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Abstract

In this thesis, we present some results on existence, uniqueness, and stability for a
class of initial value problems and impulsive coupled system fractional differential equa-
tions involving Caputo-Hadamard, we also discuss stability for some coupled systems
on networks and linear system fractional differential equations with Caputo-Hadamard
derivative. Our results are based on some standard fixed point theorems, we also esta-
blish the Ulam-Hyers and Mittag-Leffler stability results for some addressed problems.
We have also provided an illustrative example of each of our considered problems to
show the validity of the conditions and justify the efficiency of our established results.

Keywords : Caputo-Hadamard derivative, fixed point theorems, impulsive coupled
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List of symbols

We use the following notations throughout this thesis

Sets
X N : Set of natural numbers.
X R : Set of real numbers.
X C : Set of complex numbers.
X R+ : Set of non-negative real numbers R+ = [0,+∞) .
X R∗ : Set of non-zero real numbers .
X Rn : Space of n-dimensional real vectors.
X Cn : Space of n-dimensional complex vectors.
X Rn×m : Set of real matrices of dimension n×m .
X Cn×m : Set of complex matrices of dimension n×m .
X J : Be a finite interval on the half-axis R+.
X B(x0, r) : Open ball of center x0, radius r > 0 .
X B(x0, r) : Closed ball of center x0, radius r > 0.

Functions and subspaces of functions
X L : Laplace transform.
X s : Variable of the Laplace transform of a continuous signal s ∈ C.
X (f(.))i : The ith component of the vector f(.).
X K : Class K function.
X Γ(·) : Gamma function.
X B(·, ·) : Beta function.
X HIαa+ : The Hadamard fractional integral of order α > 0.
X HDα

a+ : The Hadamard fractional derivative of orde α > 0.
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X cHD
α
a+ : The Caputo-Hadamard fractional derivative of orde α > 0.

X C(J,R) : Space of continuous functions on J .
X Cn(J,R) : Space of n time continuously differentiable functions on J.
X AC(J,R) : Space of absolutely continuous functions on J .
X L1(J,R) : Space of Lebesgue integrable functions on J .
X Lp(J,R) : Space of measurable functions u with |u|p belongs to L1(J,R).
X L∞(J,R) : Space of functions u that are essentially bounded on J .
X Xp

c : Space of complex-valued Lebesgue measurable functions J.
X Eα(.) : One parameter Mittag-Leffler function.
X Eα,β(.) : Two parameters Mittag-Leffler function.

Matrices, operations and matrix relations
X det(A) : Determiner of A ∈ Rn×n.
X λ(A) : Eigenvalues of A ∈ Rn×n.
X spec(A) : Spectrum of the matrix A : set of eigenvalues of A.
X A−1 : Inverse of A; det(A) 6= 0
X I : Identity matrix .
X diag(A1, . . . ,Ap) : Diagonal matrix constituted with the elements of the diagonal of

the matrices Ai ∈ Rn×n, i= 1, . . . ,p.
X ||A||M = max

1≤i,j≤n
{|aij |} : Matrix norm A, where M is the space of n-dimensional

square matrices whose elements are complex numbers.

Other math operators
X ∗ : Convolution product.
X Re(z)> 0 : Real part of complex α.
X arg(.) : Argument of a complex number.
X |.| : Module of a complex number.
X ∈ : Belongs to.
X sup : Supremum.
X max : Maximum.
X n! : Factorial (n),n ∈ N : The product of all the integers from1 to n.
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Introduction

Fractional calculus is a recent field of mathematical analysis regarding fractional
differential equations (FDEs) which have become the most important branch in ap-
plied analysis because of its extensive applications in a vast range of applied sciences
[14, 44, 53, 75, 86, 117]. Up to now, there exist several kinds of fractional integrals and
derivatives, like Riemann-Liouville, Caputo, Hadamard integrals and derivatives. The
Hadamard fractional derivative is a kind of fractional derivative due to Hadamard in
1892[43], this fractional derivative differs from the Riemann-Liouville and Caputo frac-
tional derivatives in the sense that the kernel of the integral appearing in the Hadamard
derivative is the power of ln( tw ), but the kernel takes the power of (t−w) in the Riemann-
Liouville. On the other hand, the Hadamard derivative is viewed as a generalization of
the operator (t ddt

n), while the Riemann-Liouville derivative is considered as an exten-
sion of the classical operator ( ddt)

n . There are several articles describing the properties
and applications of the Hadamard derivative [8, 9, 13, 19, 21, 27, 28, 29, 70, 71, 82].
One of the fractional derivatives that is defined by the combination of the properties of
the Caputo and Hadamard operators is the Caputo-Hadamard fractional derivative[46].
There are limited fractional models and problems designed by this operator. Examples
can be seen in [5, 9, 12, 25, 39, 60, 61].

Hence, as we see, the existence and uniqueness problems for FDEs have many forms
according to the shape of the differential model and of course the form of the initial
or boundary conditions. The Banach fixed point theorem [20] is essential for the uni-
queness of the solution, but it needs a strong assumption to be applied, namely, the
contraction principle (see monographs [53, 76, 86]). It is very popular in the literature
to suggest a solution to fractional differential equations by adding various forms of frac-
tional derivatives (see[10, 11, 12, 21, 23, 33, 50, 51, 94] ).
In 1964 Perov[83] formulated a fixed point theorem that extends the well-known contrac-
tion mapping principle for the case when the metric d takes values in Rm, that is, in
the case when we have a generalized metric space. There are more findings concerned
with the issues of Perov fixed point theorem [24, 26, 37, 38, 49, 81, 85, 103].

On the other hand, the stability of fractional order systems is one of the important
problems in the theory of fractional calculus and its application in fractional control
theory [99, 72, 74]. Many criteria for the stability of fractional order systems have been
proposed by researchers. In 1996, Matignon [74] firstly studied the stability of linear
fractional differential systems with the Caputo derivative. Since then, many resear-
chers have implemented further investigations into the stability of such linear fractional
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systems[15, 22, 34, 35, 41, 44, 62, 68, 69, 79, 80, 87, 114]. In regard to the nonlinear
fractional systems, the stability criterion is much more difficult. The direct method
attributed to Lyapunov gives a way to study a special type of stability termed the
Mittag-Leffler stability for a given fractional nonlinear system without solving it expli-
citly(see [22, 91, 115]). Such a direct method due to Lyapunov is a sufficient condition
to confirm the stability of the nonlinear systems ; in other words, the given systems
may still be stable even if we cannot choose a Lyapunov mapping to fulfill the stability
property for the mentioned system.
Another important aspect of the research that attracted the researcher’s attention is
Ulam stability and its various types. The above-mentioned stability was first introdu-
ced by Ulam [101] in 1940 and then was confirmed by Hyers in 1941 [102]. Rassias
generalized the Ulam-Hyers stability by considering variables. Thereafter, mathema-
ticians extended the work mentioned above to functional, differential, integrals, and
FDEs. Wang [105] was the first mathematician who investigated the Ulam-Hyers sta-
bility for the impulsive ordinary differential equations in 2012. In the same line, he
also obtained the aforesaid stability for the evolution equations [106]. For more details
on the recent advances in the Ulam-Hyers stability and the Ulam-Hyers-Rassias sta-
bility of differential equations, one can see the monographs [30, 47] and the research
papers [45, 48, 57, 65, 89, 109, 111]. We also note that Ulam stability has excellent
applications in numerical analysis, optimization, economic, physics, biochemistry, and
biological phenomena, and it does provide an effective way to seek the exact solution
for the original equation.

Let us now briefly describe the organization of this thesis :
In Chapter 1, we provides the notation and preliminary results, descriptions, theo-

rems and other auxiliary results that will be used throughout this thesis.
In Chapter 2, we study the existence, uniqueness and Ulam’s type stability of a

impulsive coupled system of fractional differential equations of the form :

(cHDα
ax)(t) = f1(t,x(t),y(t) t ∈ [a,T ], t 6= tk, k = 1, ...,m,Ä

cHDβ
ay
ä

(t) = f2(t,x(t),y(t)) t ∈ [a,T ], t 6= tk, k = 1, ...,m,
∆x(tk) = Ik(x(t−k ),y(t−k )), k = 1, ...,m,
∆y(tk) = Ik(x(t−k ),y(t−k )), k = 1, ...,m,
x(a) = xa,
y(a) = ya,

where 0<α,β < 1, a> 0. Here a= t0≤ t1≤ ·· · ≤ tm≤ tm+1 = T , ∆x(tk) = x(t+k )−x(t−k ),
x(t+k ) = lim

h→0
x(tk+h) and x(t−k ) = lim

h→0
x(tk−h) represent the right and left limits of x(t)

at t= tk respectively. xa,ya ∈R, f1,f2 : J×R×R→R are continuous functions and Ik
, Ik ∈ C(R×R,R) are a given functions.

In Chapter 3, we establish stability and uniform asymptotic stability of the trivial
solution of the following coupled systems of fractional differential equations on networks

cHDαxi = fi(t,xi) +
n∑
j=1

gij(t,xi,xj), t > t0,

xi(t0) = xi0,

where 1 < α ≤ 2, i = 1,2, . . . ,n, and fi : R+×Rmi → Rmi , gij : R+×Rmi×Rmj → Rmi

are given functions.
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Chapter 4, This chapter contain four sections. After the introduction section, in
Section 4.2, we establish the stability of linear autonomous fractional differential system
with Caputo-Hadamard derivative®

cHDα
ax(t) = Ax(t), t > a > 0, 0< α < 1

x(a) = x0,

where x(t) ∈ Rn, matrix A ∈ Rn×n and x0 = (x10,x20, . . . ,xn0)T .
In section 4.3 , we examine the stability of perturbed fractional differential system®

cHDα
ax(t) = Ax(t) +B(t)x(t), t > a > 0, 0< α < 1

x(a) = x0,

where x ∈ Rn, matrix A ∈ Rn×n, B(t) : [a,∞) → Rn×n is a continuous matrix and
x0 = (x10,x20, . . . ,xn0)T .

Finally, an example is also constructed to illustrate our results.
In Chapter 5, we discusses the existence, uniqueness and stability for a nonlinear

fractional differential system consisting of nonlinear Caputo-Hadamard FIVP
cHD`

cφ(t) = Aφ(t) +ψ(t,φ(t),cHDβ
c φ(t)), t > c > 0,

Θkφ(t) |t=c= φk,k = 0,1,

where 1<`< 2, 0<β < `−1, φ0,φ1 ∈Rn , A∈Rn×n, Θ = t ddt and ψ : [c,∞)×Rn×Rn→
Rn is a given function.
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Chapitre 1
Preliminaries and Background Materials

The aim of this chapter is to introduce some basic concepts, notation and elementary
results that are used throughout this thesis.

1.1 Functional spaces
Let R = (−∞,+∞) and let J := [a,b] the compact interval of R. we present the

following functional spaces :

Definition 1.1. [52, 53] Let C(J,R) is the Banach space of continuous functions u :
J −→ R have the valued in R, equipped with the norm

‖u‖∞ = sup
t∈J
|u(t)|.

Analogoustly, Cn(J,R) the Banach space of functions u : J −→R where u is n time
continuously differentiable on J .

Denote by L1(J,R) the Banach space of functions u Lebesgues integrable with the
norm

‖u‖L1 =
∫ b

a
|u(t)|dt,

and we denote Lp(J,R) the space of Lebesgue integrable functions on J where |u|p
belongs to L1(J,R), endowed with the norm

‖u‖Lp =
ñ∫ b

a
|u(t)|pdt

ô 1
p

.

In particular, if p =∞, L∞(J,R) is the space of all functions u that are essentially
bounded on J with essential supremum

‖u‖L∞ = esssup
t∈J
|u(t)|= inf{c≥ 0 : |u(t)| ≤ c, for a.e. t}.
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1.1. FUNCTIONAL SPACES

We denote by Xp
c (a,b)(c ∈R; 1≤ p≤∞), consists of those complex-valued measurable

functions f on (a,b) for which ||f ||Xp
c
≤∞ , with the norm

||f ||Xp
c

=
Ç∫ b

a
|tcf(t)|pdt

t

å 1
p

, (1≤ p <∞).

For the case p=∞, we note

||f ||Xp
c

= ess sup
a≤t≤b

[tcf(t)].

In particular, when c = 1/p, the space Xp
c coincides with the Lp(a,b)−space : Xp

1/p =
Lp(a,b).

