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Abstract

In this thesis, we will try to generalize the Laplacian on Euclidien space to operator of dif-
ferential forms on a Riemannian manifold and prove the Hodge theory, with give a notion of
the Riemannian manifold. Our goal is to understand how can a differential forms on manifold
to be harmonic. The basic idea on harmonic forms on Riemannian manifold is that gives an
information about Riemannian manifold and the Laplacian on compact Riemannian manifold
and citation by the Hodge theory.
MSC2020 : 70G45, 35J91, 53C43, 58A10 .
Keywords— Differential geometry methods, Semilineair elliptic equations with Laplacian, Differen-
tial geometry aspects of harmonic maps, Differential forms

Résumé

Dans cette thèse, nous essaierons de généraliser le laplacien sur l’espace euclidien à un opérateur de
formes différentielles sur une variété riemannienne et de prouver la théorie de Hodge, en donnant une
notion de la variété riemannienne. Notre objectif est de comprendre comment une forme différentielle
sur une variété peut être harmonique. L’idée de base sur les formes harmoniques sur la variété
riemannienne est que cela donne une information sur la variété riemannienne et le laplacien sur la
variété riemannienne compacte et la citation par la théorie de Hodge.
MSC2020 : 70G45, 35J91, 53C43, 58A10 .
Mots clés— Méthodes de géométrie différentielle, Equations elliptiques semi-lineaires avec Laplacien,
Aspects géométriques differentiels.
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INTRODUCTION

The differential geometry is a continuity of the infinitesimal calculus, it allows to study thanks
to the techniques of the differential calculus a family of topological spaces called “differentiable
manifold ”allowing the geometry renovation of curves and surfaces of real spaces, and placing
it according to a contemporary context.
In this thesis we study the generalization of the Laplacian on Euclidien space to operator of
differential forms on a Riemannian manifold, with the notion of Riemannian manifold, we gives
some examples and some information on the connection , curvature and the tensor and Hodge
theorey with citation of the Laplacian on Riemannian manifold.

The notion of a manifold needed an axiomatic definition by other mathematicians (of the
Gottinger persuasion). D. Hilbert (1862–1943) sought an axiomatic characterization of the
plane sufficient for the foundations of geometry in Appendix IV (1902) to the Grundlagen der
Geometrie [Hil13].Hilbert define the plane by a system of neighborhoods that satisfy certain
topological conditions. The locally Euclidean neighborhoods played a fondamental rule in many
refinements that led to the definition of manifold used today. Among his topological axioms,
Hilbert assumes the existence of large neighborhoods (for any pair of points in the plane, exist
a neighborhood containing them). This assumption was dropped by H. Weyl (1885–1955) in
his 1913 Der Idee der Riemannschen Flache. Such Weyl depened his definition of surface on a
neighborhood system that gave a basis for the topology on the surface and satisfied an open
map condition. Absent from the definition schemes of Hilbert and Weyl is the Hausdorff con-
dition on the underlying topological space a fault pointed out by Hausdorff in his axiomatic
treatment of topological spaces [HM27].

The important lemma of Riemannian geometry states that there exists a unique Rieman-
nian connection ∇, i.e. a derivation on any Riemannian manifold (Mn, g) of vector fields with
respect to vector fields following the rules of linearity and the product rule of Leibniz and which
is compatible with the differential structure on Mn,(in that the commutator of this connection
is identical with the Lie bracket of vector fields), and which, as well is compatible with the
geometrical structure g on (Mn, g), (in that ∇g = 0; -from deriving vector fields by ∇ one can
normally get to deriving arbitrary tensor fields by ∇- ). ∇ is given by the standard formula of
Koszul and the corresponding expressions for the Riemann-Christoffel, for the Ricci and for the
Weyl conformal curvature tensors R, S and C respectively, etc., were systematically developed
by Nomizu in his thesis with Chern. The Riemannian or sectional curvatures K(p, π) were
known to be scalar valued isometric invariants of (Mn, g), determined at any point p and for
any 2D tangent plane section π at p, right away since their introduction by Riemann, when
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their name curvature derived from the analogy of their calculation with the intrinsic formula for
the Gauss curvature K of 2D surfaces M2 in Euclidean 3D spaces E3, now applied for the Gauss
curvature at point p in M2 of the 2D surface formed by the geodesics of (Mn, g) G2 around p
which are tangent to π at p . As regards further appreciations of curvatures K, one could also
base e.g. on the formulas of Bertrand-Puisseux and of Diguet referring to the perimeters or
the areas of geodesic circles or discs on (Mn, g) in comparison with the perimeters and areas of
Euclidean circles and discs of the same radii. Butstriving for better truly geometrical insights in
the curvature tensor R or equivalently in the sectional curvatures K, as already mentioned be-
fore, around the same time and independently, Levi-Civita and Schouten introduced the notion
of parallel (or pseudo parallel) transport of vectors along curves in (Mn, g), -which is equivalent
with the notion of Riemannian connection- to obtain their geometrical interpretations of R and
K in terms of the lengths of the sides and the areas of parallelogramoids and of holonomy of
vectors or of directions, respectively.[Ver14]

