0 (0) +

- T(n) T(p1+71) P I(p1+72)
o — gP p1tr2—71
X ( 0 ) bl(ﬂ)) :Kl(ﬂ),
therefore,
[@oes| <k

C’h Y

In similar way, we have

loa(®)] D(ya) (10— a0\ PHmo I(72)
(ool <TFe; +r(F(P2+71)< ) e
" <t9;gp>pzb2w)> _K(0),
and thus
H(Q(u,v))(-,ﬂ) = (Ki(0)Ka(8) = K(0)

step 3. Q(+,-,¥) maps bounded sets into equicontinuous sets in C.
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In this step, we proof that the map Q is completely continuous, that is Q is a map from
bounded sets into equicontinuous sets of C. For all t1, f; €  with t; < f;, and any (#,v) € B,
% € ), we have

I=m 1-m
th — af o
( 2 - ) (Q1(u,0))(t2, ) — ( 1 ; ) (Q1(u,0))(t1,9)
< 1 /tl tg —af I=m tg —gP p1—1 - tﬁ) P 1-m tq . p1—1
N F(Pl) a Y 1Y 0 0
1-m p1—1
t —af 1 b (0 gp

x gP~1 s,u(s,9),v(s,9),8)||ds + 2 / 5

e ot o0 < p > I'(p1) Jy, [
x 71| f(s,u(s,9),0(s,0),0) | ds
< a1 (9)r L) f—at\" (e \TTT e\
> 1 1—'(’)’1 + Pl) Y 0 0

P p 1y

n tg —ar\" - tfl’ —aP\ "' b () T(72) t‘tz) P 1

P p F('YZ + P1) 0

tg _g° p1+r2-1 tﬁ) P p1+r2-1 tg L Pty -1

8 - +

© 0 0

tﬁ) _ ap p1+72_71

o 0 — 0ast; — to.

And similarly

tP P 1-7 tp o 1=,
<2p ) (Qﬂmwﬂhﬂ%—<lp ) (Qa2(u,v))(t1,9)

< | by(8)r T'(72) tg —af 1=72 tg P p2+72-1 ) t‘l) o prtya—1
S (02 1"(72 + ]92) 0 0 0
P __.p p2 P _ o p2 0 o 1-72
4 t2 a _ tl a X az(ﬂ)r r(’)/l) t2 a
2 P T(y1+p2) 14
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+71—1 +71—-1
tg P pP2tm t? _af pP2tm
P %
+ p—
tf P p2tri—72
— P —0ast; — to.

Finally, from the previous steps 1-3, with the Arzela-Ascoli theorem, we conclude that

X

_|_

+ .
tg P p2t+71—72
P

Q(-,+,9) maps B, into a precompact in C.
step 4. Priori estimate
Let

E@®) = {(u(-,9),0(-8)) €C: (u(-,9),0(,8)) = c(8)(Q(1,0)) (., 8)},

for some measurable functions o : Q) — (0,1).

In this step, we need to prove that the set E(?) is bounded in C.

Let (u(-,0),v(-,9)) € E(®). Then, u(-,8) =0(8)(Q1((1,v))(-,8) and v(-,8) = (8)(Q2((u,v)) (-, 9).
Thus, for any ¢ € () and each t € |, we have:

(75) s

<L () e [ () e et ot 0
(5 [0 (5

In same way, get:

(757) e
S () [ (57 (e

(SP — ap)lwv(s,ﬂ) ) ds.

P

sP —aP)171
u(s,d
()

+ b2(19)
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Thus, we obtain

+

tp—ap)lﬁ (tp—ap>1”
u(t,o v(t, 9
H( . (t,9) . (t,9)

<c +h(t)/at (tp ; Sp)iolsp_l (H (sP ; ap)1'71u(5’l9)
P — gP\ 17
+ ‘ ( ) v(s,9) )ds‘.

P
ST G TR

with

From lemma 1.5.8 we have

o — aP)”l
u(t,d
( . (t,0)

o — aP)Wz
o(t, 9
( : (t,9)

Thus,
[ (u(.,8),0(.,9))]|, < co.

Finally, as a consequence of Steps 1-4 the operator Q is completely continuous and the set
E(9) is bounded. Then by theorem 1.5.5 the operator Q has a fixed point in C, which is a
random solution for the systems (4.1)-(4.2). This completes the proof. O

4.4 Example

We illustrate our results by an example. Let 3 = R* = (—0c0,0) be equipped by the usual

oc—algebra consisting of Lebesgue measurable subsets of R* . Consider the following ran-
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dom coupled Hilfer-Katugampola fractional differential system

(

| —

(D2 2u)(t,8) = f(t,u(t,9),0(t,9),9)

(@ BN

(2D20)(t,8) = h(t,u(t, 8),0(t,8),8)
e 0,1,0€0, (4.4)
(13, u)(0,8) = cos(9)

1
(213+0) (0,9) =sin(9)
where:

102 (u(t) + o(t)) sint
64(1+ 02 + V) (1 + |u| + [o])

f(t,u(t,9),0(t9),0) = ; te[0,1],9€Q,

" *(u(t) + (1)
0 (u(t) +o(t))cost
h(t,u(t,9),v(t,8),8) = ;
(1,208,8),0(8,8),8) = =g T Tl + o)
Clearly, the functions f and h are Carathéodory. The hypothesis (H2) is satistied with the
following measurable functions:

€[0,1,8€Q.

192

m(8) =ax(9) = b1(9) = ba(8) = gy

v e Q.

For all 9 € ), the matrix A is defined as follows

M(8) = 9> 11
21+ \ 1 1)
Where the eigenvalues of the matrix M are:

9 9
Ay = ~ (0.0249
27 52v2(1+ )1 (3) 1+ 02

A =0, <1

Thus, M(9) is converges to zero, then by theorem 4.2.1 the coupled system (4.4) has unique
random solution on [0, 1].
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SPACE

4.5 Random Coupled Fractional Differential Systems in Ba-

nach space

In this section, we will investigate the same previous system (4.1)-(4.2), but in the case n =1
and that is due to the nature of the hypotheses that we will use to prove the next result.

Now the system’s data in this case defined as follows

("D Mu)(t,8) = f(t,u(t,8),0(t,0),0)

ste]=1[aT]),0€Q, (4.5)
(°D"0)(1,9) = g(t,u(t, 8), (1, 8), 8)
with the following initial conditions:
(PL= ") (a,8) = ug(0)
;0e ), (4.6)

(P1,: "0) (a,8) = va(9)

where () € R, u,,v, : 2 = R are a measurable function, f,g: ] x R x R x Q — R.

4.6 Existence result

This result is based on Itoh’s random fixed point theorem.
Theorem 4.6.1. Assume that the hypotheses (H1) and the following hypotheses hold
(H'1) There exit measurable and bounded functions c;,d; : QO — L*®(],[0,00)); i = 1,2, such that

er(t,8)lu] + du(t,9)o]
1+ |u| + |v|

f(t,u,0,9)] <

7

and
c2(t,0)|u| + da(t,9)|9|

1+ [u|+ ||

|g(t,u,0,8)] < ,
foraete Jandeachu,v € R, 9 € Q.
Then the systems (4.5) and (4.6) has at least one random solution defined on | x Q).

Proof. We set
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l[1a ()| 1 [t —ap\'T ptr g\
= T'(7) +T(P1)( P ) /( P ) :
X |f(s,u(s,9),v(s,0),98)|ds

ua(®)] 1 [ —ae T gt P PHS .
S1“(71)+F(m)< P ) A( 4 > '
[e1(s, B)[[u(s,8)| + |da (s, 8)[[o(s,8)| ,

1+ |u(s,9)| + |v(s,9)|

W@ 1 [ — e\ e\
<ty ol ) L5
< (et ()l + s (-, 8) ) s

1ua(®)|  [ler(8)]leo + 1d1 (-, 8) ||oo (TP — af\ '~
=T © [(p1+1) ( 0 ) :

Similarly, we get

_ [oa(8)]

< +
C72 r (’)/2 )

le2 (-, ) lleo + lld2(-,8) lloo (Tp - ap)l—“rzﬂ’z

| (Qa(,0))(-,) Tt T ;

Therefore

1a(8)|
¢= T(m)

+

10a(8)] & llei(5 ) [loo + i (-, 8) | (Tp_ap>1—’n+m._
+) = d(9),
Y

H(Q(”’U))("ﬁ)H T() &= T(pi+1)

We set
By =B(0,d) ={(u,0) € C:[[(u,0)|[c <d(9)},

where B is a closed, bounded and convex subset of C.

We need to prove that the operator Q : By x () — B, satisfies the conditions of theorem 1.5.6.
step 1. Clearly, Q : B; x (3 — B; is a random continuous operator.

step 2. Q(By) is uniformly bounded.

Since, Q(u,v,9) C By, for all (1,v) € By, and B, is bounded.

step 3. Q(B,) is relatively compact.
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Forall t1,t; € ], t1 < tp, and any (u,v) € By, ¢ € ), we have

and

P P

< {ncl(-,ﬂ)nw (-, 8) s (ts —aP)l‘“ (H)”

N T(p1+1) P P

eaC )l + 11, 9o / ((ts —ap)l"“ (tﬁ —sP)’“‘l
I(p1) a 4 P

R —ap\M N
YA o] s

P, 1I-m o, m
<t2 P) (Qi(u,))(t2,0) — <t1 P) (Q1(u,0))(t1,9)

P 1-72 o, -7,
<t2 P aP) (Q2(u,0))(t2,9) — (tl 5 p) (Q2(u,0)) (t1,9)

< [||Cz(»l9)|loo + [|d2(+,9) || o <t‘z’ - ﬂ")l_” <f§ - f?)’”
- I(p2+1) P P

o llea( 9)lleo + [1d2 (-, 8) o /ﬁ ((tg — aP)l_W (tg - SP)Pz—l
r(pZ) a Y Y

H—ap\1T72 NP2
— < 1 5 ) (%) >splds} —0ast] — tp.