1.1.1 Spaces of Absolutely Continuous Functions
We denote by AC(J,R) (or AC1(J,R)) the space of all absolutely continuous func-

tions defined on J . It is known that AC(J,R) coincides with the space of primitives of
Lebesgue summable functions :

u ∈ AC(J,R)⇔ u(t) = c+
∫ t

a
ψ(s)ds, ψ ∈ L1(J,R), (1.1)

and therefore an absolutely continuous function u has a summable derivative u′(t) =ψ(t)
almost everywhere on J . Thus (1.1) yields

u′(t) = ψ(t) and c= u(a).

For n ∈ N∗ we denote by ACn(J,R) the space of functions u : J −→ R which have
continuous derivatives up to order n−1 on J such that u(n−1) belongs to AC(J,R) :

ACn(J,R) =
®
u ∈ Cn−1(J,R) : (D(n−1)u)(x) ∈ AC(J,R) (D = d

dx
)
´

=
®
u ∈ Cn−1(J,R) : (D(n)u)(x) ∈ L1(J,R) (D = d

dx
)
´
.

The space ACn(J,R) consists of those and only those functions u which can be repre-
sented in the form

u(t) = 1
(n−1)!

∫ t

a
(t− s)n−1ψ(s)ds +

n−1∑
k=0

ckt
k, (1.2)

where ψ ∈ L1(J,R), ck (k = 1, . . . ,n−1) ∈ R.
It follows from (1.2) that

ψ(t) = u(n)(t) and ck = u(k)(a)
k! , (k = 1, . . . ,n−1).
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1.2. SPECIAL FUNCTIONS OF THE FRACTIONAL CALCULUS

We denote by ACnδ,µ[a,b](n ∈N;µ ∈R), involves the complex-valued Lebesgue mea-
surable functions g on (a,b) such that xµg(x) has δ−derivatives up to order n− 1 on
[a,b] and δn−1[xµg(x)] is absolutely continuous on [a,b]

ACnδ,µ[a,b] = {g : [a,b]→ C : δn−1[xµg(x)] ∈ AC[a,b], µ ∈ R, δ = x
d

dx
}.

In particular, when µ= 0, the space ACnδ [a,b] := ACnδ,0[a,b] is defined by

ACnδ (J) = {g : [a,b]→ C : δn−1g(x) ∈ AC(J) δ = x
d

dx
}.

If µ = 0 and n = 0 the space AC1
δ [a,b] coincides with AC[a,b]. For more details see

[52, 53, 54] .

Theorem 1.2. [19] The space ACnδ,µ[a,b] consists of those and only those functions
g(x) which are represented in the form

g(x) = x−µ

 1
(n−1)!

∫ x

a

Å
ln x
t

ãn−1
ϕ(t)dt +

n−1∑
k=0

ck

Å
ln x
a

ãk , (1.3)

where ϕ(t) ∈ L1[a,b] and ck(k = 0,1, . . . ,n−1) are arbitrary constants.

1.2 Special Functions of the Fractional Calculus
Before introducing the basic facts on fractional operators, we recall three types of

functions that are important in Fractional Calculus : the Gamma, Beta, and Mittag-
Leffler functions. Some properties of these functions are also recalled. More details about
these functions can be found in [36, 40, 86].

1.2.1 Gamma function
Undoubtedly, one of the basic functions of the fractional calculus is Euler’s gamma

function Γ(z), which generalizes the factorial n! and allows n to take also non-integer
and even complex values.

Definition 1.3. [86] The Gamma function Γ(z) is defined by the integral :

Γ(z) =
∫ +∞

0
tz−1e−tdt, (1.4)

which converges in the right half of the complex plane Re(z)> 0
For positive integer values n, the Gamma function becomes Γ(n) = (n− 1)! and thus
can be seen as an extension of the factorial function to real values.
One of the basic properties of the gamma function is that it satisfies the following
functional equation :

Γ(z+ 1) = zΓ(z), z > 0.
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1.2. SPECIAL FUNCTIONS OF THE FRACTIONAL CALCULUS

1.2.2 Beta Function
Definition 1.4. [86] The beta function is usually defined by

B(p,q) =
∫ 1

0
tp−1(1− t)q−1dt, (Re(p)> 0,Re(q)> 0).

In the following we will enumerate the basic properties of the Beta function :

Properties 1. [86]
1. The following formula which expresses the Beta function in terms of the Gamma

function :
B(p,q) = Γ(p)Γ(q)

Γ(p+ q) , p,q > 0.

2. For every p > 0 and q > 0, we have :

B(p,q) = B(q,p).

3. For every p > 0 and q > 1, the Beta function B satisfies the property :

B(p,q) = q−1
p+ q−1B(p,q−1).

4. For any natural numbers m,n we obtain :

B(m,n) = (n−1)!(m−1)!
(n+m−1)! .

1.2.3 Mittag-Leffler Function
The third function is a direct generalization of the exponential series, and it was

defined by the mathematician Mittag-Leffler in 1903 [77].

Definition 1.5. [40, 86] The one-parameter Mittag-Leffler function Eα(·), is defined
as :

Eα(z) =
∞∑
k=0

zk

Γ(αk+ 1) , (z ∈ R, Re(α)> 0).

For α = 1, this function coincides with the series expansion of ez, i.e.,

E1(z) =
∞∑
k=0

zk

Γ(k+ 1) =
∞∑
k=0

zk

k! = ez.

While linear ordinary differential equations present in general the exponential function
as a solution, the Mittag-Leffler function occurs naturally in the solution of fractional-
order differential equations [53]. For this reason, in recent times, the Mittag-Leffler
function has become an important function in the theory of the fractional calculus and
its applications.

It is also common to represent the Mittag-Leffler function in two arguments. This
generalization of Mittag-Leffler function was studied by Wiman in 1905 [107].
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1.2. SPECIAL FUNCTIONS OF THE FRACTIONAL CALCULUS

Definition 1.6. [40, 86] The Two-parameter Mittag-Leffler function Eα,β(·), is defined
as :

Eα,β(z) =
∞∑
k=0

zk

Γ(αk+β) , (z,β ∈ C, Re(α)> 0).

For particular values of α and β it results :

E0,1(z) =
∞∑
k=0

zk

Γ(1) =
∞∑
k=0

zk, (1.5)

E1(z) = E1,1(z) =
∞∑
k=0

zk

Γ(k+ 1) =
∞∑
k=0

zk

k! = ez, (1.6)

E1,0(z) =
∞∑
k=0

zk

Γ(k) =
∞∑
k=0

zk

(k−1)! = z
∞∑
k=0

zk−1

(k−1)! = zez, (1.7)

E(n)
α,β(z) = dn

dznEα,β(z) =
∞∑
k=0

(k+n)!
k!

zk

Γ(α(k+n) +β) , (1.8)

d

dz
Eα,1(azα) =

∞∑
k=1

akzαk−1

Γ(αk) = azα−1
∞∑
k=0

(azα)k
Γ(αk+α) = azα−1Eα,α(azα), (1.9)

d

dz

Ä
zβ−1Eα,β(azα)

ä
= zβ−2Eα,β−1(azα). (1.10)

Lemma 1.7. [86] Let 0<α< 2, β be an arbitrary complex number and µ be an arbitrary
real number such that απ

2 < µ <min{π,απ}.
Then, for an arbitrary integer p≥ 1, we have the following expansions :

Eα,β(z) = 1
α
z(1−β)/α exp(z1/α)−

p∑
k=1

z−k

Γ(β−αk) +O(|z|−1−p), (1.11)

when |arg(z)| ≤ µ and |z| →∞;

Eα,β(z) =−
p∑

k=1

z−k

Γ(β−αk) +O(|z|−1−p), (1.12)

when µ≤ |arg(z)| ≤ πand |z| →∞.

In particular If α = β we have

Eα,α(z) = 1
α
z(1−α)/α exp(z1/α)−

p∑
k=2

z−k

Γ(α−αk) +O(|z|−1−p), (1.13)

when |arg(z)| ≤ µ and |z| →∞;

Eα,α(z) =−
p∑

k=2

z−k

Γ(α−αk) +O(|z|−1−p), (1.14)

when µ≤ |arg(z)| ≤ πand |z| →∞.

8



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

1.3 Elements From Fractional Calculus Theory
In this section, we recall some definitions of Hadamard type fractional integral,

derivatives, and caputo-Hadamard fractional derivatives that include all we use throu-
ghout this thesis. We conclude it by some necessary lemma, theorems and properties
[19, 27, 28, 46, 53].

1.3.1 Fractional Integrals
Definition 1.8. [53]Let 0≤ a≤ b≤∞ be finite or infinite interval of the half-axis R+.
The Hadamard fractional integrals of order α ∈ C(Re(α)> 0) are defined by

HIαa+f(x) = 1
Γ(α)

∫ x

a

Å
log x

t

ãα−1
f(t)dt

t
, (a < x < b), (1.15)

Proposition 1.9. [19]If Re(α)> 0, Re(β)> 0 and a < b <∞, then we have(
HIαa+

Å
ln t
a

ãβ−1)
(x) = Γ(β)

Γ(β+α)

Å
ln x
a

ãβ+α−1
. (1.16)

1.3.2 Fractional Derivatives
The Hadamard fractional derivatives

Definition 1.10. [53] The Hadamard fractional derivatives of order α ∈C(Re(α)≥ 0)
on (a,b) is defined by

(HDα
a+y)(x) = δn(HIn−αa+ y)(x)

= (x x
dx

)n 1
Γ(n−α)

∫ x

a
(ln x

t
)n−α+1y(t)dt

t
(a < x < b) (1.17)

where n= [Re(α)] + 1.

Proposition 1.11. [53] If Re(α)> 0, Re(β)> 0 and 0< a < b <∞, then(
HDα

a+

Å
ln t
a

ãβ−1)
(x) = Γ(β)

Γ(β−α)

Å
ln x
a

ãβ−α−1
. (1.18)

In particular, if β = 1 and Re(α) ≥ 0, then the Hadamard fractional derivatives of a
constant, in general, are not equal to zero :Ä

HDα
a+
ä

(1) = 1
Γ(1−α)

Å
ln x
a

ã−α
,

when 0<Re(α)< 1. On the other hand, for j = [Re(α)] + 1,(
HDα

a+

Å
ln t
a

ãα−j)
(x) = 0.

9



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

Lemma 1.12. [19] Let Re(α)> 0, n= [Re(α)]+1. If f(x)∈ACnδ [a,b] (0< a< b <∞),
then the Hadamaed fractional derivative HDα

a+ exist almost everywhere on [a,b] and can
be represented in the forms

(HDα
a+f)(x) =

n−1∑
k=0

(δkf)(a)
Γ(1 +k−α)(ln x

a
)k−α+ 1

Γ(n−α)

∫ t

a
(ln x

t
)n−α−1(δnf)(t)dt.

In particular, when 0<Re(α)< 1, then, for f(x) ∈ AC[a,b],

(HDα
a+f)(t) = f(a)

Γ(1−α)(ln x
a

)−α+ 1
Γ(1−α)

∫ x

a
(ln x

t
)−αf ′(t)dt

t

Proposition 1.13. [27]Let α,β ∈ C such that Re(α) > Re(β) > 0. If 0 < a < b <∞,
then, for f ∈ Lp(a,b)(1≤ p≤∞) ;

HDβ
a+

HIαa+f =H Iα−βa+ f.

In particular, if β =m ∈ N, then

HDm
a+

HIαa+f =H Iα−ma+ f.

Theorem 1.14. [53] Let Re(α) > 0, n = −[−Re(α)] and 0 < a < b < ∞ ,also let
(HIn−αa+ f)(x) be the Hadamard type fractional integral of the form (1.15). If f(x) ∈
L(a,b) and (HIn−αa+ f)(x) ∈ ACnδ [a,b], thenÄ

HIαa+
HDα

a+f
ä

(x) = f(x)−
n∑
k=1

(δn−k(In−αa+ f))(a)
Γ(α−k+ 1)

Å
ln x
a

ãα−k
.

In particular, if α = n ∈ N and f(x) ∈ ACnδ [a,b], thenÄ
HIna+

HDα
a+f
ä

(x) = f(x)−
n−1∑
k=0

(δkf)(a)
k!

Å
ln x
a

ãk
.

The Caputo-Hadamard fractional derivatives

Definition 1.15. [39, 46] Let Re(α)≥ 0 and n= [Re(α)]+1. If f(x)∈ACnδ [a,b], where
0< a < b <∞. We define the Caputo-Hadamard fractional derivative as follow :

cHDα
a+ =H Dα

a+

f(t)−
n−1∑
k=0

δkf(a)
k! (ln t

a
)k
(x).