Riemann found the wright way to extend into n dimensions the differential geometry of
surfaces. The fundamental object is called the Riemann curvature tensor. For the surface case,
this can be reduced to a number (scalar), positive, negative or zero; the non-zero and constant
cases being models of the known non-Euclidean geometries. contributions to analysis and differ-
ential geometry. He was first one to discover Riemannian geometry is the branch of differential
geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e.
with an inner product on the tangent space at each point which varies smoothly from point to
point. This gives in particular local notions of angle, length of curves, surface area, and volume.

In this thesis we will give the necessary background of Laplace equation.Pierre-Simon
Laplace (1749-1827) was led to what is now known as Laplace’s equation in three variables.
The two-variable version of this equation is

∂2u

∂x2
+

∂2u

∂y2
= 0

The zeros operator on the equation is the Laplacian denoted by ∆.
The Laplacian differential operator, widely used in mathematics that is named after him for
his memory and legacy. For example, the inverse mathematical problem of spectral theory
identities features of the geometry from information about the eigenvalues of the Laplacian.
Other examples that Laplacian is defined can be shown as follows; analysis on fractals, time
scale calculus and discrete exterior calculus. In physics, the Laplacian occurs in a couple of
partial differential equations that describe basic physical phenomena such as the propagation of
waves or diffusion processes. In wave propagation, Laplace remodelled Newton’s force law and
stated that gravitational field has the same properties with radiation field or fluid. Theoretic
representation of gravitational field is defined through radiation field. However, this approach
is not accepted by classical physics especially with the contributions of Lorentz. In addition to
that, The Laplacian plays key role in steady-state fluid flow, static electric field, heat diffusion,
and quantum particles [Coo11].

The Hodge Decomposition Theorem or De Rham Decomposition Theorem is the main of this
thesis. Also, Laplacian notion will be given in classical way. For generalization of Laplacian,
differentiable manifold and Riemannian metric will be defined as well as introducing Laplacian
on Riemannian manifold. In the final part demonstration of Hodge theory will take place with
the Hodge Decomposition Theorem.
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CHAPTER

1

PRELIMINARY

In this chapter we difined the notion of a manifold embedded in some ambient space Rn.In order
to give a maximization of the range of applications of the theory of manifolds it is important to
generalize the consept of manifold to spaces that are not embedded in some Rn. the basic idea
is that any manifold is a topological spaces that can be covered by a collection of open subsets
where is a isometric to some open set of Rn. The manifold wold be duall without function
defined on them and between them. Geometry arises from spaces and intersting classes of
function between them. In this chapter , we use the following references ; [DCFF92], [Gud21],
[KY85], [BGM71], [Can13],[Mas01].
Beginning with the concept of differential manifold

1.1 Differential manifold

Definition 1.2. (Topological Hausdorff space)
Let X be a topological space, two points x and y in X are separable if can be separated by
neighbourhoods i.e.: there exists a neighbourhood U of x and a neighbourhood V of y such that
U and V are disjoint (U ∩ V = ∅). X is a topological Hausdorff space if all distinct points in
X are pairwise neighbourhood-separable.

Definition 1.3. (Topological manifold)
Let (M, τ) be a topological Hausdorff space. M is called a topological manifold if there exists
an n ∈ N such that for each point p ∈ M we have an open neighbourhood U of p, an open subset
V of Rnand a homeomorphism x : U → V .
The pair (U,x) is called a local chart (or local coordinates) on M.
The integer n is called the dimension of M. To denote that the dimension of M is n we write
Mn.
We can define the topological manifold in other way such there exist another homeomorphism
y : V → U has the same as the other.