As a consequence of steps 1-3 and using the Ascoli-Arzela theorem, we deduce Q : B; X

Q) — B, is continuous, compact and satisfies the assumption of theorem 1.5.6. Then the

operator Q has a fixed point which is a random solution of the systems (4.5)-(4.6) on J. [
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CHAPTER 5

RANDOM MULTI-FRACTIONAL
DIFFERENTIAL COUPLED SYSTEM IN
GENERALIZED BANACH SPACE

5.1 Introduction

This Chapter, aims to investigate a random coupled system with multiple fractional
derivatives of {y—Caputo of different orders subject to non-local integral and boundary con-
dition and proves the uniqueness of random solution by applying random versions of the
Pervo fixed point theorem, while the existence of solutions is derived by a random ver-
sion of a Krasnoselskii-type fixed point theorem. Also, we study the Ulam-Hyres stability
of the proposed problem. The stability analysis of functional and differential equations is
very useful in various applications. Considerable attention has been paid to the study of
different kinds of Ulam stability. For details, see [12, 35,27, 52, 55]. To the best of our knowl-
edge, the Ulam-Hyers stability has been very rarely studied for a random coupled system
of fractional differential equations in generalized Banach space. Therefore, in this chap-
ter, we study the existence, uniqueness and Ulam-Hyers stability results to the following

nonlinear random multi-fractional equations. !

IF. Fredj, H. Hammouche, :Existence and Ulam-Hyres stability of random coupled system of multi-
fractional differential equations in generalized Banach space (submitted).
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DI DI u(t, 8) — h(tup(9),04(0),8)] = F(t,1:(8),01(8) D

CDgi;lP[CDqZ;va(t,ﬂ) —k(t,ue(9),v:(9),09)] = g(t, ue(9),° Dgiﬂpu

o Vo(t,9),0),

(5.1)

(£,0),0:(8),9),

subject to the following coupled non-local integral and boundary condition

(

T
u(0,8) = x(0(9)), Dyu(0,8) =0, /0 o(7, 8)dT = Kou(, )

T
0(0,8) = 9(u(8)), Dyo(0,8) =0, /O u(t,8)dt = ky0(0, 8)

}CIP €], (5-2)

where t € [ =[0,T],9 € Q and u;(9) = u(t,9) . CDng and CDgfp are the ¢—Caputo
derivative of order 1 < g; <2 and 0 < 0; < 1(0; € {g;,6} ;i = 1,2) respectively. (€, A) is
measurable space. f,g: ] x R" x R" x R" x ) = R" and h,k: ] x R" x R" x () — R" are

given functions. ¢, ) : R” — R" are given continuous function, and «; are real constants ;

i = 1,2. The differential operator Dy, is defined by

1 d

Lemma 5.1.1. Let 0 < p1,p2 <1, 1 < qq,q2 < 2. For any functions H,K,F,G € C(J,R), the
following linear fractional boundary value problem

(

DY DI u(t) - H()] = F(t), te],

DI DEYo(t) ~ F()] = G(1), te],

u(0) = x(v), Dyu(0)=0, / o(T)dT = Ky (§),

=)

v(0) = @(u), Dyov(0) =0, /0 u(t)dt =x19(p),

/'C:/p G], (53)
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has a unique solution, which is given by

¥5' (1)
AT'(g1+1)

, 1 r .. r ,
+ I G(E) - —( /0 MY H(7)dT + /0 I qz"”F(r)dr))

/T‘sz(r)dr
u(t) = 1PV H(E) + IV E() + : ¢) (15’1@1((5)

¥

K2 (5.4)

T
() + 1 EG) ) - [ k(e
0

-/ LG (| + (E (1A + 1)x(0) + A (1) glu).

0

and

T
/ ¥ (t)dt
0
¥4 (p)

T T
/ IPYK(T)dT + / i qz""’G(r)dr))

0 0

Y ()
AT (g2+1)

o(t) = IPYK(t) + 127G (1) +

(IS’WH (0)

~ 1
+ 1?2""72/1/)1: _ (
G (p) o 55)

T
+ 2 (Igi””K(é) + Ig’i*”’”"’c(@) - / 17 H(7)d
0

— /OT Igf+q2;¢F(T)dT + (‘Ygz(t)/\g +D(u) + A4‘ng(t)x(v).

where
T T
¥ [ — ¥ (o)
B ¥ (6 (g1 +1)

7

Aq

T
kY2 (8) — T/o Y (1)dt
A
¥ (6T (g1 +1)4

/ T‘I’gz(r)d’t YR (E)
__J0
YR + D)

)\1: 2

7

T T
/o 1IIgl(T)dT/O Y (1)dt — k¥ (0) YE ()
N K1 ¥g (0)T (72 +1)

Ap

7
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T T
K1K2‘I’gl (p) — T/ ‘{’gl(r)dr / ‘I’gl(r)dT — T‘I’g1 (p)
0 Ay — 0]

Y
K ¥g ()T (g2 +1)82 ¥ ()T (72 + 1)
Proof. According to lemma 1.2.10, the general solutions of linear boundary value problem

As =

(5.3) can expressed by
u(t) = IV H(E) + I TYE(H + wco +a¥o(t) + oo, (5.6)
I'(q1+1)
and
o(t) = YK () + 127G (1) + ﬂdo +d1¥o(t) + da, (5.7)
[(q2+1)

where ¢;,d; € R(i = 1,2) are arbitrary constants.

With the help of conditions #(0) = x(v), v(0) = ¢(u) and Dyu(0) = 0, Dyv(0) = 0, we find

cp = x(v), do = ¢(u) and ¢; = 0, d; = 0 respectively. Applying the boundary conditions
T

T
/ v(7)dt = x1u(¢) and / u(t)dt = xou(p), from (5.6) and (5.7), we have
0 0

T
Y2 (1)d
/0 o (T)dt Kl‘Pgl(P)

0 000 4. 70N Iql;lpH IP2+qz;lPF
[t 1) %0 gy 1)@ = T HE) + RETTER) +x(0)

T T
_ /0 YK (2)dT - /0 122G (1) dr — Top(u),

and

T
1
/0 Yo' (T)dt KZ‘I’gZ (@)

_ 2,9 2+q2;¢
T Ty 1) = R (K@) + 1Y) + pw)

T T
—/0 IgFPH(T)dT—/O P72V E(1)dT — Tx(v).

Solving the resulting equations for cg and dy, we find that
T

/0 Y3 (r)dt
MY (S)

+ /OT [gi+q2;lpF(T)dT + Tx(v(ﬂ)))

T
co— HEPK(E) + 160 + gluto)) ([ (e

K . .
2L (1 () + 1)
1
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4 X(v(ﬂ))) _ Ail ( /0 "t (e + /0 "t e + qu(u(ﬁ))),

T
/0 Y (r)dt

: . 1 T .
do = 1Yy + Prtede + 8)) — — (/ 12K (1)d
0= [m (o) + 1 E (o) + x(o(®) - — [ 1 K(m)ae

.\ /OT I§f+qz;¢G(T)dT + T(p(Lt(ﬁ)))

L% ; +4q2;
22 (1K) + ™ 60)

+ go(u(t?))) - Aiz ( /0 ngf”H(r)dr + /0 ngfqz""’zf(r)dr + T)((u)).

Inserting ¢, c1,¢2,do,d1 and dp in (5.6) and (5.7), which leads to the solution system (5.4) and
(5.5). O

Main results

Lemma 5.1.2. For given functions f,h,g,k € C(J,R"), i =1,2. A functions u,v € C? is a ran-
dom solution of systems (5.1)-(5.2) if and only if u,v satisfies the following random coupled system
integral equations
u(t,?)
= 17 h(s,us(9),05(9),8) (,8) + IV £(s,u5(9),05(9),C D o(s, 9),9) (£, 8)

T
/O ¥ (1)dt

¥5'(©)

. . 1 L
I o (s5,u(9),C DRV u(s, 9),05(8),9) (E, ) — - < /O 1% (s, us(9),05(0),8) (1, 0)dT

w0
A1F(q1 + 1)

(1673%(5, us(8),0s(8),9)(Z, )

+ /0 Tlgi”l"‘/’ £(s,us(9),05(8), Dgi¥u(s,9),8)(t, ﬁ)dr)) + 1 (133%(5,1,15(19),05(19),19) (0,9)

T
+Igﬁ‘h;"’f(s,us(ﬁ),vs(ﬂ),cDgy%(s,ﬁ),ﬂ)(p,ﬂ)> - /O 12¥k(s, us(8),05(8),9) (7, 8)dt

T
- / 199 (5, 1,(8), D u(s, 8),04(8), 9) (7, 9)d
0

+ (Y0 (DA +1)x(v(9))

+ %5 (Hp(u(8)),
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and

v(t,0)
= 177k(s,u5(8),05(8),9) (1, 9) + 1177 g (5, u5(9), DIV u(s, 8), vs(8), 9) (¢, 9)

/ R4S

Yo (o

Yt
Azr(qz —|— 1)

<Igwh<s,usw> 0.(9),0)(p,9)

1

+151*‘71"47(5,%(ﬁ),vsw)fDO+ (s, 9),8)(p,9) — -

< / TIgi””k(s,usw),vs(ﬁ),ﬂ)(T,ﬁ)dr
0 (5.9)

T
+ /0 1252 % ¢ (5, u5(9),* DY (s, ﬁ),vs(ﬂ),z?)(r,ﬁ)dr)> +Kz(lgf”/k(s,us(a),vs(ﬁ),ﬁ)(g,ﬂ)
I g (5, u5(9),C DI us, 19),05(19),19)(5,19)) - / TIgfwh(s,us(ﬂ),vs(ﬂ),ﬂ)(r,ﬁ)dr
0

- / TIgi”“”’f(s,us(ﬂ),vs(ﬂ), D Y(s,9),9)(T,0)dt| + (¥ (t)As + 1)@(u(9))

0

+A¥E ()x(v(9)),

For 0 < 41,6, < 1. Let us introduce the spaces
E={u(t,9):u(t,8) € C(J,R") and DY u(t,8) € C(J,R")},

F = {o(t,9) : o(t,8) € C(J,R") and “DW¥o(t,8) € C(J,R")},

endowed with the norm

lu(,8)]1e = llu(:, 8)lloo + °DF ¥ u(:, )||oo—SuPH u(t, 0) | +SHPHCD0+ u(t,8)|-

lo(,®)lF =118l + ‘D *o(., )Iloo—SHPH o(t,9)]| +SUPHCD0+ o(t,9)]].