In particular, if 0<Re(α)< 1, we have

cHDα
a+ =H Dα

a+ [f(t)−f(a)] (x).

Theorem 1.16. [39, 46] Let Re(α) ≥ 0, n = [Re(α) + 1]. If f(x) ∈ ACnδ [a,b],where
0< a < b <∞. Then cHDα

a+f(x) exist everywhere on [a,b] and

10



1.3. ELEMENTS FROM FRACTIONAL CALCULUS THEORY

1. if α /∈ N0,

cHDα
a+f(x) = 1

Γ(n−α)

∫ x

a

Å
log x

t

ãn−α−1
δnf(t)dt

t
=H In−αa+ δnf(x), . (1.19)

2. if α = n ∈ N0,
cHDα

a+f(x) = δnf(x). (1.20)

In particular,
cHD0

a+f(x) = f(x). (1.21)

Lemma 1.17. [46] Let Re(α)≥ 0, n= [Re(α) + 1] and f ∈ C[a,b].
If Re(α) 6= 0 or α ∈ N, then

cHDα
a+(HIαa+f)(x) = f(x).

Lemma 1.18. [39, 46] Let f ∈ ACnδ [a,b] or Cnδ [a,b] and α ∈ C, then

HIαa+(cHDα
a+f)(x) = f(x)−

n−1∑
k=0

δkf(a)
k! log( t

a
)k.

Proposition 1.19. [39, 46] Let Re(α)≥ 0, n= [Re(α) + 1] and Re(β)> 0. Then

cHDα
a (ln x

a
)β−1 = Γ(β)

Γ(β−α)(ln x
a

)β−α−1 Re(β)> n, (1.22)

Theorem 1.20. [39, 46][(Semigroup property for Caputo-Hadamard derivatives)] Let
f(x) ∈ Cm+n

δ [a,b], 0 < a < b <∞. Moreover, let α ≥ 0, β ≥ 0 such that n− 1 < α <
n, m−1< β <m. Then

cHD
α
a
cHD

β
af(x) = cHD

α+β
a+ f(x).

Theorem 1.21. [39, 46] Let f(x)∈Cnδ [a,b], 0< a< b <∞, and α ∈C, β ∈C such that
Re(α)≥ 0, Re(β)≥ 0. Then

cHDα
a
HIβa f(x) =H Iα−βa f(x).

Lemma 1.22. [5] Suppose that f is continuous. Then the initial value problem (IVP)®
cHDα

ax(t) = f(t,x,y), t > a, a > 0, 0< α < 1
x(a) = xa,

is equivalent to the following Volterra integral equation

x(t) = xa+ 1
Γ(α)

∫ t

a

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds.
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1.4. LAPLACE TRANSFORMS OF FRACTIONAL DERIVATIVES

1.4 Laplace transforms of Fractional Derivatives
Although Hadamard fractional calculus was early introduced, its Laplace transform

seems not be available except the recent study [61]. It is known that the usual Laplace
transform starts from the origin t= 0 so it is expediently applied to the (integer-order)
calculus and the Rieman-Liouville calculus. Since the Hadamard calculus begins at
t = a > 0 due to its (weakly) singular kernel involved logarithmic function ln t, the
classical Laplace transform can no be used. For this kind of calculus, we especially
customize a kind of integral transform. In this part, we first introduce an modified
Laplace transform.

Definition 1.23. [60, 61] For a given function f defined on [a,∞)(a > 0), the modified
Laplace transform of f(t) is defined as

f̃(s) = La{f(t)}=
∫ ∞
a

e−s ln t
af(t)dt

t
, s ∈ C.

The following theorem guarantees the existence of the modified Laplace transform
of a given function f satisfying suitable conditions.

Theorem 1.24. [60] For a given function f defined on [a,∞)(a > 0), if
1. f(t) is continuous or piecewise continuous on every finite subinterval of [a,∞),
2. there exist a positive constant M > 0 and σ > 0 such that for a given large T > a

|f(t)| ≤Mtσ, when t > T,

then the modified Laplace transform of f(t) exists with Re(s)> σ.

Definition 1.25. [60, 61]
The inverse modified Laplace transform of f̃(s) is given by

f(t) = L−1
a {f̃(s)}= 1

2πi

∫ c+i∞

c−i∞
es ln t

a f̃(s)ds, c > 0, i2 =−1.

The following differential property can be proved by direct calculations.

Properties 2. [61]If La{f(t)}= f̃(s), then

La{δnf(t)}= snf̃(s)−
n−1∑
k=0

sn−k−1δkf(a), t > a > 0, n ∈ Z+.

Now we introduce the convolution and the corresponding property.

Definition 1.26. [61] For given functions f and g defined on [a,∞)(a > 0), the integral∫ t
a f(a tw )g(w) dww is called the convolution of f(t) and g(t), i.e.,

f(t)∗g(t) = (f ∗g)(t) =
∫ t

a
f(a t

w
)g(w) dw

w
. (1.23)

12



1.5. GRAPH THEORY

Properties 3. [61] If La{f(t)}= f̃(s) and La{g(t)}= g̃(s), then

La{f(t)∗g(t)}= La{f(t)}La{g(t)}= f̃(s)g̃(s).

Or equivalently,

L−1
a {f̃(s)g̃(s)}= L−1

a {f̃(s)}∗L−1
a {g̃(s)}= f(t)∗g(t).

Next, we present modified Laplace transforms of Hadamard integral and derivative,
which will be useful in the coming section.

Lemma 1.27. [61] Let n−1< α < n ∈ Z+, Then the following equalities hold :

La{D−αa f(t)}= s−αL{f(t)},

La{Dα
a f(t)}= sαLa{f(t)}−

n−1∑
k=0

sn−k−1[δkD−(n−α)
a,t f(t)]|t=a,

La{cDα
a f(t)}= sαLa{f(t)}−

n−1∑
k=0

sα−k−1δkf(a).

1.4.1 Modified Laplace transform of Mittag-Leffler function
we give modified Laplace transform of Mittag-Leffler function. By means of the

following formula [86]
∫ ∞

0
e−sttαj+β−1Ejα,β(±λtα)dt= j!sα−β

(sα±λ)j+1 , Re(s)> |λ|
1
α ,

applying the change of variable t= ln w
a gives

∫ ∞
a

e−s ln w
a (ln w

a
)αj+β−1Ejα,β

Å
±λ(ln w

a
)α
ã dw
w

= j!sα−β
(sα±λ)j+1 , Re(s)> |λ|

1
α .

1.5 Graph theory
We gather together some basic concepts and theorems on graph theory (see[64, 96]).

Let G= (V,E) be a non-empty directed graph, i.e., V = {1,2, . . . ,n} is a set of vertices
and E is a set whose elements are arcs (i, j) leading from initial vertex i to the terminal
vertex j. A subgraph H = (V,F ) of G where F is includes in E is said to be spanning
if H contains all vertices of G. A directed graph G is weighted if each arc (i, j) is
assigned a positive weight aij . A directed path is a subgraph P = (I,X) of the form
I = i1, i2 . . . im, X = {(ik, ik+1) : k = 1,2, . . . ,m−1} where the ik are all distinct. If P is
closed, namely im = i1, we say that P is a directed cycle. A connected graph T is a tree
if it has no cycles. A tree T is rooted at vertex i, called the root, if i is not a terminal
vertex of any arcs, and each of the remaining vertices is a terminal vertex of exactly
one arc. A graph G is said to be strongly connected if from one vertex to other vertex
there is a directed path.
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1.6. TOPICS OF FUNCTIONAL ANALYSIS

Given a weighted digraph G with n vertices, we define the weight matrix A =
(aij)n×n whose elements aij are the weight of arc (j, i), and we write (G,A). We define
the weight w(G) of G as the product of the weights of all its arcs. A weighted digraph
(G,A) is said to be balanced if w(C) = w(−C) for each directed cycle C. Here −C
denotes the reverse of C and is constructed by reversing the direction of all arcs in C.
The Laplacian matrix of (G,A) is defined as

L=



∑
k 6=1

a1k −a12 . . . −a1n

−a21
∑
k 6=2

a2k . . . −a2n

... ... . . . ...
an1 · · · · · · ∑

k 6=n
ank


Let ci denote the cofactor of the i-th diagonal element of L. The following result is
standard in graph theory.

Proposition 1.28. [64] Assume n≥ 2. Then

ci =
∑
T ∈Ti

ω(T ) i= 1,2, . . . ,n, (1.24)

where Ti is the set of all spanning trees T of (G,A) that are rooted at vertex i, and
ω(T ) is the weight of T . In particular, if (G,A) is strongly connected, then ci > 0 for
1≤ i≤ n.

Theorem 1.29. [64] Assume n ≥ 2. Let ci as defined in Proposition 1.28. Then the
following identity holds :

n∑
i,j=1

ciaijFij(xi,xj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈EcQ

Frs(xr,xs). (1.25)

Here Fij(xi,xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning uni-
cyclic graphs of (G,A), w(Q) is the weight of Q, and CQ denotes the directed cycle of
Q.

1.6 Topics of functional analysis
In this section, we present main preliminaries of functional analysis that will be used

in this thesis.

1.6.1 fixed point theorems
The theory of fixed point is one of the most powerful tools of modern mathema-

tics. The theorems which are concerning with the existence of solutions for differential
equations.

Definition 1.30. A point x ∈X is called a fixed point of a function f :X →X, if

f(x) = x, x ∈X.
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1.6. TOPICS OF FUNCTIONAL ANALYSIS

Banach[20] proved that a contraction mapping in the field of a complete normed
space possesses a unique fixed point .This theorem is probably the most well-known
fixed-point theorem.
This theorem is outstanding among fixed point theorems , because it is not only gua-
rantees existence of a fixed point, but also its uniqueness, an approximation method
actually to find the fixed point, a priori and a posteriori estimates for the rate of conver-
gence.

Definition 1.31 (Banach Fixed Point Theorem). Let X be a Banach space and f
be a contraction mapping with Lipschitz constant k. Then f has an unique fixed point.

1.6.2 Generalized metric space
In this part, we define generalized metric space (or vector metric spaces).

If x,y ∈Rn, x= (x1, . . . ,xn), y= (y1, . . . ,yn), by x≤ y we mean xi≤ yi for all i= 1, . . . ,n.
Also |x| = (|x1|, . . . , |xn|) and max(x,y) = max(max(x1,y1), . . . ,max(xn,yn)). If c ∈ R,
then x≤ c means xi ≤ c for each i= 1, . . . ,n. For x ∈ Rn, (x)i = xi, i= 1, . . . ,n.

Definition 1.32. [42] Let X be a nonempty set. By a generalized metric on X (or
vector-valued metric) we mean a map d :X×X → Rn with the following properties :

(i) d(u,v)≥ 0 for all u,v ∈X ; if d(u,v) = 0 then u= v.
(ii) d(u,v) = d(v,u) for all u,v ∈X.
(iii) d(u,v)≤ d(u,w) +d(w,v) for all u,v,w ∈X.

Note that for any i ∈ {1, . . . ,n} (d(u,v))i = di(u,v) is a metric space in X.

We call the pair (X,d) a generalized metric space. For r = (r1, r2, . . . , rn) ∈ Rn+, we
will denote by

B(x0, r) = {x ∈X : d(x0,x)< r}

the open ball centered at x0 with radius r and

B(x0, r) = {x ∈X : d(x0,x)≤ r}

the closed ball centered at x0 with radius r = (r1, . . . , rn)> 0, ri > 0, i= 1, . . . ,n.

1.6.3 Generalized Banach space
Definition 1.33. [42] Let E be a vector space on K = R or C By a vector-valued norm
on E we mean a map ||.|| : E→ Rn+ with the following properties :

(i) ||x|| ≥ 0 ,for all x ∈ E ; if ||x||= 0 then x= 0
(ii) ||λx||= |λ|||x|| for all x ∈ E and λ ∈ R,
(iii) ||x+y|| ≤ ||x||+ ||y||, x,y ∈ E.
The pair (E, ||.||) is called a generalized normed space. If the generalized metric

generated by ||.||(i.e d(x,y) = |x− y|) is complete then the space (E, ||.||) is called a
generalized Banach space, where

||x−y||=

Ö
||x−y||1
· · ·

||x−y||n

è
.