Definition 1.4. (Cr-atlas) Let M be an n-dimensional topological manifold and a family of
Cr-deffeomorphisms xα : Uα ⊂ Rn → M of open sets uα of Rn into M. A Cr-atlas on M is a
collection

A = {(Uα, xα) | α ∈ I}
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of local charts on M such that A covers the whole of M i.e.

M =
⋃
α

xα(Uα)

for any pair α, β with

xα(Uα)
⋂

xβ(Uβ) = w ̸= ∅

the sets x−1
α (w) and x−1

β (w) are open sets in Rn and the mappings x−1
β ◦xα are Cr differentiable

.

Remark 1.5. A local chart (U, x) on M is said to be compatible with a Cr-atlas A if the
union A ∪ {(U, x)} is a Cr-atlas.
A Cr-atlas Â is said to be maximal if it contains all the local charts that are compatible with
it.
A maximal atlas Â on M is also called a Cr-structure on M.
A differentiable manifold is said to be smooth if it is of class C∞.

Definition 1.6. (Differential manifold)
A differentiable manifold of dimension n of class r is a pair (M, Â) such that M is a
topological manifold and Â is a Cr-structure on M. (fig 1.1).

Figure 1.1:

Definition 1.7. (Other definition of differential manifold)
A differentiable manifold of dimension n of class r is a topological Hausdorff space M and a
family of deffeomorphisms xα : uα ⊂ Rn → M of open sets uα of Rn into M such that:

(1)
⋃

α xα = M.

(2) for any pair α, β with xα(uα)
⋂

xβ(uβ) = w ̸= ∅ the sets x−1
α (w) and x−1

β (w) are open sets

in Rn and the mappings x−1
β ◦ xα are differentiable (fig 1.1).

2



(3) the familly {(uα, xα)} is maximal relative to condition(1) and (2)

A family {(uα, xα)} satisfying (1) and (2) is called a differentiable structure on M.

Definition 1.8. The pair (uα, xα) (or mapping xα ) with p ∈ xα(uα) is called a parametriza-
tion ( or system of coordinates) of M at p.
xα(uα) is called a coordinate neighborhood at p.

Definition 1.9. (Mapping between manifolds )
Let Mn

1 and Mm
2 be differentiable manifolds. A mapping φ : M1 → M2 is differentiable at

p ∈ M1 if given a parametrization y : v ⊂ Rm → M2 at φ(p) there exists a parametrization
x : v ⊂ Rn → M1 at p such that φ(x(u)) ⊂ y(v) and the mapping:

y−1 ◦ φ ◦ x : u ⊂ Rn → Rm

is differentiable at x−1(p)(fig1.2).
φ is differentiable on an open set of M1 if differentiable at all of the points of this set.

Figure 1.2:

Proposition 1.10. It follous from (2) of definition 1.7 that the given definition is independent
of the choise of the parametrizations.

Proposition 1.11. Let (M1, Â1) and (M2, Â2) be two differentiable manifolds of class Cr. Let
M = M1 ×M2 be the product space with the product topology. Then there exists an atlas A on
M turning (M, Â) into a differentiable manifold of class Cr and the dimension of M satisfies:

dim M = dim M1 + dim M2

1.12 Vector field, brackets

1.12.1 Tangent space

Definition 1.13. . A differentiable mapping c : I → M of an open interval I ⊂ R into a
differentiable manifold M is called a (parametrized) curve.(Fig.1.3).
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Figure 1.3:

Here, introducing the fundamental concept of a tangent vector on differentiable (smooth)
manifolds.
The next considerations will motivate the definition that we are going to present below.
Let α : (−ϵ, ϵ) → Rn be a differentiable curve in Rn, with α(0) = p (p ∈ Rn such
p = (x1(0), ..., xn(0))), write

α(t) = (x1(t), ..., xn(t)), t ∈ (−ϵ, ϵ), (x1(t), ..., xn(t))|t ∈ Rn

then,
α′(t) = (x′

1(t), ..., x
′
n(t)) = v ∈ Rn.