It is clear that (E, || - ||g) and (F, || - ||r) are Banach spaces. It follows that the product space
(E X F || - ||[ExF) is a Banach space with norm

(-, 8),0(,0)exr = llu(-, 9)|e + o, 9)lr,  woveEXF.
To define a fixed point problem equivalent to system (3.3)-(3.4), we introduce the operators

Q:JXEXFxQ—EXF,
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defined by

Q1(u,v)(t,0)

Q(u,v)(t,9) = :

Qa2 (u,v)(t,0)

where
T
0 Y (t)dt
Q1 (14,0)(1,8) = 15 o (t,8) + I fuo(8,9) + Al;lj(oql(? 1) : 6

. . 1 T .
X (Ig’i’lpkw@,ﬁ) + I 0 (E,0) — K—Z( /0 10V hu (T, 0)dT

T (5.10)
+/ Ig}r‘F‘h/l/qu,v(T,ﬁ)dT)) + K1 (lgi’lphu,v(Pzﬂ) + Igi”l'l”fu,v(@ﬁ))
0

T T
_ /O 12¥k,0(T, 8)dT — /0 i ”’Wgu,v(r,ﬁ)dr]

+ (F0 (DA +1Dx(0(9)) + A¥E (D (u(9)),
and

/ 11;‘71

¥ (o)

) 1 .
x (131'%,0(9,19) g (0, 9) — Kl( /0 127k o (T, 9)dT

1{!‘72
Azr(qz + 1)

Qa(1,0) (£, 9) = I ko (£, 8) + I g, o (£,0) +

T (5.11)
—|— /0 Igi+q2l1pgu,'()(1-, ﬂ)dl—) ) —'I_ KZ <Igi/lpku,v(él 19) + Igi+q2,lpgu/v(g’ 19))

= / (T, 8)d - / R (r,8)de
0 0+ u,o\ 4ty 0 0+ u,o\ t,
+ (¥ (A3 + D(u(8)) + AL ¥E (1)x(0(8)),

with f,, (¢, 9) = f(t,u:(9),0:(9),° D0+ Yo(t,8),0), huo(t,8) = h(t,u;(8),0:(8),9)
Quo(t,0) =g(t,u(9),° Dgilpu(t 9),v:(08),9) and ky, (¢, 0) = k(t,us(9),v¢(9),09);i=1,2.

The maps x(v) and ¢(u) are measurable for all ¢ € Q). In view of Lemma 5.1.2 and (5.10),
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(5.11), we obtain a fixed point problem Q(u,v) = (u,v). Thus, the system (5.1)-(5.2) has a
random solution if and only if we show that the operator Q has a random fixed point.

For the sake of computational convenience, we introduce the following notation.

KF(H PYEET) el ) ¥ (1)

2D Y2 (T (g1 +1)  [MIT(q1+1) ) T(q1+1)

o 2TY(T) z 2TY(T)
2T AT + D02+ 1) )7 71 UM T + DT (g2 +1) )7

%=(1+ T2¥0 % (T) [k £5¢3) Y& (T)
ka0 [ (0)T (g2 +1) 82T (q2+1) ) T(q2+ 1)’

Li=[1+ Tz‘fgqu(T) ’Klwgﬁql (P)Tapl(T) Tgﬁql(T)
’K2A1|Tg2(g) |A1| r(’h + 1)F(P1 + 71 + 1)1
TY§ (T
[A2T(q2+ DT (p1 + 91 +1)°
Y5 (T
BTG+ Ul (pa+ g2+ 1)

= {1+ T2‘I’gl+072(T) |K2|T52+q2(§)‘Fap2(T) TSZ—HD(T)

Ly = (¥§'(p) +¥5'(T))

and

Ly = (¥§(5) + Y5 (T))

5.2 Existence and Uniqueness

The first result is concerned with the existence and uniqueness of random solution for
the system (3.3)-(3.4) and it is based on random versions of the Pervo fixed point theorem.

Theorem 5.2.1. Assume that the following hypotheses holds.
(H1) The functions f,g,h and k are Carathéodory.
(H2) There exist measurable functions a;, b;,n;,1;, k; : | — L®(Q,Ry);i = 1,2 such that:

||f(t,u],u2,l/l3,l9) _f(tlﬁ11H21ﬁ3/l9)|| S kl(t,ﬂ)”ﬂl _ﬁ1|| + ll(tlﬁ)“l’lz _ﬁZH
+n1(t,9)|us — s,
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||g(t;ulzu2;u3;l9) - g(t1H1/HZIE3/l9) || < k?_(tlﬁ)Hul - ﬁl” + lz(t,ﬁ)||l/l2 - ﬁ2”
+ np(t, 8)||us — s,

and
|h(t,ur,u2,8) — h(t, 1,52, 9)|| < ai(t,9)||ug —ur|| + bi(t,9)[|uz — u2l|,

Hk(t,ul,uz,ﬁ) — k(t,ﬁl,ﬁz,ﬁ)n < az(t,ﬂ)Hul — ﬁ1|| + bz(t,ﬁ)Huz — ﬁz”,
fora.et € |, and each u;,u; € R",i=1,2,3.

(H3) The functions x, ¢ are continuous functions with x(0) = ¢(0) = 0. There exist bounded
measurable functions Iy, 1, : () — (0,00), such that:

() = x (@) || < L (8)||u —ll;

lo(u) — @)l < ly(0)[u —ul;

for each u,u € R".

(H4) M(9) € Myxn(Ry) is random variable matrix, such that for every ¢ € Q), the matrix

¥, ()], ¥, ()],
o ﬁﬂ (8) +Y1(9) ﬁ\{z(ﬁ) + Y, ()
r(2-4,) ° ’ r2-o,) * !

converges to zero.
Then the coupled system (3.3)-(3.4) has a unique random solution.
Where,

Y;(9) = max {Ky||a1 (-, 8) [|eo + L1][k1 (-, 8) [|oo + K1 [|a2(, ®)||o + L1 [lk2 (", ®)]|co
+ (Aol ()FI(T), Li[|12(-, 8) [l }

Y2 (9) = max {Ki |61 (-, 9)l|eo + Lall11 (-, 8)loo + Ki [ b2(:, 9)l| oo + Lallm2 (-, 8) |
+ L (8) (| ¥ (T) + 1), Lal[n1 (-, 9) | }
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Y3(8) = max {Kz|a2(-, )|l + La[ka(-, )]0 + Kalla1 (-, 8) o + La[lk1 (-, ) [[oo
+ Le(9) (|A[¥(T) +1), Lo || 1 (-, 8) oo}

Y4(9) = max {Ka[|b2(, 9)lleo + L2l 2+, 8) oo + K2 | b1 (-, ) [|eo + La[[n1(-, 8) [l
+ | Asllp(8) ¥ (T), La|lna (-, 9)|eo

¥4(0) = max { (K1 ()l + Lala -, 8) o+ Rallalc, ) s+ Lalea( 0) o) i

q—1 lhil _
+ Mg (0¥ (1), g s 120, 8)les

Y} (8) = maX{(K1||b1('/l9)||°° + Li||lh(-,0) || + IZlez(-,ﬁ)Hoo +El||7’12(-,19)”00)1{[:(1T)

g1—1 g1Lq .
el (] (1), s I )l .

Y4(8) = max{(K2||az(',19)||oo + Lallka (-, 9)||eo + Kala1 (-, )] o +Z2’|k1(-,19)||oo)1{;:(2]~)

g2—1 QZZZ )
Dl (¥ (1), g2 s 11 (8 e .

Y, (8) = max{(K2||bz(-,l9)||oo + Lall2(+,8) leo + Ka|b1 (-, 8) o +Z2||n1(-,19)||oo)11;:(2T)

g1 q2L> _
+ Ml (O (1), 2 ol )l

Proof. First, we need to show that the operator Q is a random operator on E x F.
From (H1) and Definition 1.3.3 the maps f,g,k and h are measurable with respect to the
variable ¢. In the view of the Definition 1.3.6, we conclude that the maps

% — Q1(u,v)(t,0) and ¢ — Qo (u,v)(t,9)

are measurable. As a result, the operator Q is a random operator on E x F x () into E x F.

Next, we prove that the operator Q is contractive.
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Forall 9 € Q), (u,v),(u,v) € E x F,and t € ], we have

Q1 (x,0)(t,8) — Q1(#,2) (£, 9) |
= (1137 hu o (£, 8) — ﬂ“”h~<t O+ 1T fuo(t,8) — I f (8, 0)])

qu(t) foﬂiz ; ;
ISR £ W(@ M kna(@,0) s O
0
4 ||Igi+q2;¢gu,v(é,l9) Ilﬂz-i-lh ¢guv (&,09)] (/ ||I‘71 lPhuv (T,0)

— 11 ha5(t,9) ||dr+/ [P £y (T, 8) — V1Y £ 5w, l9)||dT)>
+ [x1] (||Igi;¢hu,v(P, 8) — 19 ha o (0, ) | + 115 fuo(0,8) — IV fa (0, 9) ||>
/ 115 K, 8) — 1% k(7 6) HdTJr/ |72, (1, 6)

— 1 (2, 8) T | + (I8 (1) + 1)lx(en) — x(e2)| + Aol ¥ (1) () — p(om) |

< (Kallar (- 9) oo + La ks (- 9) oo + Kallaa(-,8) oo + LallKa (-, 9) oo + [ A1 L (9) (T )
X [lu(-,8) = (-, 8) oo + L 12 (-, 9) || D * (-, 8) ~° DY (-, ) oo + (Ka |1 (-, 8) s
+ Lall (- 8) oo + Kallba (-, 8)loo + La 12+, ) oo + L (9) (|A2[¥§(T) +1))

x o(,8) = (-, 8)[leo + Lalln1(-,9) ol Dy ¥ 0 (-, 8) — Dg¥a(-, ) o

<Y1 (0)[Ju(-,8) = @(-,9) £ + Ya(8) [0 (-, 8) — B(-,8)]F
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Also we have

| Dy Q1 (u,0)(t,0) — DyQ1(%,9)(t,9)|
= 1 ¥ huo(1,8) — ﬂl‘”‘”hma, O + 1 fu o (1,8) — 11T (2, 0))|

i1 1 qu ‘
|A(1)|F(q1) [fo ¥ ) <||I"i’l”ku,v(é,l9) — 2%k 5(E,9)])

+ Y g0 (8,8) — I g7 5(E, 9)] ( / 13 huo (T, 8) — 137 B (T, ) || dT
/ ||IP1+q1 lﬁfw (t,0) — 1P1+q1 W 25(T, 19)||dr>> + K1 <||Igi"¢hu,v(Pf 0) — Ifh Wzﬂ(p, Al
+ Y fuo (0, 8) = 1Y fas(o, H> / 118 ko (T, 8) — 1 ka7, 8) | dT

b [ I gua(r,0) — B P gasm ) e + kgt Ol (e

+ Aol 8 (D) 9(1) — @) |
<Yi(®)u(-,9) —u(-,9)lle + Ya(8)llv(-,8) — (-, ) -

Moreover,

DY Q1 (1, 0)(t,8) — DY Qi (@,7) (1, 9)
6y S
S/o %\\D¢Tl(u,v)(t,a)—D¢T1(ﬁ,6)(t,l9)\\ds

1-6,
< f&—fg (Y1) lu(-,0) —u(-,9)|[e + Ya(®)]lo(-,9) — (-, 8)|¢).