15



1.7. STABILITY

Notice that ||.|| is a generalized Banach space on E if and only if ||.||i, i = 1, . . . ,n are
norms on E.

Remark 1.34. [42] In generalized metric space in the sense of Perov, the notions of
convergence sequence, Cauchy sequence, completeness, open subset and closed subset
are similar to those for usual metric spaces.

1.6.4 Matrix convergence
Definition 1.35. [42] A square matrix A of real numbers is said to be convergent to
zero if and only if An→ 0 as n→∞.

Lemma 1.36. (see [38]) Let A ∈Mm,m(R+). Then the following statements are equi-
valent :
• A is a matrix convergent to zero ;
• The eigenvalues of A are in the open unit disc, i.e., |λ|< 1, for every λ ∈C with
det(A−λI) = 0 ; where I denote the unit matrix ofMm,m(R+),
• The matrix I−A is non-singular and (I−A)−1 = I+A+ · · ·+An+ · · · ;
• The matrix I−A is non-singular and (I−A)−1 has nonnegative elements ;
• Anq→ 0 and qAn→ 0 as n→∞, for any q ∈ Rm .

1.6.5 Fixed Point Theorems in Vector Metric and Banach Spaces
Definition 1.37. [42, 81] Let (X,d) be a generalized metric space. An operator N :
X→X is said to be contractive if there exists a matrix A convergent to zero such that

d(N(x),N(y))≤ Ad(x,y), ∀x,y ∈X.

Theorem 1.38. (Perov’s fixed point theorem) [81, 83]. Let (X,d) be a complete gene-
ralized metric space and N :X→X be a contractive operator with Lipschitz matrix A.
Then N has a unique fixed point x∗ and for each x0 ∈X we have

d(Nk(x0),x∗)≤ Ak(I−A)−1d(x0,N(x0)) ∀k ∈ N.

1.7 Stability
We introduce in this section some definitions and results concerning the stability

theory.

Definition 1.39. [67] The constant xe is an equilibrium of fractional differential system

cHDα
ax(t) = f(t,x(t)), t ∈ [a,∞), (1.26)

if and only if f(t,xe) = 0, for all t > a .
For convenience, we state all definitions and theorems for stability when the equili-

brium point is the origin of Rn , i.e. xe = 0.

Definition 1.40. [6, 7]The zero solution of the system (1.26) is said to be
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1. stable if for any ε > 0 and t0 ∈ R+ there exist δ = δ(ε, t0) > 0 such that for any
x0 ∈ Rn the inequality ||x0||< δ implies ||x(t; t0,x0)||< ε for t≥ t0;

2. uniformly stable if for every ε > 0 and there exist δ = δ(ε) > 0 such that for
t0 ∈ R+, x0 ∈ Rn with ||x0||< δ the inequality ||x(t; t0,x0)||< ε holds for t≥ t0;

3. attractive if there exists β > 0 such that for every ε > 0 there exist T = T (ε)> 0
such that for any x0 ∈Rn with ||x0||< β the inequality ||x(t; t0,x0)||< ε holds for
t≥ t0 +T ;

4. uniformly attractive if for β > 0 : for every ε > 0 there exist T = T (ε)> 0 such
that for any t ∈R+, x0 ∈Rn with ||x0||< β the inequality ||x(t; t0,x0)||< ε holds
for t≥ t0 +T ;

5. asymptotically stable if the zero solution is stable and attractive.
6. uniformly asymptotically stable if the zero solution is uniformly stable and

uniformly attractive.

Definition 1.41. [67] The zero solution of the system (1.26) is said to be Mittag-Leffler
stable if

||x(t)|| ≤
ñ
m(x(a))Eα

Ç
−λ
Å

ln t
a

ãαåôγ
, t > a,

where a is the initial time, α∈ (1,2), λ≥ 0, γ > 0, m(0) = 0, m(x)≥ 0 and m(x) is locally
Lipschitz on x ∈B ⊂ Rn.

Definition 1.42. [67] The zero solution of the system (1.26) is said to be Generalized
Mittag-Leffler stable if

||x(t)|| ≤
ñ
m(x(a))

Å
ln t
a

ã−ρ
Eα,1−ρ

Ç
−λ
Å

ln t
a

ãαåôγ
, t > a,

where a is the initial time, α ∈ (1,2),−α < ρ < 1−α, λ≥ 0, γ > 0, m(0) = 0, m(x)≥ 0
and m(x) is locally Lipschitz on x ∈B ⊂ Rn.

Remark 1.43. [67] Mittag-Leffler Stability and Generalized Mittag-Leffler Stability
imply asymptotic stability.

Lemma 1.44. (Gronwall Inequality)[88] Suppose that g(t) and ϕ(t) are continuous in
[t0, t1], g(t)≥ 0; λ≥ 0 and r ≥ 0 are two constants. If

ϕ(t) = λ+
∫ t

t0
[g(τ)ϕ(τ) + r]dτ,

then
ϕ(t)≤ (λ+ r(t1− t0))exp

Ç∫ t

t0
g(τ)dτ

å
, t0 ≤ t≤ t1.

Definition 1.45. [64] A function ϕ is said to belong to class K if ϕ∈C[R+,R+], ϕ(0) =
0 and ϕ is strictly increasing.

17



Chapitre 2
Existence results and Ulam-Hyers stability
to impulsive coupled system fractional
differential equations 1

2.1 Introduction
In this chapter we establish existence, uniqueness and Ulam stability of a impulsive

coupled system of fractional differential equations of the form :

Ä
cHDα

ax
ä

(t) = f1(t,x(t),y(t) t ∈ [a,T ], t 6= tk, k = 1, ...,m,Ä
cHDβ

ay
ä

(t) = f2(t,x(t),y(t) t ∈ [a,T ], t 6= tk, k = 1, ...,m,
∆x(tk) = Ik(x(t−k ),y(t−k )), k = 1, ...,m,
∆y(tk) = Ik(x(t−k ),y(t−k )), k = 1, ...,m,
x(a) = xa,
y(a) = ya,

(2.1)

where 0<α,β < 1, a> 0. Here a= t0≤ t1≤ ·· · ≤ tm≤ tm+1 = T , ∆x(tk) = x(t+k )−x(t−k ),
x(t+k ) = lim

h→0
x(tk+h) and x(t−k ) = lim

h→0
x(tk−h) represent the right and left limits of x(t)

at t= tk respectively. xa,ya ∈R, f1,f2 : J×R×R→R are continuous functions and Ik
, Ik ∈ C(R×R,R) are a given functions.

The results are based the Perov fixed point theorem. We also establish the Ulam-
Hyers stability results of the proposed coupled system . An example is included to show
the applicability of our results. We have given and proved the results in this chapter
taking into account the numerous books and articles focused on of existence and uni-
queness of solutions by Using the Perov fixed point theorem [24, 26, 37, 38, 49, 81,
83, 85, 103]. For the stability of Ulam, we have taken into consideration the articles
(see[16, 17, 105, 109, 110, 111]) and references therein.

1. H. Belbali, M. Benbachir, Existence results and Ulam-Hyers stability to impulsive coupled
system fractional differential equations, Turkish Journal of Mathematics(2021), 45 : 1368-1385.
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2.2. EXISTENCE RESULTS

2.2 Existence Results
let Jk = (tk, tk+1], k = 1,2, · · · ,m. In order to define a solution for problem (2.1),

consider the following space of picewise continuous functions for a given T > a > 0,

PC(J,R) =
¶
y : [a,T ]→ R, yk ∈ C(Jk,R) for k = 0, . . .m+ 1,

and there exist y(t−k ) and y(t+k ) with y(tk) = y(t−k ), k = 1, · · · ,m
©
.

This set is a Banach space with the norm ‖y‖PC = sup
t∈[a,T ]

|y(t)|.

Set J ′ = J\{t1, . . . , tm}.

Before proceeding to the main results, we give the following lemma.

Lemma 2.1. Let 0< α < 1 and let f ∈ C[J×R×R], a function x is a solution of the
fractional integral equation

x(t) =



xa+ 1
Γ(α)

∫ t
a

Ä
ln t

s

äα−1 f(s,x(s),y(s))
s ds if t ∈ [a,t1],

xa+ 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f(s,x(s),y(s))
s ds

+ 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f(s,x(s),y(s)
s ds+

k∑
i=1

Ii(x(t−i ),y(t−i )) if t ∈ (tk, tk+1], k = 1, ...,m,
(2.2)

if and only if x is a solution of the impulsive fractional IVP

(cHDα
ax
ã

(t) = f(t,x,y) for each t ∈ J, (2.3)

∆x(tk) = Ik(x(t−k ),y(t−k )), k = 1, ...,m, (2.4)
x(a) = xa. (2.5)

Proof. Assume x satisfies (2.3)-(2.5). Using conditions (2.4), (2.5) and Lemma 1.22,
we obtain :
If t ∈ [a,t1], then

x(t) = xa+ 1
Γ(α)

∫ t

a

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds.

If t ∈ (t1, t2], then

x(t) = x(t+1 ) + 1
Γ(α)

∫ t

t1

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds

= ∆x(t1) +x(t−1 ) + 1
Γ(α)

∫ t

t1

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds

= I1(x(t−1 ),y(t−1 )) +xa+ 1
Γ(α)

∫ t1

a

Å
ln t1
s

ãα−1 f(s,x(s),y(s))
s

ds

+ 1
Γ(α)

∫ t

t1

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds.
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If t ∈ (t2, t3], then

x(t) = x(t+2 ) + 1
Γ(α)

∫ t

t2

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds

= ∆x(t2) +x(t−2 ) + 1
Γ(α)

∫ t

t2

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds

= xa+ I1(x(t−1 ),y(t−1 )) + I2(x(t−2 ),y(t−2 )) + 1
Γ(α)

∫ t1

a

Å
ln t1
s

ãα−1 f(s,x(s),y(s))
s

ds

+ 1
Γ(α)

∫ t2

t1

Å
ln t2
s

ãα−1 f(s,x(s),y(s))
s

ds+ 1
Γ(α)

∫ t

t2

Å
ln t
s

ãα−1 f(s,x(s),y(s))
s

ds.

Repeating the same process for t ∈ [tk, tk+1] and k = 3, ...,m, then we get

x(t) = xa+ 1
Γ(α)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 f(s,x(s),y(s))
s

ds+ 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 f(s,x(s),y(s)
s

ds

+
k∑
i=1

Ii(x(t−i ),y(t−i )).

Conversely, assume that x satisfies the impulsive fractional integral equation (2.2). If
t ∈ [a,t1] then x(a) = xa and using the fact that cHDα

a is the left inverse of HIαa and
using the fact that cHDα

aC = 0, where C is a constant, we obtain

cHDα
ax(t) = f(t,x,y) for all t ∈ [a,t1]∪ [tk, tk+1],k = 1, . . . ,m.

Also, we can easily show that ∆x|t=tk = Ik(x(t−k ,y(t−k )) for k = 1, . . . ,m.

Now, we first define the solution to our problem.

Lemma 2.2. A function (x,y) ∈ PC(J,R)×PC(J,R) is said to be a solution of (2.1)
if and only if



x(t) = xa+ 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,x(s),y(s))
s ds

+ 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f1(s,x(s),y(s))
s ds+

k∑
i=1

Ii(x(ti),y(ti)), t ∈ (tk, tk+1], k = 1, ...,m,

y(t) = ya+ 1
Γ(β)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äβ−1 f2(s,x(s),y(s))
s ds

+ 1
Γ(β)

∫ t
tk

Ä
ln t

s

äβ−1 f2(s,x(s),y(s))
s ds+

k∑
i=1

Ii(x(ti),y(ti)), t ∈ (tk, tk+1], k = 1, ...,m.
(2.6)

The following assumptions are needed in the sequel.
(H1) There exist constants ki > 0, i= 1, · · · ,4, such that

|f1(t,x,y)−f1(t,x,y)| ≤ k1|x−x|+k2|y−y|, for all x,x,y,y ∈ R,
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2.2. EXISTENCE RESULTS

|f1(t,0,0)|=M1,
and

|f2(t,x,y)−f2(t,x,y)| ≤ k3|x−x|+k4|y−y|, for all x,x,y,y ∈ R,

|f2(t,0,0)|=M2.

(H2) There exist constants a1i, a2i, b1i, b2i ≥ 0 , i= 1, · · · ,m, such that

|Ii(x,y)− Ii(x,y)| ≤ a1i|x−x|+a2i|y−y|, for allx,x,y,y ∈ R,

and
|Ii(x,y)− Ii(x,y)| ≤ b1i|x−x|+ b2i|y−y|, for allx,x,y,y ∈ R.