Now let f (f : Up ⊂ Rn → C∞(M)) be a differentiable function defined in a neighborhood of
p. We can restrict f to the curve α and express the directional derivative with respect to the
vector v ∈ Rn as

d(f ◦ α)
dt

∣∣∣∣
t=0

=
n∑

i=1

df

dxi

∣∣∣∣∣
t=0

.
dxi

dt

∣∣∣∣
t=0

= (
∑
i

x′
i(0)

d

dxi

)f.

therefore, the directional derivative with respect to v is an operator on differentiable functions
that depends uniquely on v. This is the characteristic property that we are going to use to
define tangent vectors on manifold.

Definition 1.14. (Tangent vector)
let M be a differentiable manifold, and let α : (−ϵ, ϵ) → M be a differentiable curve in M .
Suppose that α(0) = p ∈ M , and let C∞(M) be the set of functions on M that are differentiable
at p. The tangent vector to the curve α at t = 0 is the function α′(0) : C∞(M) → R given
by:

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

, f ∈ C∞(M).

A tangent vector at p is the tangent vector at t = 0 of some curve α(−ϵ, ϵ) → M with α(0) = p.
The set of all tangent vectors to M at p will be indicated by TpM .

If we choose a parametrization x : U → Mn at p = x(0), we can express the function f and
the curve α in this parametrization by:

f ◦ x(q) = f(x1, ..., xn), q = (x1, ..., xn) ∈ U,

and,
x−1 ◦ α(t) = (x1(t), ..., xn(t)),

4



respectively. therfore, restricting f to α, we obtain

α′(0)f =
d

dt
(f ◦ α)

∣∣∣∣
t=0

=
d

dt
f (x1(t), . . . , xn(t))

∣∣∣∣
t=0

=
n∑

i=1

x′
i(0)

(
∂f

∂xi

)
=

(∑
i

x′
i(0)

(
∂

∂xi

))
f

In other words, the vector α′(0)can be expressed in the parametrization x by

α′(0) =
∑
i

x′
i(0)

(
∂

∂xi

)
(1.1)

Observe that
(

∂
∂xi

)
is tangent vector at p of the “coordinate curve“ (fig1.4) :

xi = x(0, ..., 0, xi, 0, ..., 0)

Figure 1.4:

The expression (1.1) shows that the tangent vector to the curve α at p depends only on the
derivative of α in a coordinate system. It follows also from (1.1) that the TpM , with the
usual operations of functions forms a vector space of dimension n, and that the choice of a

parametrization x : U → M determines an associated basis

{(
∂
∂xi

)
p
, ...,

(
∂
∂xi

)
p

}
in TpM

(fig1.4).
The linear structure in TpM defined above does not depend on the parametrization x. The
vector space TpM is called the tangent space of M at p.

We can extend to differentiable manifolds the notion of the differential of differentiable
mapping with the idea of tangent space.

Definition 1.15. (Tangent bundle) The tangent bundle is the union of all tangent spaces
at every point on the manifold M . It is denoted by TM

TM = {(p, v); p ∈ M, v ∈ TpM}

such that
TM =

⋃
p∈M

TpM

5



Proposition 1.16. Let Mn
1 and Mm

2 be differentiable manifolds and φ : M1 → M2 be differ-
entiable mapping. for every p ∈ M1 and for each v ∈ TpM1 , choose a differentiable curve
α(−ϵ, ϵ) → M1 with α(0) = p, α′(0) = v. Take β = φ ◦ α. The mapping
dφp : TpM1 → Tφ(p)M2 given by dφp(v) = β′(0) is linear mapping that does not depend on
choice of α (fig 1.5).

Proof. Let x : U → M1 and y : V → M2 be parametrizations at p and φ(p), respectively.
Expressing φ in these parametrizations, we can write:

y−1 ◦ φ ◦ x(q) = (y1 (x1, . . . , xn) , . . . , ym (x1, . . . , xn))
q = (x1, . . . , xn) ∈ U, (y1, . . . , ym) ∈ V

On the other hand, expressing α in the parametrization x, we obtain:

x−1 ◦ α(t) = (x1(t), . . . , xn(t))

Therefore,

y−1 ◦ β(t) = (y1 (x1(t), . . . , xn(t)) , . . . , ym (x1(t), . . . , xn(t)))