From the above inequalities, we obtain

1Qu(w,0)(t,8) — Qi(m,) (¢, )|
= [Qu(w,0)(1,8) = Qu(@,0)(1,9) |, + DG Qu(w,0) (1, 8) = DR Qu(3,0)(1,9) |,

1-9, 1-4,
< (}P&—_gw) m(@)) Ju-,8) ~ (-, ) + (‘1’(2—@%@ +Yz<z9>)

x|lo(-,9) =o(-, 9)|¢.
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In a similar way, we can find that

1-6
(%)
o 1
Thus,

where
lu(-,8) —u(-,9)l[e
A((u(-8),0(,9)), (@(-,9),3(.,9)) ) =
lo(-,8) =3(-, 9)][e.
As for every 9 € (), the matrix M(9) converges to zero, this implies that the operator Q
is a M(?%)—contractive operator. Consequently, by theorem 1.5.4, we conclude that Q has
a unique fixed point, which is a random solution of systems (5.1)-(5.2). This completes the

proof. O

5.3 Existence result

In the next result, we prove the existence of solution for the system (3.3)-(3.4) by applying a

random version of a Krasnoselskii-type fixed point theorem.
Theorem 5.3.1. Assume that (H1)-(H2) and the following hypotheses holds.
(H5) There exist measurable functions $i,§i,ﬁi,5i,ﬁi,z,%i : ] — L®(Q,Ry);i = 1,2 such that:

1f (£ 1, 2,13, 8) || < @1 (8, 0) + ki (8, 8) lfun | + 1 (8, 8) |2 | + 71 (£, 8) || 3],

gt 11, 1,3, 8[| < Ga(t,8) + ka8, 8)[|uer | + L (t, 0) 2| + (2, 8) |3,

and
1h(t,u1,12,8) || < O1(t, ) + (£, 0)|u || + ba (£, ) ||ua],

Ik (t, 1,12, 9) || < B2(t,8) + (8, 8) |1 | + b2 (8, 9) |2,
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ora.et € J,and each u; € R",i=1,2,3.
f ]

(H6) there exist positive constants Ny, , Ng,, such that

max{Ny, lo(8),Ng, L, (9)} <1,

where, ( )
I'(g1 +1 _
_ q1 q1 q1—62
N‘h - |A2| (TO (T) + T(q1 +1 —éz)TO (T)) ’
I'(g2+1) ) )
N, = | Ay [ ¥92(T oy .
02 ‘4|(0(>+F(Qz+1—51) o (1)
Let

1— N, Y1 (8) = Y1(9) — N, Y5(9) — Yo (9)
M(9) =
—Np, Y3(8) = Y3(0)  1—NsYy(8) — Ya(9)
if det M > 0. Then the coupled system (3.3)-(3.4) has at least a random solution.

Where s
Yy “(T)

Ni, = T(2—20;)

;1=1,2.
In what follows we use the following notations.

©1(8) = max {Ki|a1(,9)[leo + L |[k1 (-, 9) |eo + Killa2(-, 8)l|eo + Li [ k2 (-, 9)|eo
Ll () [}

@2(8) = max {K1|[b1(,8) [leo + L1 (|11 (-, ®) oo + K1 [|b2(+,8)[|oo + L1 [|m2(-, 8) oo
+ (JMFE(T) + D) 1(8), Lallna (-, 8) [|eo }

®3(8) = max {Kz[|a2(-, 9)leo + Lalka(-, ) |co + Kala1(-, 8)lleo + Lo [ k1 (-, 9)]leo
Lol (- 8) e},

©4(8) = max {Kz[|b2(-, 9) |eo + La[l12(,8) [loo + Ka[b1 (-, 8) [leo + Lal|m1 (-, 9)lleo
+[Aa[¥G (T)1g(8), Lol n2 (-, 9) [l },
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@, (8) max{(K1||ﬂ1(',19)||oo + Li[lk1 (-, 9) |0 + Kil|az (-, 8) || oo + zl”kZ(-,ﬁ)Hoo)T:(lT)
+ |7\1|41Tgl1(T)Z<P(‘9)'\1%”12("19)””}’

@, () :max{(K1|Ib1(',l9)||oo + L[|l (,9) || +K1Hbz(.,l9)Hoo +f1||n2(-,ﬂ)\|m)T:(1T)

q1L

gy G lke

@4 (8) = max{(K2||az(~,l9)||oo + Lollka (-, ) ||eo + Ka|a1 (-, ) | eo +Z2||k1(-,l9)||°°)lif0q(2’1")
+ |A3’Q2T321(T)ZX(19)/\I?§(L;) Hll(/ﬂ)”m}'

@, (9) :maX{(K2||b2(’zl9)||°° + Lol (-, 8) || oo + Ko || b1 (-, 8) ||co +f2||n1(-,19)\|oo)qu(2T)

goL
oyl )l

©1(8) = max {K1 @1 (-, ®)[leo + L1|[k1 (-, 8) |0 + K1 [|32(-, ) ||oo + L1|[k2 (-, 8) oo
Lalll2(-,9)[les )

©s(8) = max {Ku[|b1(-,9)|eo + Lal[11 (-, 9) |eo + Ki[b2(-, 8) [loo + Lu|7i2(-, 8) ||
+ (|1 [¥5(T) + DI (8), La |71 (-, 9)[leo }.

O3(8) = max {Ka|[a2(-, )| + Lallka(-,8) [loo + Kal[1(,8)l|eo + Lalk1 (-, 8) |l
Lol ()]l }

©4(8) = max {K[b2(-,8)|eo + Lalll2(+, 8) [loo + Ka[b1 (-, 8)[loo + Lo 712, ) | oo
+[As[¥G (T)1g(8), La||22(-, 9) [l },
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&(8) = max { (K1 @ (-, 9) oo + Lal[F1 (-, 8) |oo + Kal|2 (-, ) loo + L1 [ (-, 8) o) qf:(lT)
. Mﬂqlw—lmz?(ﬂ),%n’z}c,muw},

@4(8) = max { (K4[[B () s+ LI, 0) o+ Kal i )l + Lala (-, 8) o) s
s o)l

@, (9) = max { (Ka||@2(-, 8)]leo + La|[k2 (-, 8)]oo + Ko|&1 (-, ) |oo + La|lk1 (-, ) ||oo) T:(ZT)

72—1 Q22 g7/
Rl (D), g o5 1 8) o .

©y(8) = maX{(KzHEz(-,ﬂ)lloo + Lo|[Ta (-, 8)||oo -+ Ka[B1(-, 8|0 +Zzllﬁ1(.,l9)\|m)q,:(2n

goLy |~
oty 72}

®1(8) = Ki[101(-,8) lloo + Ki[162(-, ) oo + L[ 1 (-, 8) lloo + Lullg2(-, ) |co,

and
Do (8) = Kal|62(-, 8)lleo + K211 (-, ) [loo + L2l|1 (- ) [loo + Lol @1 (-, 8)]|oo-

Proof. Let us subdivide the operator Q into two operators A,B: E x F x () = E x F as
follows:

Q(u,v)(t,0) = A(u,v)(t,9) + B(u,v)(t,9) (u,v) EEXF (t,9) €] xQ,

where
A(u,v)(t,0) = (A1(u,v)(t,9), Ax(u,v)(t,9)),

and
B(u,v)(t,9) = (B1(u,v)(t,08),Ba(u,v)(t,9)),
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with
A1 (u,0)(8,9) = 1Y (D p(u(9)), (5.12)
Az (u,0)(t,9) = A¥ (Hx (0(9)), (5.13)
and
T
g1y praY ¥3 (1) /0 to' (DT
Bi(u,0)(t,8) = 'V hy, »(t,9) + IT1T7Y t,0
1(u 'U)( ) ot U;U( )+ 0+ furv( )+ A1F(Q1 +1) ng(g)
. : 1 r .
X <Ig?gll’ku,v(g,19) F I (E,9) — K—Z( /O 1%y, (7, 8)dT
T (5.14)
+/0 I(’)Trql’lpfu,v('f/ﬁ)dr)) + 11 <Ig}k’lphu,v(9r‘9) + Igiﬂh'lpfu,v(.ozﬁ))
T . T .
_/0 Igi’lpkulv(r,ﬂ)dr—/o Igfrqz’lpgu,v(r,l?)drl
+ (¥ (DA + 1)x(0(9)),
! q
Yo' (t)dt
- - wpe) [T
By (u,0)(t,9) = 1%k, o(t,0) + 1272 ¥ g, o (1,0) + —2 0
2(” U)( ) ot M,U( ) 0+ guxv( ) AZF(qZ 4 1) ‘Fgl (p)
. ) 1 r .
X <Ig}r'¢hu,v (o, 8) + I(;)?Jlrﬂl’lpfu,v (o, 8) — 1 (/0 Ig«z!lpku,v(T/ 8)dt
(5.15)

T
- 15&*"2'¢gu,v<r,ﬂ>dr)> txa (Igi"”ku,v@, 8) + 15i+q2"”gu,v<¢,ﬂ>)

T T
_ /0 111y, (7, 9)dT — /0 Igﬁ”“‘/’fu,v(r,ﬁ)m]
+ (Y5 (DA + Dg(u(9)).