We will use the Perov fixed point theorem to prove the existence of a solution of
the problem (2.1).

Theorem 2.3. Assume that (H1 ) - (H2 ) are satisfied and the matrix

A=

á
Aαk1 +

k∑
i=1

a1i Aαk2 +
k∑
i=1

a2i

Aβk3 +
k∑
i=1

b1i Aβk4 +
k∑
i=1

b2i

ë
,k = 1, ...,m (2.7)

converges to zero, where Aα = 2
Γ(α+1)

Ä
ln T

a

äα
, Aβ = 2

Γ(β+1)
Ä
ln T

a

äβ.
Then the problem (2.1) has a unique solution.

Proof.
Consider operator T : PC×PC→ PC×PC defined by

T (x,y) = (T1(x,y),T2(x,y)),

where

T1(x,y)(t) =xa+ 1
Γ(α)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 f1(s,x(s),y(s))
s

ds

+ 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 f1(s,x(s),y(s))
s

ds+
k∑
i=1

Ii(x(ti),y(ti)), t ∈ (tk, tk+1],k = 1, ...,m,

and

T2(x,y)(t) =ya+ 1
Γ(β)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãβ−1 f2(s,x(s),y(s))
s

ds

+ 1
Γ(β)

∫ t

tk

Å
ln t
s

ãβ−1 f2(s,x(s),y(s))
s

ds+
k∑
i=1

Ii(x(ti),y(ti)), t ∈ (tk, tk+1],k = 1, ...,m.
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Now, we first show that T is well defined. Given (x,y) ∈ PC×PC, t ∈ [a,T ], we have

‖T1(x,y)‖PC ≤|xa|+
1

Γ(α)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 (k1‖x‖PC +k2‖y‖PC)
s

ds

+ 1
Γ(α)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 ‖f1(s,0,0)‖∞
s

ds

+ 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 (k1‖x‖PC +k2‖y‖PC)
s

ds

+ 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 ‖f1(s,0,0)‖∞
s

ds

+
k∑
i=1
|Ii(x(ti),y(ti)|

≤ |xa|+
2

Γ(α+ 1)(ln T
a

)α((k1‖x‖PC +k2‖y‖PC) +M1) +
k∑
i=1

[a1i‖x‖PC +a2i‖y‖PC ].

And, we can also proof as below that :

‖T2(x,y)‖PC ≤ |ya|+
2

Γ(β+ 1)(ln T
a

)α((k3‖x‖PC +k4‖y‖PC) +M2) +
k∑
i=1

[b1i‖x‖PC + b2i‖y‖PC ].

ThusÇ
‖T1(x,y)‖PC
‖T2(x,y)‖PC

å
=
Ç
|xa|+AαM1
|ya|+AβM2

å
+

á
Aαk1 +

k∑
i=1

a1i Aαk2 +
k∑
i=1

a2i

Aβk3 +
k∑
i=1

b1i Aβk4 +
k∑
i=1

b2i

ëÇ
‖x‖PC
‖y‖PC

å
,k = 1, ...,m.

This implies that T is well defined.
Clearly, fixed points of T are solutions of problem (2.1).
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2.3. ULAM-HYERS STABILITY

We show that T is a contraction. Let (x,y),(x,y) ∈ PC×PC . Then (H1 ) and (H2
) imply

‖T1(x,y)−T1(x,y)‖PC ≤
1

Γ(α)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 |f1(s,x(s),y(s))−f1(s,x(s),y(s))|PC
s

ds

+ 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 |f1(s,x(s),y(s))−f1(s,x(s),y(s))|PC
s

ds

+
k∑
i=1
|Ii(x(ti),y(ti)− Ii(x(ti),y(ti))|PC

≤ 1
Γ(α)(k1‖x−x‖PC +k2‖y−y‖PC)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãα−1 ds

s

+ (k1‖x−x‖PC +k2‖y−y‖PC) 1
Γ(α)

∫ t

tk

Å
ln t
s

ãα−1 ds

s

+
k∑
i=1

(a1i‖x−x‖PC +a2i‖y−y‖PC)

≤

Ñ
Aαk1 +

k∑
i=1

a1i

é
‖x−x‖PC +

Ñ
Aαk2 +

k∑
i=1

a2i

é
‖y−y‖PC .

Similarly, we have

‖T2(x,y)−T2(x,y)‖PC ≤
Ñ
Aβk3 +

k∑
i=1

b1i

é
‖x−x‖PC +

Ñ
Aβk4 +

k∑
i=1

b2i

é
‖y−y‖PC .

It follows that

‖T (x,y)−T (x,y)‖PC ≤ A

Ç
‖x−x‖PC
‖y−y‖PC

å
, for all (x,y),(x,y) ∈ PC×PC.

Hence, by Theorem (1.38), the problem (2.1) has a unique solution.

2.3 Ulam-Hyers Stability
In this section, we introduce Ulam’s type stability concepts for problem (2.1). We

consider the following inequality
|
Ä
cHDα

au
ä

(t)−f1(t,u,v)| ≤ εα t ∈ J ′,
|∆u(tk)− Ik(u(tk),v(tk))| ≤ εα, k = 1, ...,m,
|
Ä
cHDβ

av
ä

(t)−f2(t,u,v)| ≤ εβ t ∈ J ′,
|∆v(tk)− Ik(u(tk),v(tk))| ≤ εβ k = 1, ...,m,

(2.8)

We adopt the following definitions from [90].
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2.3. ULAM-HYERS STABILITY

Definition 2.4. Problem (2.1) is Ulam-Hyers stable if there exists a real number λα,β =
(λα,λβ) > 0 such that for each ε = (εα, εβ) > 0 and for each solution (u,v) ∈ PC(J,R)
of inequality (2.8) there exists a solution (x,y) ∈ PC(J,R) of problem (2.1) with

|(u,v)− (x,y)| ≤ ε.λα,β.

Definition 2.5. Problem (2.1) is generalized Ulam-Hyers stable if there exists φα,β ∈
C(R+,R+), φα,β(0) = 0 such that for each solution (u,v)∈ PC(J,R) of inequality (2.8)
there exists a solution (x,y) ∈ PC(J,R) of problem (2.1) with

|(u,v)− (x,y)| ≤ φα,β(ε).

Remark 2.6. A function (u,v) ∈ PC(J,R) is a solution of inequality (2.8) if and only
if there is (g1,g2) ∈ PC(J,R) and a sequence g1k,g2k, k = 1,2, . . . ,m (which depend on
(u,v)) such that

(i) |g1(t)| ≤ εα, |g2(t)| ≤ εβ, |g1k(t)| ≤ εα, |g2k(t)| ≤ εβ, k = 1,2, . . . ,m,
(ii) 

(cHDα
au(t) = f1(t,u,v) +g1(t) t ∈ J ′,Ä

cHDβ
av
ä

(t) = f2(t,u,v)|+g2(t) t ∈ J ′,
∆u(tk) = Ik(u(tk),v(tk)) +g1k, k = 1, ...,m,
∆v(tk) = Ik(u(tk),v(tk)) +g2k k = 1, ...,m.

Lemma 2.7. Suppose (u,v) is the solution of the inequality (2.8), then we have the
system of inequalities given as

∣∣∣∣u(t)−ua− 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,u(s),v(s))
s ds

− 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f1(s,u(s),v(s))
s ds−

k∑
i=1

Ii(u(ti),v(ti))
∣∣∣∣≤ λαεα,∣∣∣∣v(t)−va− 1

Γ(β)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äβ−1 f2(s,u(s),v(s))
s ds

− 1
Γ(β)

∫ t
tk

Ä
ln t

s

äβ−1 f2(s,u(s),v(s))
s ds−

k∑
i=1

Ii(u(ti),v(ti))
∣∣∣∣≤ λβεβ.

Proof. By using lemma 2.6, we have
(cHDα

au)(t) = f1(t,u,v) +g1(t) t ∈ J ′,Ä
cHDβ

av
ä

(t) = f2(t,u,v) +g2(t) t ∈ J ′,
∆u(tk) = Ik(u(tk),v(tk)) +g1k, k = 1, ...,m,
∆v(tk) = Ik(u(tk),v(tk)) +g2K k = 1, ...,m.

(2.9)

Then, the solution of (2.9) is given by



u(t) = ua+ 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,u(s),v(s))+g1(s)
s ds

+ 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f1(s,u(s),v(s))+g1(s)
s ds+

k∑
i=1

Ii(u(ti),v(ti)) +g1i,

v(t) = va+ 1
Γ(β)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äβ−1 f2(s,u(s),v(s))+g2(s)
s ds

+ 1
Γ(β)

∫ t
tk

Ä
ln t

s

äβ−1 f2(s,u(s),v(s))+g2(s)
s ds+

k∑
i=1

Ii(u(ti),v(ti)) +g2i.

(2.10)
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From first equation of the system (2.10), we have∣∣∣∣∣u(t)−ua− 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,u(s),v(s))
s ds− 1

Γ(α)
∫ t
tk

Ä
ln t

s

äα−1 f1(s,u(s),v(s))
s ds

−
k∑
i=1

Ii(u(ti),v(ti))
∣∣∣∣∣≤ 1

Γ(α)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 |g1(s)|
s ds+ 1

Γ(α)
∫ t
tk

Ä
ln t

s

äα−1 |g1(s)|
s ds+

k∑
i=1
|g1i|

≤ 2εα
Γ(α+1)

Ä
ln T

a

äα+kεα

≤
(

2
Γ(α+1)

Ä
ln T

a

äα+k
)
εα = λαεα.

Repeating the same procedure for second equation of the system (2.10), we have
∣∣∣∣∣v(t)−va−

1
Γ(β)

k∑
i=1

∫ ti

ti−1

Å
ln ti
s

ãβ−1 f2(s,u(s),v(s))
s

ds

− 1
Γ(α)

∫ t

tk

Å
ln t
s

ãβ−1 f2(s,u(s),v(s))
s

ds−
k∑
i=1

Ii(u(ti),v(ti))
∣∣∣∣∣≤ λβεβ.

where 2
Γ(β+1)

Ä
ln T

a

äβ +k = λβ.

Let us set
Λ1 := Aαk1 +

k∑
i=1

a1i, Λ2 := Aαk2 +
k∑
i=1

a2i,

Λ∗1 := Aβk3 +
k∑
i=1

b1i, Λ∗2 := Aβk4 +
k∑
i=1

b2i.

Theorem 2.8. If the assumptions (H1) -(H2) hold, and suppose that

Λ1 < 1, Λ∗2 < 1and Λ := 1− Λ2Λ∗1
(1−Λ1)(1−Λ∗2) 6= 0.

Then problem (2.1) is Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let (u,v) ∈ PC(J,R) be any solution of the inequality (2.8) and let (x,y) ∈
PC(J,R) be the unique solution of the following :

(cHDα
ax)(t) = f1(t,x,y) t ∈ [a,T ], t 6= tk, k = 1, ...,m,Ä

cHDβ
ay
ä

(t) = f2(t,x,y) t ∈ [a,T ], t 6= tk, k = 1, ...,m,
∆x(tk) = x(t+k )−x(t−k ) = Ik(x(tk),y(tk)), k = 1, ...,m,
∆y(tk) = y(t+k )−y(t−k ) = Ik(x(tk),y(tk)), k = 1, ...,m,
x(a) = xa,
y(a) = ya,

(2.11)
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then, in view of Lemma 2.1, the solution of (2.11) is provided by

x(t) = ua+ 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,x(s),y(s))
s ds

+ 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f1(s,x(s),y(s))
s ds+

k∑
i=1

Ii(x(ti),y(ti)),

y(t) = va+ 1
Γ(α)

k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f2(s,x(s),y(s))
s ds

+ 1
Γ(α)

∫ t
tk

Ä
ln t

s

äα−1 f2(s,x(s),y(s))
s ds+

k∑
i=1

Ii(x(ti),y(ti)).