It follows that the expression for β′(0) with respect to the basis
{
( ∂
∂yi

)0

}
of Tφ(p)M2, associated

to the parametrization y, is given by:

β′(0) =

(
n∑

i=1

∂y1
∂xi

x′
i(0), . . . ,

n∑
i=1

∂ym
∂xi

x′
i(0)

)
(1.2)

The relation (1.2) shows that β′(0) does not depend on the choice of α. In addition, (1.2) can
be written as:

β′(0) = dφp(v) =

(
∂yi
∂xj

)(
x′
j(0)

)
i = 1, . . . ,m; j = 1, . . . , n

where
(

∂yi
∂xj

)
denotes an m × n matrix and

(
x′
j(0)

)
denotes column matrix with n elements.

Therefore, dφp is a linear mapping of TpM1 into Tφ(p)M2 whose matrix in the associated bases

obtained from the parametrizations x and y is precisely the matrix ( ∂yi
∂xj

)

Figure 1.5:
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Definition 1.17. The linear mapping dφp defined by proposition 1.16 is called the differential
of φat p.

Definition 1.18. Let M1, and M2 be differentiable manifolds. A mapping φ : M1,→ M2 is a
diffeomorphism if it is differentiable, bijective (bijective means every element of arrival set
has a unique antecedent in departure set ), and its inverse φ−1 is differentiable.

Definition 1.19. A mapping φ : M1,→ M2 is said to be a local diffeomorphism at p ∈ M
if there exist neighborhoods U of p and V of φ(p) such that φ : U → V is a diffeomorphism.

Remark 1.20. The notion of diffeomorphism is the natural idea of equivalence between differ-
entiable manifolds. It is consequence of the chain rule that if φ : M1 → M2 is a diffeomorphism,
then dφp : TpM1 → Tφ(p)M2 is an isomorphism for all p ∈ M1, in particular, the dimensions of
M1 and M2 are equal.

A local converse to this fact is the following theorem.

Theorem 1.21. (A local converse theorem) Let φ : Mn
1 → Mn

2 be a differentiable mapping
and let p ∈ M1 be such that dφ(p) : TpM1 → Tφ(p)M2 is an isomorphism (an isomorphism is
a structure-preserving mapping between two structures of the same type that can be reversed by
an inverse mapping). Then φ is a local diffeomorphism at p.

The proof follows from the application of the local inverse function theorem in Rn.

1.21.1 Vector field

Definition 1.22. (Vector filed) A vector field X on a differentiable manifold M is a corre-
spondence that associates to each point p ∈ M a vector X(p) ∈ TpM . In terms of mappings, X
is a mapping of M into the tangent bundle TM (TM = {(s, v); s ∈ M, v ∈ TsM). The field is
differentiable if the mapping X : M → TM is differentiable.

Considering a parametrization x : U ⊂ Rn → M we can write

X(p) =
n∑

i=1

ai(p)
∂

∂xi

, ∀p ∈ U (1.3)

where each ai : U ⊂ Rn → R is a function on U and
{

∂
∂xi

}
is the basis associated to x.

X is differentiable if and only if the functions ai are differentiable for for any parametrization.
We denoted the set of all vertors fields by Γ(TM).

Occasionally, it is convenient to use the idea suggested by (1.3) and think of a vector field
as a mapping X : C∞(M) → F from the set C∞(M) of differentiable functions on M to the
set F of functions on M , defined in the following way

(Xf)(p) =
n∑

i=1

ai(p)
∂f

∂xi

(p) (1.4)

where f denotes, by abuse of notation, the expression of f in the parametrization x.
Indeed, this idea of a vector as a directional derivative was precisely what was used to define
the notion of tangent vector.
The function Xf obtained in (1.4) does not depend on the choice of parametrization x. In this
context, X is differentiable if and only if X : C∞(M) → C∞(M) , that is , Xf ∈ C∞(M) for
all f ∈ C∞(M) .
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If φ : M → M is a diffeomorphism , v ∈ TpM and f is a differentiable function in a
neighborhood of φ(p) , we have

(dφ(v)f)φ(p) = v(f ◦ φ)(p).

Indeed, let α : (−ϵ, ϵ) → M be a differentiable curve with α′(0) = v, α(0) = p. Then

(dφ(v)f)φ(p) =
d

dt
(f ◦ φ ◦ α)|t=0 = v(f ◦ φ)(p).