We need to prove that the operators A and B satisfies all conditions of the Theorem 1.5.7.

The proof is divided into several steps.
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step 1. A is M(9)—contraction operator:
As in the previous proof of Theorem 5.3.1, we can obtain
Foralld € O, (u,v),(,7) €EX F,and t € |

| (A1(,0))(,8) = (41 (@2)) (0|

< el (Y1) + o B ) @), #) =),

And

| (A2(,0)) (,8) = (42(3,9)) (-, 8)]

< Il (HE) + ¥ ) ) (o, 0) = ()1,
Thus

A(A(u,0)( ), A@,2)(,9)) < M@)d((u(-,8),0(-,8)), (a(-,8),5(- 8)) ),
where
Ny, 1p(9) 0
M(8) =
0 Nyph(®)

From (H6) and example 1.4.9, we conclude that the Matrix M(¢) converges to zero, then the
operator A is a M(8)-contractive operators.

For the following steps, we show that B is completely continuous.

step 2. B(-,-,9) is continuous operator.

Let (uy,v,) be a sequence such that

(un,vy) = (u,v) EE X F asn — oo,

Then, for each ¢ € (),t € |, we have

(B0 - 1))

< (Kallas (- 8) oo + Lallkr (-, 8) o + Killaa (-, )l + La[Ka(-,8) oo ) [ (-,8) — u(-,8)]

o0
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+ (K1|!b1(-,19)|!oo + Lilll (- 9) leo + Killb2(, 9)lleo + Lyl 2(-, 8) oo

+ L(8)[|API(T) + 111) [on(-8) = v (-, 8),

+ Li[|la (-, 9) [loo || DR (-, 8) — DR u (-, 9) ||, + Lalln1 (-, 9) [loo || Dok v (-, 8) — DI (-, 8) |,
< ©1(0)||un(-,8) — u(-,0)|| ; +©2(8)||a (-, 9) — (-, 0)|| -
Also

DY (By (un, 00)) (1,8) — CDga;‘F(Bl(u,v))(t,ﬁ)H

gl () ¥, *(T)

< ﬁ@)i(ﬂ)llun(-,ﬂ) —u(-,0)|+ ﬁ@é(ﬂ)"vn(‘zﬁ) —o(-,0)| -
Furthermore,

| (B (an,0)) 28) = (Ba(,0)) (,9)|

1-6;
< ((%@(M " @M)) (-, 8) = uC-0)]

1-5,
(F S eue x| o) o0, ) 50 asnes

On the other hand, for any ¢ € () and each t € ], we obtain
H (Ba(1tn,vn)) (£, 8) — (Bz(u,v))(t,ﬁ)HF
1 ST
< (( o) +®3<ﬁ>) [0 8) — u(-0)],

1-6
+<Tf(02_(3_®ﬁ;(19)+®4(19)) an(.,ﬁ)_v(.,lg)up>_>o as 711 — oo,

Hence, B(-,-)(t, ) is continuous
step 3. B(,-,9) maps bounded sets into bounded sets in E x F.

Indeed, it is enough to show that for any r > 0 there exists a positive constant R such
that

1(B(u,0)) (-, 9) lExr < R(8) = (R1(8), Ra(8)).
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For each (u,v) € B, = {(u,v) € ExF: |u|lg <71, ||v||r <r}, and for each t € ], we get

H(Bl(u,v))(t,ﬁ)H
¥ ()
[A1]T (g1 +1)

fOTTgZ(T)dT
Y (@)

. ) 1 r
X (||Igi"”ku,v(€,l9)|| I g0 (E,0)) +—< /O 10 o (T, 8)d

< o (8,0) || + |1 £ o (1, 9) || +

|12
/ [ (7, 6) \dr)) 0] (1o, 0)] + 1 fua(o, )]

+ /0 1197k, (7, 8) | dT — / 11250 g, (,0) dT | + (F5 (1) A] + 1) x(o(8)) ]

< @1 (8) +r(01(8) + O(9)).

and
“Dgt (B(w,0)) (1,)|
-5 1-5, N
< ‘7;;1;0_ g)) 1 () + ;P(f’z _(53 (& 6) + ©4(9)),
therefore,

oo,

—6, 1-3, " _ -
< P(9) (quzl;o_ g)) + 1) + r(?& _(53 (©1(9) + O5(9)) + O1(9) + @2(19)) =Ry (9).

Similarly, we have

|,
—& 1-6; B B B
< D, () (”’13?;0_ ((5;[)) + 1) + r(?(oz —(53 (©4(8) + OL(8)) + O3(8) + @4(19)) = Ry(8).
Hence,

H (B(u/v))('/ﬁ)HExF = H ((Bl(ulv))('/ﬂ)/ (32(1/[,0))(',19)) ||E><F < (Rl(ﬂ)/RZ(lg)) = R(ﬁ)
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step 4. B(-,-,¥) maps bounded sets into equicontinuous sets of E x F.
Let B, be a bounded set of E x F as in step.2, let t1,t, € J and t; > tp and any (#,v) € B, and
% € ), we have

[ B16000) (12,8) = (Ba(w) 12,0)|

t | gq S g
S/z “Y 1(ty,8) — ¥ (tp,s ’Hhuv (s,8) Hds_|_/ 11IﬁHhuv (s,9) HdS
0

2 [§PHa (1, 5) — FPTE (1, 5) | WP (15
+/ s,9) ds+/ —’ s,0)||ds
0 L(p1+q) |fuo(s 2] b T(pi+aq) [fusts- 0]
‘Y
i (t) — Yo / » e
|A1|F(q1+1) ¥ (g 11g% oo (8 0) |+ 1 I gu0 (6, 9) ]

|w(/rmwmvr0Wry/nﬂ”WﬁAnmwQ)

-HmomluAnMMW@ﬂWﬁvm|Q [ 1 bt 0) e

T
—|—/0 HIPz-H]z lpgu U(T l9)||dT + }qu Tgl (tz)‘ ||/\1X(U(19))|| —0asty — 1y,

In same way, we find that

D% (By(1,0)) (11, 8) — “D* (By (1,0)) (£, 9) H —0asty— t,

Moreover;
H (By(1,0)) (t1,8) — (By(1,0)) (tz,ﬁ)HE S 0ast —t,

In similar manner, we have
H (Ba(,0)) (t1,9) — (Bz(u,v))(tz,ﬂ)HF S 0ast — b,

Thus the operators B; and B, are equicontinuous, and then B is also equicontinuous. Hence
by the Ascoli-Arzila theorem, we deduce that B is compact. Therefore we conclude that B is
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completely continuous. Also from the hypothesis (H6) and example 1.4.9, we can see that
the matrix I — M has the absolute value property.
Now, it remains to show that the set

u 0

oy ey ?) = o)

is bounded for some measurable mapping y : 3 - R with 0 < u(¢) <1on (), let (u,v) € A.
Then

N ={(u,v): 3 — X € Y is measurable |u(8)A(u,v) + u(9)B <

[ut, )]

< (Kal@ (- 8) oo + LillRs (- 8) o + K[z, 8)llo + La[Ra(-,8) o + ¥ (T (8))

< [, )loo + Li[2, ) oo D%, 8) o + (KalBn (- 8)llo + Lalla(,8) o + Kil[Ba(-,8)
+ a2, 8) oo+ (2l ¥3(T) + DI(8)) [0 ) o + L - 8) ol Do (-, 8) o
K1, 8) oo+ a2, 8) o + Ll -, 8) o + Ll 9) o

< @y (8) + Y1 (8) (-, B)l|e + Ya(8) o, 8)r

In addition, we obtain

n¥y 2 (T) ¥y (T)

D), < @@ T s+ L (Y0 9)ls + Y30 (- 0) e ),

Furthermore, we get

—5, 1-5,
lut8) s < o) () 1) + (R =1 0) +w1(0) ) - 0

1-5,
n (T(z—((;‘r;\( (8) + Y2 (8 ))||U('rl9)||F-

and

5, 1-5,
ot 8) < @a(8) (B 1) + (FL=50v3(0) 4 Ya(@) )t 0

1-61
+ (R Y +Y4(6) ) o )1
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This implies that
1—=NgY1(8) =Y1(9) = NgY5(8) — Y2(9) [u(-,8)[E N, ®@1(9)
< /
—N5, Y3(0) = Y3(8) 11— NsYy(8) — Ya(9) [o(-,8) | N, @2 (8)
where s
_ ¥ (D)
N§, - F(Z . 51_)11 - 1/2/
and 5 5
<. _ Y1) o nnt (D)
= 1 — 1.
No =T " Ne =T 5 *
Therefore
N [u(-,9) | N, @1(8)
M(9) <
[o(-, 8)l|¢ N, @2 (8)

Since M(®) satisfies the hypotheses of Lemma 1.4.11, it follows that M~ is order preserv-
ing. We apply M~ to both sides of the above inequality, to obtain

lu(-,8)le N5, ®1(8)
<M7(9)
lo(-,8)l|F N, ®2(9)

This shows that set A/ (¢) is bounded, consequently of steps 1-4 and theorem 1.5.7, we
conclude the operator Q has at least one random fixed point, which is a solution of the
system (5.1)-(5.2). O

54 Stability

In this section, we study Ulam-Hyres stability for the solutions of our proposed system.
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Definition 5.4.1. [12] The system

u(t,9) = Qi(u,0)(t,0),
(5.16)

o(t,8) =Qa(u,0)(t,9),

is said to be Ulam-Hyres stable if there exist C1(¢),Ca2(8),C3(8),Ca(9) such that, for each
e1,€2 > 0 and solution (u*,v*) of the inequality system

[u*(-,8) — Qu(u*,v*) (-, 9)[[g <ey,
||U*(,l9) _Q2(u*lv*)('/l9)||F §82/
there exist a solution (#,7) of system (5.16) such that

[7(-,9) — u*(-,8)||g < C1(9)er + Ca(B)er,

|7(-,8) — 0" (-,9)||r < C3(8)e1 + Ca(B)er

Theorem 5.4.2. Suppose that the hypotheses (H1)-(H3) are achieved and M converge to zero. Then
the system (5.1)-(5.2) is Ulam-Hyres stable.