Hence for each t ∈ (tk, tk+1], it follows∥∥∥u−x∥∥∥
PC
≤
∣∣∣u(t)−ua− 1

Γ(α)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1 f1(s,u(s),v(s))
s ds− 1

Γ(α)
∫ t
tk

(
ln t
s

)α−1 f1(s,u(s),v(s))
s ds

−
k∑
i=1

Ii(u(ti),v(ti))
∣∣∣+ 1

Γ(α)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äα−1
∣∣f1(s,u(s),v(s))−f1(s,x(s),y(s))

∣∣
s ds

+ 1
Γ(α)

∫ t
tk

(
ln t
s

)α−1
∣∣f1(s,u(s),v(s))−f1(s,x(s),y(s))

∣∣
s ds+

k∑
i=1

∣∣Ii(u(ti),v(ti))− Ii(x(ti),y(ti))
∣∣

≤ λαεα+Aα (k1‖u−x‖PC +k2‖v−y‖PC) +
k∑
i=1

(a1i‖u−x‖PC +a2i‖v−y‖PC)

≤ λαεα+
ï
Aαk1 +

k∑
i=1

a1i

ò
‖u−x‖PC +

ï
Aαk2 +

k∑
i=1

a2i

ò
‖v−y‖PC

≤ λαεα+ Λ1‖u−x‖PC + Λ2‖v−y‖PC .

Thus, we get ∥∥∥u−x∥∥∥
PC
≤ λαεα

1−Λ1
+ Λ2

1−Λ1
‖v−y‖PC . (2.12)

In addition, for each t ∈ (tk, tk+1], it follows

∥∥v−y∥∥
PC
≤
∣∣∣v(t)−va− 1

Γ(β)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äβ−1 f2(s,u(s),v(s))
s ds− 1

Γ(β)
∫ t
tk

(
ln t
s

)β−1 f2(s,u(s),v(s))
s ds

−
k∑
i=1

Ii(u(ti),v(ti))
∣∣∣+ 1

Γ(β)
k∑
i=1

∫ ti
ti−1

Ä
ln ti

s

äβ−1
∣∣f2(s,u(s),v(s))−f2(s,x(s),y(s))

∣∣
s ds

+ 1
Γ(β)

∫ t
tk

(
ln t
s

)β−1
∣∣f2(s,u(s),v(s))−f2(s,x(s),y(s))

∣∣
s ds+

k∑
i=1

∣∣Ii(u(ti),v(ti))− Ii(x(ti),y(ti))
∣∣

≤ λβεβ +Aβ (k3‖u−x‖PC +k4‖v−y‖PC) +
k∑
i=1

(b1i‖u−x‖PC + b2i‖v−y‖PC)

≤ λβεβ +
ï
Aβk3 +

k∑
i=1

b1i

ò
‖u−x‖PC +

ï
Aβk4 +

k∑
i=1

b2i

ò
‖v−y‖PC

≤ λβεβ + Λ∗1‖u−x‖PC + Λ∗2‖v−y‖PC .
Thus, we get ∥∥∥v−y∥∥∥

PC
≤

λβεβ
1−Λ∗2

+ Λ∗1
1−Λ∗2

‖v−y‖PC . (2.13)

The equivalent matrix of Equations (2.12) and (2.13) is given as :
1 − Λ2

1−Λ1

− Λ∗1
1−Λ∗2

1


‖u−x‖PC
‖v−y‖PC

≤

λαεα
1−Λ1

λβεβ
1−Λ∗2

 .
Solving the above inequality, we get
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‖u−x‖PC
‖v−y‖PC

≤


1
Λ

Λ∗1
Λ(1−Λ∗2)

Λ2
Λ(1−Λ1)

1
Λ



λαεα
1−Λ1

λβεβ
1−Λ∗2

 .
Further simplification of above system gives

‖u−x‖PC ≤
λαεα

Λ(1−Λ1) + Λ∗1λβεβ
Λ(1−Λ∗2)2 ,

‖v−y‖PC ≤
λβεβ

Λ(1−Λ∗2) + Λ2λαεα
Λ(1−Λ1)2 ,

from which we have

‖u−x‖PC +‖v−y‖PC ≤
λαεα

Λ(1−Λ1) + Λ∗1λβεβ
Λ(1−Λ∗2)2 + λβεβ

Λ(1−Λ∗2) + Λ2λαεα
Λ(1−Λ1)2 . (2.14)

Let ε= max{εα, εβ}, then from (2.14) we have

‖(u,v)− (x,y)‖PC ≤ λα,βε,

where
λα,β =

ñ
λα

Λ(1−Λ1) + Λ∗1λβ
Λ(1−Λ∗2)2 + λβ

Λ(1−Λ∗2) + Λ2λα
Λ(1−Λ1)2

ô
.

Hence, problem (2.1) is Ulam-Hyers stable.
Over and above, if we write

‖(u,v)− (x,y)‖PC ≤ ψα,β(ε), where ψα,β(ε) = ε.λα,β, and ψα,β(0) = 0.

Then problem (2.1) is generalized Ulam-Hyers stable.

2.4 Example
Example 2.9. Consider the following differential equation system

(cHD 1
2x)(t) = sin(x+y)

20(ln t+1) , t ∈ [1, e], t 6= 5
3 ,Ä

cHD1/2y
ä

(t) = arctan t
3+|x+y| , t ∈ [1, e], t 6= 5

3 ,

∆x(5
3) = exp− 5

3
Ä
sinx(5

3) +y(5
3)
ä
,

∆y(5
3) = |x( 5

3 )+y( 5
3 )|

10 ,
x(1) = 1

2 ,
y(1) = 3

2 .

(2.15)

Here, we have

f1(t,x,y) = sin(x+y)
20(ln t+ 1) , f2(t,x,y) = arctan t

3 + |x+y|
,
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and we simply check that

∀x,y,x,x ∈ R;
∣∣∣∣f1(t,x,y)−f1(t,x,y)

∣∣∣∣≤ 1
20

∣∣∣∣x−x∣∣∣∣+ 1
20

∣∣∣∣y−y∣∣∣∣, ∀t ∈ [1, e],

∀x,y,x,x ∈ R;
∣∣∣∣f2(t,x,y)−f2(t,x,y)

∣∣∣∣≤ π

18

∣∣∣∣x−x|+ π

18

∣∣∣∣y−y∣∣∣∣, ∀t ∈ [1, e],

∣∣∣∣∣∣I
Å
x(5

3),y(5
3)
ã
− I
Å
x(5

3),y(5
3)
ã ∣∣∣∣∣∣≤ e−5

3

∣∣∣∣x−x∣∣∣∣+ e
−5
3

∣∣∣∣y−y∣∣∣∣,
∣∣∣∣∣∣I
Å
x(5

3),y(5
3)
ã
− I
Å
x(5

3),y(5
3)
ã ∣∣∣∣∣∣≤ 1

10

∣∣∣∣x−x∣∣∣∣+ 1
10

∣∣∣∣y−y∣∣∣∣.
Therefore the matrix

A=
Ç

0.3. 0.3
0.49 0.49

å
converges to zero since its eigenvalues are λ1 = 0.79 < 1, λ2 = 0 < 1. From Theorem
(2.3), the problem (2.15) has an unique solution.

On the other hand, we have Λ2 = Λ1 = 0.3, Λ∗1 = Λ∗2 = 0.49. Therefore

Λ = 1− 0.3∗0.49
(1−0.3)(1−0.49) = 0.58 6= 0

So, the coupled system (2.15) is Ulam-Hyers stable, generalized Ulam-Hyers stable.

28



Chapitre 3
Stability for coupled systems on networks
with Caputo-Hadamard fractional
derivative 1

3.1 Introduction
Coupled systems of fractional differential equations on networks (CSFDENs) have

been investigated extensively due to their wide applications in different fields such as
engineering, physics, epidemiology, signal and image processing, artificial intelligence,
pattern classification, etc [95, 93, 116, 113]. A network can be described as a directed
graph consisting of vertices and directed arcs connecting them. At each vertex, the
local dynamics are given by a system of differential equations called the vertex system.
The directed arcs indicate interactions between vertex systems. In 2010, Li et al. [64]
introduced a new method based on graph theory and Lyapunov technique to study
the stability and synchronization of neural networks. Since then, this technique has
attracted considerable interest [66, 31].
Suo et al[96] studied the stability of the following system :

x′i = fi(t,xi) +
n∑
j=1

gij(t,xi,xj), t 6= tk,

∆xi = Ik(xi), t= tk, k = 1,2, . . .
xi(t+0 ) = xi0,

where i= 1,2, . . . ,n, 0< t1 < t2 < · · ·< tk < .. . , and tk→∞ as k→∞ ; fi is continuous
on (tk−1, tk]×Rmi, gij is continuous on (tk−1, tk]×Rmi×Rmj , and Ik ∈ C[Rmi,Rmi].

Zhang et al[112] studied the global stability of the following impulsive coupled sys-
tem on a digraph G

Dµxp =−ωpxp+
n∑
q=1

apqfq(xq(t)) +
n∑
q=1

apq(xp(t)−xq(t)), t≥ 0, t 6= tk,

∆xp(tk) = Ik(xp(tk)),
x(t−k ) = xtk , k = 1,2, . . .

1. H. Belbali, M. Benbachir, Stability for coupled systems on networks with Caputo-Hadamard
fractional derivative. Journal of Mathematical Modeling 2020 ; 9 (1) : 107-118.
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3.2. STABILITY ANALYSIS FOR COUPLED SYSTEMS OF FRACTIONAL DIFFERENTIAL
EQUATIONS ON NETWORKS

where Dµ is the Caputo fractional derivative of order 0< µ < 1, p,q = 1,2, . . . ,n, fq(x)
is a function satisfying the Lipschitz condition.

Li et al[63] considered the stability of the coupled systems fractional differential
equations on networks

cDqxi = fi(t,xi) +
n∑
j=1

gij(t,xi,xj), t≥ t0, i= 1,2, . . . ,n,

xi(t0) = xi0,

where cDq is the Caputo’s fractional derivative of order q, 0 < q < 1, xi ∈ Rmi and
fi : R+×Rmi→ Rmi and gij : R+×Rmi×Rmj → Rmi.

Motivated by the works of the papers mentioned above, in this chapter, we establish
the stability and uniform asymptotic stability of the trivial solution for coupled sys-
tems of fractional differential equations on networks with Caputo-Hadamard fractional
derivative, of the form

cHDαxi = fi(t,xi) +
n∑
j=1

gij(t,xi,xj), t > t0,

xi(t0) = xi0,

where 1< α≤ 2 , i= 1,2, . . . ,n, fi : R+×Rmi→Rmi , gij : R+×Rmi×Rmj →Rmi . We
assume that the functions fi and gij satisfy the Lipschitz conditions.
The results are based on graph theory and the classical Lyapunov technique, we prove
stability and uniform asymptotic stability under suitable sufficient conditions. We also
provide an example to illustrate the obtained results.

3.2 Stability analysis for coupled systems of fractional
differential equations on networks

Consider a network represented by digraph G with n vertices (n≥ 2). Assume that
the i-th vertex dynamic is described by a system of fractional differential equations as
follows : ®

cHDαxi = fi(t,xi), t > t0, i ∈ I,
xi(t0) = xi0,

(3.1)

where α, 1<α≤ 2, xi ∈Rmi and fi :R+×Rmi→Rmi. Let gi :R+×Rmi×Rmj→Rmi
represents the influence of the vertex j on vertex i and gij = 0, if there exists no arc
from j to i in G. Then we obtain the following coupled system on graph G :

cHDαxi = fi(t,xi) +
n∑
j=1

gij(t,xi,xj), t > t0,

xi(t0) = xi0,
(3.2)

i = 1,2, . . . ,n. Here functions fi and gij satisfy the global Lipschitz conditions so that
initial-value problem (3.2) has an unique solution. Equation (3.2) has a trivial solution
(x1,x2, . . . ,xn) = 0 for t≥ t0.
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Let Di ⊂ Rmi be an open set. We define Vi : R×Di → R the Lyapunov function
for each vertex system (3.1). We are particularly interested in constructing Lyapunov
functions V : R×D→ R for coupled system (3.2) of form

V (t,x) =
n∑
i=1

ciVi(t,xi).

Where D =D1×D2×·· ·×Dn ⊂ Rn, m=m1 +m2 + · · ·+mn

The following result gives a general and systematic approach for such construction.
Theorem 3.1. Suppose that the following assumptions are satisfied.

1. There exist functions Vi(t,xi),Fij(xi,xj), and a matrix A = (aij)n×n in which
aij > 0 such that

cHDαVi(t,xi)≤
n∑
i=1

aijFij(xi,xj) t > t0, xi ∈ Rmi, 1< i < n. (3.3)

2. Along each directed cycle C of the weighted digraph (G,A)∑
(s,r)∈E(c)

aijFrs(xr,xs)≤ 0 ; t≥ t0 ,xr ∈ Rmr,xs ∈ Rms. (3.4)

3. Constants ci are given in (1.24).
Then function V (t,x) =

n∑
i=1

ciVi(t,xi) is a Lyapunov function for (3.2) .