Example 1.23. (The tangent bundle) Let Mn be a differentiable manifold and let
TM = {(p, v); p ∈ M, v ∈ TpM}. We are going to provide the set TM with a differentiable
structure (of dimension 2n). This is the natural space to work with when treating questions that
involve positions and velocities, as in the case of mechanics.

Let {(Uα, xα)} f be a maximal differentiable structure on M. Denote by (xα
1 , . . . , x

α
n) the

coordinates of Uα and by
{

∂
∂xα

1
, . . . , ∂

∂xα
n

}
the associated bases to the tangent spaces of xα (Uα).

For every α, define:

yα : Uα ×Rn → TM

by:

yα (x
α
1 , . . . , x

α
n, u1, . . . , un) =

(
xα (x

α
1 , . . . , x

α
n)

n∑
i=1

ui
∂

∂xα
i

)
, (u1, . . . , un) ∈ Rn.

Geometrically, this means that we are taking as coordinates of a point (p, v) ∈ TM the coordi-

nates xα
1 , . . . , x

α
n of p together with the coordinates of v in the basis

{
∂

∂xα
1
, . . . , ∂

∂xα
n

}
.

We are going to show that {(Uα ×Rn,yα)} is a differentiable structure on TM . Since:⋃
α

xα (Uα) = M

and,
(dxα)q (R

n) = Txα(q)M, q ∈ Uα,

we have that: ⋃
α

yα (Uα ×Rn) = TM

which verifies condition (1) of Definition 1.7. Now let:

(p, v) ∈ yα (Uα ×Rn) ∩ yβ (Uβ ×Rn) .

Then:

(p, v) = (xα (qα) , dxα (vα)) = (xβ (qβ) , dxβ (vβ))

where qα ∈ Uα, qβ ∈ Uβ, vα, vβ ∈ Rn. Therefore,

y−1
β ◦ yα (qα, vα) = y−1

β (xα (qα) , dxα (vα))

=
((
x−1
β ◦ xα

)
(qα) , d

(
x−1
β ◦ xα

)
(vα)

)
,

Since x−1
β ◦ xα is differentiable, d

(
x−1
β ◦ xα

)
is as well. It follows that y−1

β ◦ yα is differen-
tiable, which verifies condition (2) of the definition 1.7 and completes the example.
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1.23.1 Lie Brackets

The interpretation of vector filedX as an operator on C∞(M) permits us to consider the iterates
ofX. For example, ifX and Y are vector fields onM and f : M → R is a differentiable function,
we can consider the functions X(Y f) and Y (Xf). In general, such operations do not lead to
vector fields, because they involve derivatives of order highter than one. Nevertheless, we can
affirm the following.

Lemma 1.24. Let X and Y be differenltiable vector fields on a differentiable manifold M .
Then there exists a unique vector field Z such that, for all f ∈ C∞(M),

Zf = (XY − Y X)f.

Proof. First, we prove that if Z exists, then it is unique. Assume, therefore, the existence of
such a Z. Let p ∈ M and let x : U → M be a parametrisation at p, and let:

X =
∑
i

ai
∂

∂xi

, Y =
∑
j

bj
∂

∂xj

be the expressions for N and Y in these parametrizations. Then for all f ∈ C∞(M)

XY f = X(
∑
j

bj
∂f

∂xj

) =
∑
i,j

ai
∂bj
∂xi

∂f

∂xj

+
∑
i,j

aibj
∂2f

∂xi∂xj

Y Xf = Y (
∑
i

ai
∂f

∂xi

) =
∑
i,j

bj
∂ai
∂xj

∂f

∂xi

+
∑
i,j

aibj
∂2f

∂xj∂xi

Therefore, Z in given, in the paramlrization x, by

Zf = XY f − Y Xf =
∑
i,j

(ai
∂bj
∂xi

− bj
∂ai
∂xi

)
∂f

∂xj

which proves the uniqueness of Z.

To show existence, define Zα in each coordinate neighborhood xα(Uα) of a differentiable
structure {(xα, Uα)} on M by the previous expression. By uniqueness,
Zα = Zβ on xα(Uα) ∩ xβ(Uβ) ̸= ∅, which allows us to define Z over the entire manifold M .