Proof. By the theorem (5.2.1) we deduce that there exits a unique element (u*,v*) € E X F
such that (1*,v*) is a solution for (5.1)-(5.2). let ¢1,e, > 0 and (%,7) € E x F such that

(-, ) — Qu(w,9) ,19 HE <e,

Thus
||1/l( 119) _u*( /&)HE < Hﬂ( 119) _Ql(ﬁlﬁ)( 119 HE+ ||M _Ql(ﬂlﬁ)( ’19)HE
<Hﬂ(,l9)—Q1(ﬁ,5 '119 HE+||Q1(Z’[ % )( ﬁ)_Ql(ﬁlﬁ)(/ﬁ)HE
¥y (1),
§€1+< FZ gy 10 )H” )=l
1-5,
+ (FSS00) 4 Y20) ) [0 8) ' )

Page-87-



5.5. EXAMPLE

In the same way, we obtain

1-5,
Jot-8) " (.l <ex-+ (L =04(0) +Y3<z9>) (@, 8) - (9,

1-6;
+ (T Y+ Ya() ) 0 0) — o2

Thus,

Since (I — M(®)) is invertible, we apply (I — M(®#))~! to both sides of above inequality to
obtain

We denote (I — M(8))~ ! = , we then obtain

[7(-, ) — u*(-,8)||g < C1(9)e1 + Ca(B)er,
|7(-,8) — 0" (-,9) || < C3(8)e1 + Ca(B)er

Proving that the system is Ulam-Hyres stable. O

5.5 Example

We illustrate our results by an example. Let QO = R* = (—0c0,0) be equipped by the usual
oc—algebra consisting of Lebesgue measurable subsets of R* . Consider the following ran-
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dom coupled ¢p—Caputo fractional differential system

( 1

3. 1, 1.

D DI u(t,9) — h(t,us(8),0:(8),9)] = f(t,ur(9),0:(8),  D¥ 0(t,9),8);t € [0,1],0 € Q,
5. 1. 1.

DA DA o(t,9) — k(t,ui(8),0:(8),8)] = g(t,us(8),°D7 u(t, 8),0:(9),9);t € [0,1],9 € Q,

1
1(0,8) = x(0(9)), Dyu(0,8) =0, /O o(7, 8)dT = %u(%,l‘)),

8%t o1 (8)] .
(62 1 2)va00 1 2 <C°S(”*<‘”> o oy T 1<wt<19>>),

£t us(8),01(8),wi(8),8) = -

albn(®),0(t8),wi(0),8) — <05 ( 10(8)] + [00(8)] + [wi(8) )_ /s

~ 100082 +2) \ 1+ [ur ()] + [0 (8)] + [ (9)]
1926_3t
220 9) = 562 1 2) 1+ (81 + o (9)])
o 192(|l/lt(19)| + |’Ut(l9)|)sil’1(t)
K 0) 209 0) = o2 1 2) (1 + (9)] + [on(O)])”
192

x(0(9)) = 81071 2) sin (v(1,9)),

8%|u(3,9)]
64(2+ 02+ u(3,9)])

¢(u(8)) =

\

Clearly, the functions f,g,h and k are Carathéodory. The hypothesis (H2) is satisfied with
the following measurable functions:

§2et 82 cos(t
kl(t,ﬂ) = ll(t,ﬂ) = nl(t,ﬂ) = m, kz(t,lg) = lz(t,lg) = le(t,ﬁ) = Wz—(i—)Z),
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9203t #?sint
92 92

L(9) = ——, [,(0) = —F—.
x(8) 81(92 +2)’ o(9) 64(92 + 2)
With the given data, we find that

A~ —1.31069491, A, ~0.09768142, A3~ —1.19318575, A4~ —0.13733691,
Ay ~1.48376793, A, ~1.27419825, K; ~3.80522808, K;~1.91051664,

K ~1.64067230, Kp ~3.49398120, L;~2.13327452, L, ~ 0.50098430,

2 2
0.11917443, Y, ~ >

L ~0.39551389, L)~ 227045515, Y;~~ 7 0.11224645,

+1_92 +l92
92 92 , 92

Ys;~——--0.12802312, Y4~ —-—-0.10309264, Y7~ —-—0.02979361,

3% 5 g 12802312, Yy - 1= 7192

, 92 , 92

~ ——0.02497 Yi~ ——0.02891

Y, 2—|—19200 97896, 3 2+192()0 891936,

/ 82
Y, >~ m0.02577316,
and

P2 0.15060891 0.13860111

M(9) ~

2+92
0.15948927 0.13113553

Where the eigenvalues of matrix M(9) are:

192 _192
Mo 55028986951 <1,y 5

0.00812508 < |17,| < 1.

Thus, M(9) is converges to zero, then by Theorem 5.3.1 the coupled system (5.5) has unique
random solution on [0,1] and is Ulam—Hyers stable.
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CHAPTER 6

RANDOM FRACTIONAL DIFFERENTIAL
COUPLED SYSTEM WITH RETARDED
AND ADVANCED ARGUMENTS

6.1 Introduction

In this chapter, we investigate the existence and uniqueness of the following nonlinear ran-
dom coupled system of p-Caputo fractional integro-differential equations'

DI u(t,0) + Xy I g1 (1l (9),04(9),9) = fi(t,u! (9),04(9),8)
,te ], 0e),

DI o(t,8) + L0y L3 g0i(t u (8),0(8),9) = fa(t,ul(9),0(8),9)
(6.1)
with

(u(t,9),0(t,9)) = (11(t,9),m2(¢,9)); tela—r,al,r>0,
BeQ, (62)

(u(t,9),0(t,9)) = (E1(1,9),E(9)); te[T,T+1),1>0,

IF. Fredj, H. Hammouche. Existence of random coupled system of fractional differential equations in
generalized Banach space with retarded and advanced arguments. International Conference on Mathematics
and Application (ICMA’ 2021) organized on the 7 — 8 December 2021 at the University of Blida 1.
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where | = [a,T], Dp ™ denotes the p-Caputo fractional derivative of order 1 < p; <2, [ Yif W

is the 1p-Riemann- L1ouv1lle fractional integral of orders y; ; > 0. (€),.A) is measurable space.
i, fij T X C([-1,1],R") x C([~7,1],R") x O — R" are given functions. 7; € C([a —r,a],R")
with 7;(2,8) =0and & € C([T, T+ 1], R") with &(T,8) =0; j=1,2, i=1---m

We denote by x!(s) the element of C([—7,1]) defined by

ul(s)=u(t+s), se[-rl)]

Main results

Lemma 6.1.1. Let 1 < p < 2. For any functions G,F; € C(],R), 7 € C([a —r,a],R) withy(a) =
and ¢ € C([T, T 4 1],R) with {(T) = 0. Then the following linear problem

m
DPu(t) + Y I"E() =G(t), te],

i=1
u(t) =n(t); tela—r,al,r>0, (6.3)

u(t) =&(t); te[T,T+1),1>0.

has a unique solution, which is given by

n(t), iftela—ral,

Q) ~ Y I
u(t) = ¥, (1) il ) . (6.4)
a 1 lpb . ’lp
+Tu(T)(§ﬂ PYR(T) — I G( )), ifte]

| &(t); ifte [T, T+l

Proof. Applying the -Riemann-Liouville fractional integral of order p to both side of the
equation in (6.3), and using Lemma 1.2.10, we get

u(t) = 1" G(t) ZI““*”"’P )+ co+ca¥a(t);  coc1€R. (6.5)
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Using the fact that u(a) =#n(a) =0, u(T) = ¢(T) =0, and from (6.5), we find
u(a) =cop=0,

and

m
u(T) = IPYG(T) = Y I PYE(T) + c1¥a(t) = 0.
i=1

Some simple computations give us

(ZI’”*’”"’F = Ifpr(T)>.
1

Inserting cg and c; in eqution (6.5), which leads to solution (6.4). O

By C([—,1],R") we denote the Banach space of all continuous functions from [—r,!] into

R" provided with the norm

[l = sup{[u(®)]| : =r <t <1}

C([a, T],R™) is Banach space equipped with norm

a7y = sup{[[u(t)[| :a <t <T}.

AC(J,R") is the space of absolutely continuous functions on J, and we denote by AC!(J,IR")

the space of functions u(t) which have continuous derivatives on J:
ACHJI,R") ={u:] - R":u' € AC(J,R")},

where

We denote the space X by

X={u:la—rT+I] = R"1uj,_, . € C([a—ra])uym € AC(a,T])
and ujpry € C([T, T+ 1)) };

where the aforementioned space are supplemented with the following norms
||u||[a7r,a] = Sup{Hu(f)H ca—r<t< ﬂ},
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[ullir,reng =sup{llu®)||: T<t<T+1},
ullx =sup{||u(t)||:a —r<t<T+I}.
The product space X x X is provided with the norm

() [l x = [lullx + [[ollx-

Lemma 6.1.2. For given functions gj,i,fj €eC(I,R"),j=1,2andi=1,--- ,m. A functions u,v €
C2 is a random solution of systems (6.1)-(6.2) if and only if u,v satisfies the following random
coupled system integral equations

m(t,0);, iftela—ral,

Y (1t (9),0'(9),9) — iIZi’i+p1;¢g1,i(t,ut(ﬂ),vt(ﬂ) 9) + ;,P ((;))
u(t,®) = . i=1 “
X (ZIZi'ierﬂPgl,i(T,uT(ﬂ),vT(&),ﬁ) — PR (T,uT(8),0 ;ifte],
i=1
| ate); ifte[T,T+I),
(6.6)
and
( n2(t,9); ift€a—r,al,
Py t t . t t Ya(t)
1Y fo(t,ul (8),0'(8),0) — Y 172 g2i(t,u'(9),0'(9),0) + ¥.(T)
o(t,9) = " i=1
X (ZIZf’i+p2;¢g2,i(T,uT(l9),vT(19),19) — 1" (T,ul (9),0 ) ifte],
i=1
| &(t8); ifte|T,T+I].
(6.7)

To define a fixed point problem equivalent to the system (6.1)-(6.1), we introduce the
operator

Page-94-



6.2. EXISTENCE AND UNIQUENESS

Q:JXxXXxXxO—=XxX,

defined by

(Q1(u,0))(t,0)
(Qw,v))(t,8) = ,

(Q2(u,0))(t,9)

where

(Qj(u,v))(t,8) =
( ni(t,9);, iftela—ral,
Iffpfj(t,uf(ﬂ),z;f(ﬂ),ﬂ) v Izi‘ﬁl’jﬂ/’g]./i(t,ut(ﬂ),vf(ﬁ),ﬂ) + ;I::((;)) 69

i=1

=z iitpi; i’ .
(L1 gy (TT(0),07(0),0) L (T 0),07(0),0) ) i €
i=1

L Cj(t,ﬁ); ifte [T,T+l]

6.2 Existence and Uniqueness

The first result is concerned with the uniqueness of random solution for the system (6.1)-
(6.2) and is based on random versions of the Pervo fixed point theorem.