Proof. For V (t,x) =
n∑
i=1

ciVi(t,xi), we have

cHDαV (t,x) =cH Dα
n∑
i=1

ci.Vi(t,xi),

≤
n∑
i=1

ci
cHDαVi(t,xi).

According to condition (1), we have

cHDαV (t,x)≤
n∑
i=1

n∑
j=1

ciaijFij(t,xi,xj).

Applying Theorem 1.29
cHDαV (t,x) =

∑
Q∈Q

w(Q)
∑

(j,i)∈EcQ

Fij(t,xi,xj).

According to condition (2) and w(Q)> 0, we have
cHDαV (t,x)≤ 0.

The proof is therefore complete.

Note that if (G,A) is balanced, then
n∑

i,j=1
ciaijFij(xi,xj)≤

1
2
∑
Q∈Ω

w(Q)
∑

(s,r)∈EcQ

[Frs(xr,xs) +Fsr(xs,xr)] .
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EQUATIONS ON NETWORKS

Proposition 3.2. Suppose that (G,A) is balanced. Then the conclusion of Theorem 3.1
holds if condition (2) is replaced by the following one :

[Frs(xr,xs) +Fsr(xs,xr)]≤ 0 t≥ t0 ,xr ∈ Rmr,xs ∈ Rms. (3.5)

Theorem 3.3. Assume the following conditions are satisfied.
— There exist functions Vi ∈ C1[R+×Di,R+], Fij(t,xi,xj) a matrix A = (aij)n×n

in which aij ≤ 0 and bi > 0 such that for i= 1,2, . . . ,n

cHDαVi(t,xi)≤−biVi(t,xi) +
n∑
j=1

aijFij(xi,xj) t > t0. (3.6)

— Either (2) holds, or if (G,A) is balanced and (3.5) holds.
— There exists a δ(i)

0 > 0 and a function di ∈ K such that

Vi(t,xi)≤ di(‖ xi ‖), provided ‖ xi ‖< δ
(i)
0 . (3.7)

— Constants ci are given in (1.24).
Then, the function V (t,x) =

n∑
i=1

ciVi(t,xi) is a Lyapunov function for (3.2) and the
trivial solution of (3.2) is uniformly asymptotically stable.

Proof. For V (t,x) =
n∑
i=1

ciVi(t,xi), according to condition (2) and (3.6), we have

cHDαV (t,x) =cH Dα
n∑
i=1

ciVi(t,xi),

≤
n∑
i=1

ci
cHDαVi(t,xi),

≤
n∑
i=1

ci

−biVi(t,xi) +
n∑
j=1

aijFij(xi,xj)
 ,

≤−
n∑
i=1

cibiVi(t,xi),

≤−bV (t,x),

where b= min{b1, b2, . . . , bn}.
So that the trivial solution is asymptotically stable. On the other hand, as di ∈ K,

we get (3.7) independent of t. Therefore the number δ can be chosen independent of t0.
Define

δ0 = min{δ(1)
0 , δ

(2)
0 , . . . , δ

(n)
0 },

b(‖ x ‖) = nmin{c1b1(‖ x1 ‖), c2b2(‖ x2 ‖), . . . , cnbn(‖ xn ‖)},
and

d(‖ x ‖) = nmin{c1d1(‖ x1 ‖), c2d2(‖ x2 ‖), . . . , cndn(‖ xn ‖)}.
For every ε > 0, there exists 0 < δ(ε) < δ0 such that d(‖ x0 ‖) < b(ε) provided that

‖ x0 ‖< δ.
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if ‖ x0 ‖< δ, then according to (3.7), we have

V (t,x)≤
n∑
i=1

ciVi(t0,xi0)≤
n∑
i=1

cidi(‖ xi ‖)≤
n∑
i=1

1
n
d(‖ x0 ‖)≤ b(ε).

Since Vi(t,xi) is a positive definite function, we deduce that there exists bi(.) ∈ K such
that

Vi(t,xi)≥ bi(‖ xi ‖).
Then

V (t,x) =
n∑
i=1

ciVi(t,xi)≥
n∑
i=1

cibi(‖ xi ‖)≥
n∑
i=1

1
n
b(‖ x ‖) = b(‖ x ‖).

So, we have
b(‖ x ‖)≤ V (t,x)≤ b(ε).

Then ‖ x ‖≤ ε. This implies that the trivial solution of (3.2) is uniformly stable. We
conclude that the trivial solution of (3.2) is uniformly asymptotically stable.

3.3 Example
Example 3.4. We consider the following coupled system of fractional differential equa-
tion on digraph G :

cHDαxi =−ωixi+fi(xi) +
n∑
j=1

βij(xi−|xj |),

xi(t0) = xi0,
(3.8)

i, j = 1, . . . ,n, 0 < α < 1, ωi > 0, where xi is n-dimensional column vectors, fi is conti-
nuous and there exists a Lipschitz constant Li > 0 such that |fi(xi)−fi(yi)≤Li|xi−yi|
for all xi 6= yi In addition, fi(0) = 0, βij ≤ 0, βij =−βji and βij 6= 0 if i 6= j.

Suppose that the following conditions hold :
1. (G,A) is strongly connected and balanced.
2. γi = ωi−Li > 0, i= 1,2, . . . ,n.

Then the trivial solution of system(3.8) is uniformly asymptotically stable.
Proof. Let us consider Vi(t,xi(t)) = |xi(t)|, then we get

µ|xi(t)| ≥ |xi(t)| for all µ≥ 1,

and, we put µ|xi(t)| ∈K such that

Vi(t,xi(t))≤ µ|xi(t)|, µ≥ 1.

Therefore (3.7) holds .
If xi(t) = 0, then cHDα|xi|= 0.
If xi(t)> 0, then

cHDα|xi(t)|=
1

Γ(n−α)

∫ t

a

Å
log t

s

ãn−α−1Ç
s
d

ds

ån
x(s)ds

s
,

=cHDαxi(t).
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If xi(t)< 0, then

cHDα|xi(t)|=−
1

Γ(n−α)

∫ t

a

Å
log t

s

ãn−α−1Ç
s
d

ds

ån
x(s)ds

s
,

=−cHDαxi(t).

Therefore cHDα|xi(t)|= sgn(xi(t)) cHDαxi(t). According to (3.8), we have

cHDα|xi(t)|=sgn(xi(t))cHDαxi(t),

=sgn(xi(t))
Ñ
−ωixi+fi(xi) +

n∑
j=1

βij(xi−|xj |)
é
,

=−ωi|xi|+fi(|xi|) +
n∑
j=1

βij(|xi|− |xj |),

≤−ωi|xi|+Li|xi|+
n∑
j=1

βij(|xi|− |xj |),

≤(−ωi+Li) |xi|+
n∑
j=1

βij(|xi|− |xj |),

≤−γiVi(t,xi) +
n∑
j=1

aijFij(xi,xj),

where Fij(xi,xj) = sgn(βij)(|xi|− |xj |).
It is easy to show that

Fij(xi,xj) =sgn(βij)(|xi|− |xj |),
=− sgn(βji)(|xj |− |xi|),
=−Fji(xj ,xi).

Thus along each directed cycle C of the weighted digraph (G,A)∑
(i,j)∈E(cQ)

[Fij(xi,xj) +Fji(xj ,xi)] = 0.

According to Theorem 3.3, we can conclude that (3.8) is uniformly asymptotically
stable.
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Chapitre 4
Stability results for linear fractional
differential system with Caputo-Hadamard
derivative 1

4.1 Introduction
This chapter is devoted to proving the stability of linear fractional differential system

with Caputo-Hadamard derivative. The results are obtained by the Laplace transform,
the asymptotic expansion of the Mittag-Leffler function and the Gronwall inequality.
Further, examples are provided to illustrate our results.
In 1996, Matignon [74], studied for the first time the stability of autonomous linear
fractional differential systems with the Caputo derivative. This criterion was developed
by several authors. Deng et al[35], studied the stability of some fractional systems with
multiple time delays. Recently, Qian et al[87], have investigated the stability of frac-
tional differential systems with Riemann-Liouville derivative. In [114], authors derived
the same results to [74] for the different case of order of the fractional derivative.

Thus, motivated by the results mentioned, in this chapter we discuss the stability
of linear fractional order systems with Caputo-Hadamard derivativ .

In section 4.2 we consider the stability of the following linear autonomous caputo-
Hadamard fractional differential system :® cHDα

a,tx(t) = Ax(t), t > a > 0, 0< α < 1,
x(a) = x0,

where x(t) ∈ Rn, matrix A ∈ Rn×n and x0 = (x10,x20, . . . ,xn0)T .
In section 4.3 we consider the stability of perturbed fractional differential system® cHDα

a,tx(t) = Ax(t) +B(t)x(t), t > a > 0, 0< α < 1,
x(a) = x0,

1. H. Belbali, M. Benbachir, Stability results for linear fractional order systems with Caputo-
Hadamard derivative. (submitted).
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where x ∈ Rn, matrix A ∈ Rn×n, B(t) : [a,∞) → Rn×n is a continuous matrix and
x0 = (x10,x20, . . . ,xn0)T .

The main tools in our analysis are the properties of Mittag-Leffler functions, the
Laplace transform and the Gronwall inequality.

4.2 Stability of Autonomous Linear Fractional Differen-
tial Systems

In this section, we consider the stability of the following linear autonomous caputo-
Hadamard fractional differential system :®

cHDαx(t) = Ax(t), t > a > 0, 0< α < 1,
x(a) = x0,

(4.1)

where x(t) ∈ Rn, matrix A ∈ Rn×n and x0 = (x10,x20, . . . ,xn0)T .
Then, by analyzing the solutions of the above initial value problem (4.1), one can

find the following result when A is diagonalizable and has all non-zero eigenvalues.

Theorem 4.1. The fractional differential system (4.1) is asymptotically stable, If all
eigenvalues of A satisfy

|arg(λ(A))|> απ

2 , (4.2)

and (I−As−α) is an invertible matrix.

Proof. Using the modified Laplace transform on the both sides of system (4.1) yields

sαX(s)− sα−1δ0x(a) = AX(s).

Thus
X(s) = (Isα−A)−1sα−1x0.

Therefore it follows from the inverse modified Laplace transform that we can get the
solution of system (4.1),

x(t) = x0Eα

Ç
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Å
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ãαå
. (4.3)

Since A is diagonalizable, then there exists an invertible matrix P such that
D = P−1AP = diag(λ1,λ2, . . . ,λn). Then

Eα

Å
A

Å
ln t
a

ãαã
= PEα

Å
D

Å
ln t
a

ãαã
P−1 = Pψα( t

a
)P−1,
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.

According to (4.2) and (1.12), Eα
Ä
λi
Ä
ln t

a

äαä is given as

Eα
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ãαå
=−

p∑
k=1

Ä
λi
Ä
ln t

a

äαä−k
Γ(1−αk) +O
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Hence

lim
t→+∞
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and
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for any non-zero initial value x0. The proof is complete.

Theorem 4.2. If all eigenvalues of A satisfy

|arg(λ(A))| ≥ απ

2
and the critical eigenvalues satisfying |arg(λ(A))| = απ

2 have the same algebraic and
geometric multiplicities, then system (4.1) is stable but not asymptotically stable.

Proof. Without loss of generality, suppose there exists a critical eigenvalue, say λi,
satisfying |arg(λi)| = απ

2 with algebraic and geometric multiplicity both equal to one.
Then, from (4.3) the solution of system (4.1) is given by

x(t) =x0Eα
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Next, from (1.11) we have
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Let λi = r
Ä
cos(απ2 ) + isin(απ2 )

ä
, where r is the modulus of λi, and i2 =−1.

Then,
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The absolute value of the first term of the right-hand side of the above equality equals
1
α , whereas the rest of the terms tend to zero as t→+∞. All these imply that the zero
solution of system (4.1) is stable but not asymptotically stable.

Corollaire 4.2.1. If A has an eigenvalue λ0 such that |arg(λ0)| < απ
2 , then system

(4.1) is unstable.

Proof. According to (1.11), we have
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and lim
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||x(t)||= lim
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||x0Eα
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äαä ||= +∞.
Hence system (4.1) is unstable.