Definition 1.25. The vector field given by lemma (1.24) is called the Lie Bracket of X and
Y , Z denoted [X, Y ] = XY − Y X

The bracket operation has the following properties:

Proprety 1.26. If X,Y and Z are differentiable vector fields on M , a, b are real nunbers, and
f ,g are differentiable functions, then:

(a) [X, Y ] = −[Y,X](anticommutativity),

(b) [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity),

(c) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity),

(d) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

9



Proof. To prove (a) we have

[X, Y ] = XY − Y X = −Y X +XY = −(Y X −XY ) = −[Y,X]

To prove (b) we have

[aX + bY, Z] = (aX + bY )Z − Z(aX + bY )

= aXZ + bY Z − Z(aX)− Z(bY )

= aXZ + bY Z − aZX − bZY

= aXZ − aZX + bY Z − bZY

= a(XZ − ZX) + b(Y Z − ZY )

= a[X,Z] + b[Y, Z].

In order to prove (c), it suffices to observe that, on the one hand,

[[X, Y ], Z] = [XY − Y X,Z] = XY Z − Y XZ − ZXY + ZY X

while, on the other hand,

[X, [Y, Z]] + [Y, [Z,X]] = XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ − ZXY +XZY.

Because the second members of the expressions above are equal , (c) follows using (a). Finally,
to prove (d), calculate

[fX, gY ] = fX(gY )− gY (fX)

= fgXY + fX(g)Y − gfY X − gY (f)X

= fg[X, Y ] + fX(g)Y − gY (f)X

Since a differentiable manifold is locally diffeomorphic to Rn, the fundamental theorem on
existence, uniqueness, and dependence on initial conditions of ordinary differential equations
(which is a local theorem) extends naturally to differentiable manifolds.
For later use, it is convenient to state it explicitly here. The reader not familiar with differential
equations can assume the statement below, which is all that we need.

Let X be a vector field on a differentiable manifold M , and let p ∈ M . Then there exist
a neighborhood U ⊂ M of p, an interval (−δ, δ) ⊂ R, δ > 0, and a differentiable mapping
φ : R×M → M where φ : (−δ, δ)×U → M such that the curve t → φ(t, q), t ∈ (−δ, δ), q ∈ U
and φ(0, q) = q.

A curve α : (−δ, δ) → M which satisfies the conditions α′(t) = X(α(t)) and α(0) = q is
called a trajectory of the field X that passes through q for t = 0. The theorem above guarantees
that for each point of a certain neighborhood there passes a unique trajectory of and on the
”initial condition” q. It is common to use the notation φt(q) = φ(t, q) and call φt : U → M the
local flow of X.

The interpretation of the bracket [X, Y ], mentioned above, is contained in the following
proposition.

Proposition 1.27. Let X, Y be vector fields on a differentiable manifold M , let p ∈ M , and
let φt be the local flow of X (flow of the vector field X is a differentiable function of the form
φ : U ⊂ Rn → M such ∀t∈U(dφt = Xφ(t))) in a neighborhood U of p. Then

[X, Y ](p) = lim
t→0

1

t
[Y − dφtY ] (φt(p)) .
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For the proof, we need the following lemma from calculus.

Lemma 1.28. Let h : (−δ, δ) × U → R be a differentiable mapping with h(0, q) = 0 for all
q ∈ U . Then there exists a differentiable mapping g : (−δ, δ) × U → R with h(t, q) = tg(t, q);
in particular,

g(0, q) =
∂h(t, q)

∂t

∣∣∣∣
t=0

Proof. of lemma 1.28. It suffices to define, for fixed t,

g(t, q) =

∫ 1

0

∂h(ts, q)

∂(ts)
ds

and, after changing variables, observe that

tg(t, q) =

∫ t

0

∂h(ts, q)

∂(ts)
d(ts) = h(t, q).

Proof. of the Proposition 1.27. Let f be a differentiable function in a neighborhood of p.
Putting

h(t, q) = f (φt(q))− f(q),

and applying the lemma we obtain a differentiable function g(t, q) such that

f ◦ φt(q) = f(q) + tg(t, q) and g(0, q) = Xf(q).