Theorem 6.2.1. We assume that the following hypotheses holds.
(H1) The functions g;; and f; are Carathéodory; j=1,2andi=1,--- ,m.

(H2) There exist measurable bounded functions le, L'j,/\/l j,l-,/\/']-,i : Q) — (0,00);j=1,2and i =
1,---,m such that:

1fi(t,u,0,0) — f;(t,u,0,0)|| < K;(t,8)[|u—ull— 5 + L;(t,0)|lo—Ol[_ 1,

and
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187,i (£ 1,0,8) — &1,i(t, 1,0, 8) || < Mjji(t, 8)lu =l [y + Nji(t, 8)[Jo = |y,

fora.e.t € J, and each u,v,u,0 € C([—1,1]).
(H3) M(9) € Myuxn(Ry) is random variable matrix, such that for every ¢ € Q), the matrix

CPl’Cik(ﬂ) + C’hﬂ?M}lk(ﬂ) CPlﬁi‘(&) + C71+P1N1*(19)
M(9) =2

Cp, K5(8) + Coppy M5 (0) Cpr £5(8) + Coppy p N5 (9)
converges to zero.

Then the coupled system (6.1)-(6.2) has a unique random solution.
. Yh(T) ¥E(T)
WithCy, = —~—2—_ Cp.1r. = a
T TG ) T T Ty )

;] =1,2,and

K5 () = 1K )l a1, £ (8) = [1£5(-, 8)lja,17, M ZHM]“ a1/

ZHMZ ’ ”uT] ')’]—sup{')’]z i=1,---m,}.

Proof. The operator Q is a random operator on X x X. Now, we prove that the operator T
is contractive.

Forall ¢ € Q, (u,v),(u,0) € X x X,. If t € [a —r,a] or [T, T 4 1], then
1(Q1(u,0)) (£,8) — (Qi(w,2)) (,8)]| = 0.

For t € |, we have

1(@1(0,2)) C8) — (@) 8
TGO NP FCTCs DV T
<2 F )+ I Mi®) ) (e 0) — (- 0)
V) g WD) ,
+2( Tt ) + 1 T ) ) ot 8) =3 8)
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and
1(Qa1,0)) (- 8) — (Qa(,9)) (- 8)]|
¥R(T) ., () _
<2 F KA 0) + o s L MA) ), 0) = (- 9)
¥IT) wrtry _
+2(—W2 L0+ i (ﬁ)) o, 8) — (-, 8)]lx.
Thus,
1((QM,0) (,9), (Q(,) () < M(@)d((u(-,8),0(-,8)), (7(,8),3(,9)) ),
where

lu(-,8) —u(-, 8)llx

lo(-,8) =3(-,8)llx
As for every 9 € (), the matrix M(9) converges to zero, this implies that the operator Q
is a M(9)—contractive operator. Consequently, by theorem 1.5.4, we conclude that Q has

a unique fixed point, which is a random solution of systems (6.1)-(6.2). This completes the
proof. O

6.3 Existence result
In the next result, we prove the existence of solution for the system (6.1)-(6.2) by applying a

random version of a fixed point theorem.

Theorem 6.3.1. Assume that (H1)-(H2) and the following hypotheses holds.

(H4) there exist measurable functions ¢, xj,wj, Aj i, 0jis Wi | — (0,X);i=1,2andi=1,---,m
such that:

1£j(t w0, 8)[] < @8, ) + x;j (&, O)[ull—py + wj(t, ) [0l -,

1gi(tw,0,0)|| < Aji(t,8) + pji(t, ) ull (=g + 1 (B0l =10

fora.e.t € |, and each u,v € R™.
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Then the coupled system (6.1)-(6.2) has at least a random solution.

Proof. We need to prove that the operators Q satisfies all conditions of the Theorem 1.5.5.
The proof is divided into several steps.
step 1. Q(+,-,9) is continuous operator: Let (u,,v,) be a sequence such that

(un,vn) = (u,v) € X x X as n — oo.
Then, for each ¥ € Q) and for , If t € [a — r,a] or [T, T + 1], we have
| (Quta,00)) (£,8) = (Qw,2)) (1,8 = 0.

Forte |, we get
| (@) (1,8) = (Q0)) (1,0)|

F(T) e ¥, (T
< (25 O+ iy MI) ) ) a2

¥ (T) ¥ PI(T)
+2(I’(pj—|—1)£f(l9)+1‘(r),]1_|_p]+1) ( ))H ( ) ( 19)!|x)—>0 as n — oo,

Hence, Q(-,-)(t,?) is continuous.
step 2. Q(+,-,¥) maps bounded sets into bounded sets in X x X.

First, we set

97 (8) = lloi (- o,y x7 (8) = 11 Ol o1y, 05 (8) = Nlwj (-, ) [lja, 17,

ZHA]l ’ H[uT] p] Z”p]l ’ HaT ]’l] ZHV]Z ’ HuT]

Indeed, it is enough to show that for any r > 0 there exists a positive constant R such that

1(Q(1,0))) (-, 8) [ xxx < R(¥) = (Rq(8),Ra(8))

for each (u,v) € B, = {(u,v) e X x X: |lu|lx <7r,||v|]|x <r}, forallt € Jand forj=1,2,
we get

1(Q)(w,0)) (£, 9)]
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<

IngE

D7 g5, °(8),0°(8), 8) | () + zﬂ””]”’ngﬂ (s, 8)I()

[
—_

l ‘I,'Yj,iJer(T) .
e (@ Ol o+ (19)HU('/19)HX)

VjitPj
< 21"(:; — p](i)l) (A (9) + r(p] (8) +pj (9 )>) = R;(9).

IN

2

Hence

| (o))

= (@) o), (@), < Ri(s),Ra(8)) = Ri)

HXxX
step 3. Q(+,-,¥) maps bounded sets into equicontinuous sets of X x X.

Let B, be a bounded set of X x X as in step.2, let t1,t, € |, where t; > t, and any (u,v) € By,
¢ € Qand for j =1,2, we have

(@00 (1,8) = (@00} (12,0)|

S ‘Ta(tl) - ‘Fa(t2)

u YjitpiP
‘I’a(T) Iai g Hg]Z 5 u5(19 H

i=1

m. b Yjitri—1
L, v )“’)(r()% f(;]))) s, u°(8),0°(8), 9) | s

e 9/ (5)((9(0) = ()P = (p(r2) = ()P (8
£ e a0 s
o ([Falt) = Yalty)| ¥ (k) = (t2)
- Fa(T) L(vji+pj+1) I'(vji+pi+1)

Y(t) — (a)) P (Y(t2) — g(a)) T * * *

i ’ | r(l')’j,i + I:]l' 4)- ) ( F(Zyj,i T pj J)r 1) ) <A]’ (8) + 7(.0]' (8) + u; (19)>) — 0asty — t.

Thus the operators Q1 and Q, are equicontinuous. Moreover Q is also equicontinuous.
Hence by the Ascoli-Arzila theorem, we deduce that Q is compact. We conclude the opera-

tor Q has at least one random fixed point, which is a solution of the system (6.1)-(6.2). [
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Conclusion and perspectives.

In this thesis, we have successfully investigated the existence, uniqueness and stability in
the sense of Ulam of the solutions for a new classes 1p-Caputo type hybrid fractional dif-
ferential equation with hybrid conditions. The existence of solutions is provided by using
Dhage fixed point theorem [16], whereas the uniqueness result is achieved by Banach’s
tixed point theorem. After that, we have studied the concept of Ulam-Hyres and general-
ized Ulam-Hyres stabilities in third chapter. While in the rest of chapters, we have studied
the existence, uniqueness and stability of random fractional differential systems by the use
of generalized random fixed point theorems in generalized Banach spaces. Also, we have
presented an illustrative examples to support our main results.

In future works, many results can be established when one takes a more generalized
operator. Precisely, it will be of interest to study the current problem in this work for the

fractional operator with variable order [54], and y-Hilfer fractional operator [49].

Page-100-



BIBLIOGRAPHY

[1] S. Abbas, N. Al Arifi, M. Benchohra, Y. Zhou; Random coupled Hilfer and Hadamard frac-
tional differential systems in generalized Banach spaces. Mathematics. 7, 285 (2019).

[2] S. Abbas, M. Benchohra, Y. Zhou; Coupled Hilfer fractional differential systems with random
effects. Adv. Differ. Equ. 2018, 369 2018).

[3] A. H. Abdel-Aty, M. M. A. Khater, D. Baleanu, S. M. Abo-Dahab, J. Bouslimi, M. Omri;
Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW)
models, Adv. Differ. Equ. 2020, 552 (2020). https:/ /doi.org/10.1186/s13662-020-03005-0

[4] Y. Adjabi, E Jarad, T. Abdeljawad; On generalized fractional operators and a Gronwall type
inequality with applications, Filomat. 31, 5457-5473 (2017).