4.3 Stability analysis of perturbed fractional differential
system

We consider the perturbed system of (4.1) given by :®
cHDαx(t) = Ax(t) +B(t)x(t), t > a > 0, 0< α < 1,
x(a) = x0,

(4.4)

where x ∈ Rn, matrix A ∈ Rn×n, B(t) : [a,∞) → Rn×n is a continuous matrix and
x0 = (x10,x20, . . . ,xn0)T .

Theorem 4.3. Suppose ||B(t)|| is bounded (||B(t)|| ≤ C for some C > 0) and all ei-
genvalues of A satisfy

|arg(λ(A))|> απ

2 . (4.5)

Then system (4.4) is asymptotically stable.

Proof. Using the Laplace transform and the inverse Laplace transform, the solution
of equations (4.4) can be written as
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from which it follows that
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Applying Lemma 1.44, we have
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Since A is similar to a diagonal matrix. Then
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which completes the proof.

Theorem 4.4. If all eigenvalues of A satisfy

|arg(λ(A))| ≥ απ

2 , (4.6)

and the critical eigenvalues have the same algebraic and geometric multiplicities and∫∞
a ||B(w)|| dww . is bounded, then system (4.4) is stable.
Proof. From the proof of theorem 4.3, we have
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According to the proof of Theorem 4.2, the matrix is bounded. Therefore, there exists a
positive number K1 such that
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Applying Lemma 1.44, we have
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Thus, we derive that ||x(t)|| is bounded according to the condition
∫∞
a ||B(w)|| dww <∞,

that is, the system (4.4) is stable. The proof is completed.

4.4 Example
Example 4.5. Consider the perturbed system of a linear fractional differential system
with Caputo-Hadamard derivative

cHDα
a,tx(t) = Ax(t) +B(t), t > a > 0, (4.7)

with initial condition x0 = x(1,1)T , where α = 1/2 and

x=
ñ
x1
x2

ô
, A=

Ç
1 −1
3 1

å
, B =

Ñ
0 sin(t)

2
sin(t)

2 0

é
.

The eigenvalues of A are given by λ= 1± i
√

3.
The eigenvalues satisfy |arg(λ1)|= π

3 and |arg(λ2)|= π
3 .

Since all the eigenvalues satisfy |arg(λ(A))|> π
4 . Then according to Theorem (4.1) The

homogeneous system of (4.7)is asymptotically stable.
Moreover, ∀t > a||B(t)|| ≤M = 1

2 .
Since all the conditions of the Theorem 4.4 are satisfied. Hence the given system (4.7)
is asymptotically stable.
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Chapitre 5
Existence Theory and Generalized
Mittag-Leffler Stability for a Nonlinear
Caputo-Hadamard FIVP via Lyapunov
Method 1

5.1 Introduction
In this chapter, the main properties such as the existence , uniqueness and different

types of stability are studied for the fractional system involving the nonlinear Caputo-
Hadamard FIVP as given by :

cHD`
cφ(t) = Aφ(t) +ψ(t,φ(t),cHDβ

c φ(t)), t > c > 0,

Θkφ(t) |t=c= φk, k = 0,1,
(5.1)

where, 1 < ` < 2, 0 < β < `−1, φ0,φ1 ∈ Rn , A ∈ Rn×n, Θ = t ddt and ψ : [c,∞)×Rn×
Rn→ Rn is a given function.

First, In section 5.2, we shall give several sufficient conditions confirming the exis-
tence of solution and its uniqueness for the nonlinear Caputo-Hadamard FIVP (5.1),
using Banach contraction principle. Next, In section 5.3, we study the generalized
Mittag-Leffler stability for the Caputo-Hadamard system (5.1) by Lyapunov-like func-
tion and K-class function.
Finally, we provide an illustrative example to show the applicability of our results.

The existence and uniqueness problems for fractional differential equations case has
been extensively studied by many authors ; see [10, 11, 21, 23, 50, 51, 53, 86, 94]. and
the references therein. For the stability, we have taken into consideration the articles
[22, 32, 34, 35, 41, 74, 80, 91, 115].

1. H. Belbali, M. Benbachir, S. Etemad and S. Rezapour, Existence Theory and Generalized
Mittag-Leffler Stability for a Nonlinear Caputo-Hadamard FIVP via Lyapunov Method (submitted)
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5.2 Existences and Uniqueness of Solution
For a given T > c> 0, let E=C([c,T ],Rn) be a Banach space consisting of continuous

n-vector mappings given on [c,T ] furnished with the norm

||φ||= sup
t∈[c,T ]

|φ(t)|.

Notice that the norm of an n-vector φ(t) = (φ1(t),φ2(t), . . . ,φn(t)) ∈ Rn is presented as

||φ(t)||=
Ñ

n∑
k=1
|φk(t)|2

é1/2

.

Based on given problem (5.1), introduce the Banach space B = {φ;φ ∈ E,cHDβ
c φ ∈ E}

via the norm
||φ||B = ||φ||+ ||cHDβ

c φ||.

Now, we first derive the equivalent solution to our system.

Lemma 5.1. For 1< ` < 2, 0< β < `−1 and invertible matrix [Is`−A], the solution
of the nonlinear Caputo-Hadamard FIVP (5.1) is given as

φ(t) = E`
(
A
Å

ln t
c

ã`)
φ0 +

Å
ln t
c

ã
E`,2

(
A
Å

ln t
c

ã`)
φ1

+
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c

Å
ln w
c

ã`−1
E`,`

Ç
A
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ln w
c

ã`å
ψ(w,φ(w),cHDβ

c φ(w)) dw
w
.

Proof. Let Ψ(s) and Φ(s) be the modified Laplace transforms of ψ(t) and φ(t). Then,
by using the modified Laplace transform and its properties for the nonlinear Caputo-
Hadamard FIVP (5.1), we have

Lc{CHD`
cφ(t)}= Lc{Aφ(t)}+Lc{ψ(t,φ(t),cHDβ

c φ(t))},

and so,

Φ(s) = s`−1[Is`−A]−1φ0 + s`−2[Is`−A]−1φ1 + [Is`−A]−1F (s,Φ(s),cHDβ
c Φ(s)).

By utilizing the inverse modified Laplace transform on the above relation, we obtain

φ(t) = E`
(
A
Å

ln t
c

ã`)
φ0 +

Å
ln t
c

ã
E`,2

(
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ln t
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ã`)
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+
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ln w
c
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Ç
A
Å

ln w
c

ã`å
ψ(w,φ(w),cHDβ

c φ(w)) dw
w
,

and this concludes the proof.

We will use the Banach’s contraction principale to prove the existence of a solution
of the nonlinear Caputo-Hadamard FIVP (5.1).
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Theorem 5.2. Let ψ : [c,∞)×Rn×Rn→ Rn be continuous function which fulfills the
Lipschitz inequality

||ψ(t,φ1(t),y1(t))−ψ(t,φ2(t),y2(t))|| ≤K(||φ1(t)−φ2(t)||+||y1(t)−y2(t)||), t∈ [c,T ], K > 0.

Then, the nonlinear Caputo-Hadamard FIVP (5.1) has a solution uniquely on [c,T ] if[
1
`
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KM`

Ç
ln T
c

å`
< 1, (5.2)

where ||ψ(t,0,0)|| ≤M0 and
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Proof. Consider the operator N : B→ B formulated by
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We follow the proof in some steps :
(Step 1) : N is well–defined : Given φ ∈ B, t ∈ [c,T ], we have
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Consequently we obtain,
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Applying the first derivative of Nφ(t), using (1.9) and (1.10) we have
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Hence,
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where M ′` = M`
c .

Now, one can estimate
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Consequently, we obtain
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From (5.3) and (5.4), we find that
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This implies that N is well defined.
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(Step 2) : N is contraction on B ; For φ,y ∈ B and t ∈ [c,T ], we get
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Then,

||Nφ−Ny||B ≤
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1
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ln T
c

å−β]
KM`

Ç
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The contractive property for N , thanks to (5.2), is established. As a consequence, Theo-
rem1.31 confirms the existence of unique solution for the nonlinear Caputo-Hadamard
FIVP (5.1) on [c,T ]. This completes the proof.

5.3 Generalized Mittag-Leffler stability
In this section, we follow our study in relation to the stability of the nonlinear

Caputo-Hadamard FIVP (5.1) by terms of a Lyapunov-like function and K-class func-
tion.

From now on, we suppose that the Lyapunov function V : [c,∞)×Rn→R+ is conti-
nuously differentiable w.r.t. the time variable t, Lipschtiz w.r.t. the unknown function
φ, and also V(t,0) = 0.

5.3.1 Lyapunov method
Theorem 5.3. Let φ= 0 be an equilibrium point of nonlinear Caputo-Hadamard FIVP
(5.1), and assume that V satisfies

c||φ||b ≤ V(t,φ(t)), (5.5)
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cHD`
cV(t,φ(t))≤−qV(t,φ(t)), (5.6)

so that φ∈Rn, c,b,q > 0. Then, the zero solution is Mittag–Leffler stable if V(c,φ(c))≥
0 and ΘV(c,φ(c)) = 0, where Θ = d

dt .

Proof. Using the inequality (5.6), a nonnegative function M(t) exists which satisfies
cHD`

cV(t,φ(t)) +M(t) =−qV(t,φ(t)). (5.7)

Let Lc{V(t,φ(t))}= V(s). Then, the application of the Laplace transform of (5.7) gives

s`V(s)− s`−1V0− s`−2V1 +M(s) =−qV(s). (5.8)
By using the inverse modified Laplace transform to (5.8), it yields
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0, we deduce that
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In accordance with (5.5), we obtain
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,

form= V0
c
≥ 0. In this case, the zero solution of the nonlinear Caputo-Hadamard FIVP

(5.1) is Mittag-Leffler stable.

5.3.2 Stability via K-Class functions
Theorem 5.4. Let φ = 0 be an equilibrium point of the nonlinear Caputo-Hadamard
FIVP (5.1). Suppose that there exis a K-class function ϕ which satisfies

V(t,φ(t))≥ ϕ−1(||φ(t)||), (5.9)

cHD`
cV(t,φ(t))≤ 0, (5.10)

sup
t≥c

ϕ
Å
V(c,φ(c)) + ΘV(c,φ(c)) ln t

c

ã
≤M, (5.11)

for M ≥ 0. Then, the zero solution is stable.
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Proof. By applying (5.10), there exists some M ≥ 0 so that

cHD`
cV(t,φ(t)) =−M(t).

By using the Laplace transform and its inverse, we obtain

V(t,φ(t)) = V0 +
Å

ln t
c

ã
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[
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Å
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c

ã`−1]
, (5.12)

where V0 = V(c,φ(c)), and V1 = ΘV(c,φ(c)).
Substituting (5.12) into (5.9), it yields
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Therefore
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Å
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ã
.

Then, by equation (5.11), we get ||φ(t)|| ≤ M, t > c, which confirms that the zero
solution of the nonlinear Caputo-Hadamard FIVP (5.1) is stable.

5.4 Example
Here, we validate our results by providing the next example.

Example 5.5. According to (5.1), consider the nonlinear Caputo-Hadamard FIVP
cHD

3/2
1,t φ(t) = 1

10

Å
−|φ(t)|−cHD1/2

1,t |φ(t)|
ã
, t ∈ [1, e],

Θkφ(t) |t=1= 0,k = 0,1.
(5.13)

Here, we have A = 0 and ψ
Å
t,φ(t),cHD1/2

1,t φ(t)
ã

= 1
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Å
−|φ(t)|−cHD1/2
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ã
, where

ψ : [1, e]×R×R→ R. In order to show that (5.13) has an unique solution, we simply
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which is satisfying the Lipschitz condition with K = 1
10 . Since |E`,`

Ä
A(ln t
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`
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for A= 0, we have E 3
2 ,

3
2
(0) = 2√
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From Theorem5.2, the the nonlinear Caputo-Hadamard FIVP (5.13) has a solution
uniquely.
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On the other hand, consider the Lyapunov function V(t,φ(t)) = |φ(t)|. In this case,

cHD`V(t,φ(t)) = 1
10
Ä
−V(t,φ(t))−cHDβV(t,φ(t))

ä
≤− 1

10V(t,φ(t)).

Hence, the hypotheses of Theorem 5.3 hold with c = 0, b = 1 and q = 1
10 . Accordingly,

the zero solution of the given nonlinear Caputo-Hadamard FIVP (5.13) is Mittag-Leffler
stable.
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