[5] B. Ahmad, S. K. Ntouyas; Existence results for a coupled system of Caputo type sequential
fractional differential equations with nonlocal integral boundary conditions. Appl Math Com-
put . 266, 615-22 (2015).

[6] B. Ahmad, S. K. Ntouyas, A. Alsaedi; On a coupled system of fractional differential equations
with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals . 83, 234-241
(2016).

[7] R. Almeida; A Caputo fractional derivative of a function with respect to another function .
Commun. Nonlinear Sci. Numer. Simulat. 44, 460-481 (2017).

101



BIBLIOGRAPHY

[8] R. Almeida, A. B. Malinowska, M. T. T. Monteiro; Fractional differential equations with
a Caputo derivative with respect to a kernel function and their applications. Math. Method.
Appl. Sci. 41, 336-352(2018).

[9] K. Balachandran, J. Kokila, ]J. J; Controllability of non-linear implicit fractional dynamical
systems. IMA ] Appl Math. 79, 562-570(2014).

[10] M. Benchohra, S. Bouriah; Existence and stability results for nonlinear boundary value prob-
lem for implicit differential equations of fractional order, Pure Appl. Anal. 1(1), 22-37(2015).

[11] A.T. Bharucha-Reid; Random Integral Equations. Academic Press, New York (1972).

[12] A. Boudaoui, T. Caraballo, T. Blouhi; Hyers-Ulam stability for coupled random fixed point
theorems and applications to periodic boundary value random problems . Random Oper. Stoch.
Equ (2019).

[13] M. Boumaaza, M. Benchohra, J. Henderson; Random coupled Caputo-type modification
of Erdelyi-Kober fractional differential systems in generalized banach spaces with retarded and
advanced arguments. Commun. Optim. Theory, 2021(2021), 1-14.

[14] N. Brillouet-Belluot, J. Brzdek, K. Cieplinski; On some recent developments in Ulam’s type
stability, Abstr. Appl. Anal. Art. 41 (2012), ID 716936.

[15] A. Carvalho, C. M. A. Pinto; A delay fractional order model for the co-infection of malaria
and HIV/AIDS. Int. ]. Dyn. Control 5, 168-186 (2017).

[16] B.C.Dhage; A nonlinear alternative with applications to nonlinear perturbed differential equa-
tions, Nonlinear Stud, 13 (4), 343-354 (2006).

[17] B. C. Dhage, V. Lakshmikantham; Basic results on hybrid differential equations, Nonlinear
Analysis, Hybrid Systems, 4, 414-424 (2010).

[18] C. Derbazi, H. Hammouche, M. Benchohra, Y. Zhou; Fractional hybrid differential equa-
tions with three-point boundary hybrid conditions, Adv. Diff. Eq. 2019, 125 (2019).

[19] C. Derbazi, Z. Baitiche; Coupled systems of y-Caputo differential equations with initial con-
ditions in Banach spaces. Mediterr. J. Math. 17 (2020).

[20] J. Dong, Y. Feng, J. Jiang; A note on implicit fractional differential equations, Mathematica
Aeterna. 7(3), 261-267 (2017).

Page-102-



BIBLIOGRAPHY

[21] Z. M. Ge, C. Y. Ou; Chaos synchronization of fractional order modified Duffing systems with
parameters excited by a chaotic signal. Chaos Solitons Fractals. 35, 705-717 (2008).

[22] J. R. Graef and A. Petrusel; Some Krasnosel'skii type random fixed point theorem. J. Nonlin-
ear Funct. Anal. 2017, 46 (2017).

[23] MA. Hegagi; An efficient approximate-analytical method to solve time-fractional KAV and
KdVB equations. Information Sciences Letters, 9 (3), 189-198 (2020).

[24] ]J. Henderson, R. Luca, A. Tudorache; On a system of fractional differential equations with
coupled integral boundary conditions. Fract. Calc. Appl. Anal. 18, 361-386 (18).

[25] R. Hilfer; Applications of Fractional Calculus in Physics . World Scientific: Singapore
(2000).

[26] R. Hilfer; Threefold Introduction to Fractional Derivatives. Anomalous: Foundations and
Applications;Wiley-VCH, Weinheim, Germany, 2018, 17 (2018).

[27] D. H. Hyers, K. Shah, Y. Li, T. S. Khan; On the stability of the linear functional equation.
Proceedings of the National Academy of Sciences of the United States of America, 27,
222-224 (1941).

[28] R. W. Ibrahim; Generalized Ulam-Hyers stability for fractional differential equations. Int. J.
Math. 23 (5), 9 (2012).

[29] S. Itoh; Random fixed point theorems with applications to random differential equations in
Banach spaces. Int. J. Math. Anal. Appl. 67, 261-273 (1979).

[30] M. Javidi, B. Ahmad; Dynamic analysis of time fractional order phytoplanktontoxic
phytoplankton-zooplankton system. Ecological Modelling, 318, 8-18 (2015).

[31] M. D. Kassim, N. E. Tatar; Well-posedness and stability for a differential problem with Hilfer-
Hadamard fractional derivative. Abstr. Appl. Anal. 2013, 605029, (2013).

[32] U. N. Katugampola; New approach to a generalized fractional integral. Appl. Matt. Com-
put. 218, 860-865 (2011).

[33] A. A. Kilbas, H. M. Srivastava, ]. J. Trujillo; Theory and Applications of Fractional Differ-
ential Equations. North-Holland Mathematics Studies . Elsevier, Amsterdam. 204 (2006).

Page-103-



BIBLIOGRAPHY

[34] M. M. A. Khater, R. A. M. Attia, A. H. Abdel-Aty; Computational analysis of a nonlin-
ear fractional emerging telecommunication model with higherdeuro “order dispersive cubicdeuro
“quintic. Information Sciences Letters. 9, 83-93 (2020).

[35] A. Khan, K. Shah, Y. Li, T. S. Khan; Ulam type stability for a coupled systems of boundary
value problems of nonlinear fractional differential equations. J. Funct. Spaces 2017, 8 (2017).

[36] J.G.Liu, X.]. Yang, Y. Y. Feng, P. Cui, L. L. Geng; On integrability of the higher-dimensional
time fractional KdV-type equation, Journal of Geometry and Physics, 160 (2021) 104000.

[37] H. Mohammadi, S. Rezapour, S. Etemad; On a hybrid fractional Caputo—Hadamard bound-
ary value problem with hybrid Hadamard integral boundary value conditions, Adv. Differ. Equ,
2020, 455 (2020).

[38] D.S. Oliveira, E. C de Oliveira; Hilfer-katugampola fractiona derivatives. Comput. Appl.
Math. 37, 3672-3690 (2018).

[39] S. Owyed, M. A. Abdou, A. H. Abdel-Aty, H. Dutta; Optical solitons solutions for per-
turbed time fractional nonlinear Schré dinger equation via two strategic algorithms, AIMS
Math. 5 (3), (2020).

[40] I R. Petre, A. Pertrusel; Kranoselskii’s theorem in generalized Banach spaces and applications.
Electron. J. Qual. Theory Differ. Equ. 85, 1-20 (2012).

[41] 1. Podlubny; Fractional Differential Equations. Academic press: San Diego, CA, USA
(1999).

[42] N. Raza, M. S. Osman, M.S., A. H. Abdel-Aty, S. Abdel-Khalek, H. R. Besbes; Opti-
cal solitons of space-time fractional Fokasdeuro “Lenells equation with two versatile integra-
tion architectures, Adv. Differ. Equ. 2020, 517 (2020). https://doi.org/10.1186/s13662-
020-02973-7

[43] L. A. Rus; Ulam stability of ordinary differential equations in a Banach spaces, Carpathian J.
Math. 26 , (2010).

[44] S. G. Samko, A. A. Kilbas, O. I. Marichov; Fractional Integrals and Derivatives: Theory and
Applications. Gorden and Breach, Yverdon (1993).

[45] S. Sitho, S. K. Ntouyas, J. Tariboon; Existence results for hybrid fractional integro-
differential equations. Bound. Value Probl. 2015, 113 (2015).

Page-104-



BIBLIOGRAPHY

[46] M. L. Sincer, J. ]. Nieto, A. Ouahab; Random fixed point theorems in generalized Banach
spaces and applications. Random Oper. Stoch. Equ.24, 93-112 (2016).

[47] D. R. Smart; Fixed Point Theorems. Cambridge Tracts in Mathematics, Cambridge Uni-
versity Press, London-New York,66 (1974).

[48] 1. M. Sokolov, J. Klafter, A. Blumen; Fractional kinetics. Phys. Today 55, 48-54 (2002).

[49] V].C. Sousa, E.C. Capelas de Oliverira; Two new fractional derivatives of variable order
with non-singular kernel and fractional differential equation. Comput. Appl. Math. vol. 37,
5375-5394 (2018).

[50] V. V. Tarasova, V. E. Tarasov; Logistic map with memory from economic model. Chaos Soli-
tons Fractals 95, 84-91 (2017).

[51] R.S. Varga; Matrix Iterative Analysis. Second Revised and Expanded, Springer Series in
Computational Mathematics , Springer: Berlin, Germany, 27 (2000).

[52] S.M. Ulam, K. Shah, Y. Li, T. S. Khan; A Collection of Mathematical Problems, Interscience,
New York, USA (1960).

[53] k. G. Wang, G. D. Wang; Variational principle and approximate solution for the fractal gen-
eralized Benjamin-BonaMahony-Burgers equation in fluid mechanics. fractals (2020).

[54] X. ]. Yang, J. T. Machado; A new fractional operator of variable order: application in the
description of anomalous diffusion. Physica A, 481, 276-283 (2017).

[55] L.Zada, M. Al-Hamami, R. Nawaz, S. Jehanzeb, A. Morsy, A. H. Abdel-Aty, K. S. Nisar;
A New Approach for Solving Fredholm Integro-Differential Equations. Information Sciences
Letters, 10 (3),407-415 (2021).

[56] Y. Zhao, S. Sun, Z. Han, et al; Theory of fractional hybrid differential equations. Comput.
Math. Appl.62, 1312-1324 (2012).

Page-105-