Accordingly

((dφtY ) f) (φt(p)) = (Y (f ◦ φt)) (p) = Y f(p) + t(Y g(t, p))

Therefore

lim
t→0

1

t
[Y − dφtY ] f (φtp) = lim

t→0

(Y f) (φtp)− Y f(p)

t
− (Y g(0, p))

= (X(Y f))(p)− (Y (Xf))(p)

= ((XY − Y X)f)(p) = ([X, Y ]f)(p)

1.29 Submersion, Immersion, Embeddings

Definition 1.30. (Submersion) Let Mm and Nn be differentiable manifolds ,a mapping φ
from M to N is said to be a submersion if the differential dφ = φ∗ : TpM → Tφ(p)N(p ∈ M)
of φ : M → N is sujective (surjective map means that for any element of the arrival set there
exist at least one an element of the starting set that is the image of it.) for each p ∈ M

Definition 1.31. (Immersion and embeddings) Let Mm and Nn be differentiable mani-
folds, a differentiable mapping φ : M → N is said to be an immersion if dφp : TpM → Tφ(p)N
is injective (injective means any element of the arrival set is the image of at most one point of
the departure set, (perhaps none)), for all p ∈ M .
If in addition φ is a homeomorphism onto φ(M) ⊂ N , where φ(M) has the subspace topology
induced from N , we say that y is an embedding. If M ⊂ N and the inclusion ι : M ⊂ N is
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an embedding, we say that M is a submanifold of N .
It can be seen that if φ : Mm → Nnis an immersion, then m ≤ n; the difference n−m is called
the co-dimension of the immersion φ.

Example 1.32. The curve α : R → R2 given by α(t) = (t3, t2) is a differentiable mapping
but is not an immersion. Indeed, the condition for the map to be an immersion in this case is
equivalent to the fact that α′(t) ̸= 0, which does not occur for t = 0 (Fig. 1.6).

Figure 1.6:

Example 1.33. The curve α(t) = (t3 − 4t, t2 − 4) (Fig. 1.7) is an immersion α : R → R2

which has a self-intersection for t = 2, t = −2. Therefore, α is not an embedding.

Figure 1.7:

1.34 Orientation

Definition 1.35. (Orientation) Let M be a differentiable manifold. We say that M is ori-
entable if M admits a differentiable structure {(Uα, Xα)} such that:

(⋆) for every pair α, β, with xα(Uα) ∩ xβ(Uβ) = W ̸= ∅, the differential of the change of
coordinates x−1

β ◦ xα has strict positive determinant .

In the opposite case, we say that M is non-orientable.
If M is orientable, a choice of a differentiable structure satisfying (⋆) is called an orientation
of M .
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Proposition 1.36. Two differentiable structures that satisfy (⋆) determine the same orienta-
tion if their union again satisfies (⋆).
If M is orientable and connected there exist exactly two distinct orientations on M .
Now let M1 and M2, be differentiable manifolds and let φ : M1 → M2 be a diffeomorphism.
M1 is orientable if and only if M2 is orientable.

Corollary 1.37. If M1 and M2 are connected and are oriented, φ induces an orientation on
M2 which may or may not coincide with the initial orientation of M2. In the first case, we say
that φ preserves the orientation and in the second case, that φ reverses the orientation.

Example 1.38. The simple criterion of the previous example can be used to show that the
sphere

Sn =

{
(x1, . . . , xn+1) ∈ Rn+1;

n+1∑
i=1

x2
i = 1

}
⊂ Rn+1

is orientable.

Using the stereographic projection, let N = (0, . . . , 0, 1) be the north pole and S = (0, . . . , 0,−1)
the south pole of Sn.
Define a mapping π1 : S

n−{N} → Rn (stereographic projection from the north pole) that takes
p = (x1, . . . xn+1) in Sn − {N} into the intersection of the hyperplane xn+1 = 0 with the line
that passes through p and N . It is easy to verify that (Fig. 1.8)

π1 (x1, . . . , xn+1) =

(
x1

1− xn+1

, . . . ,
xn

1− xn+1

)
.

The mapping π1 is differentiable, injective and maps Sn−{N} onto the hyperplane xn+1 = 0.
The stereographic projection π2 : Sn − {S} → Rn from the south pole onto the hyperplane
xn+1 = 0 has the same properties.

Therefore, the parametrizations
(
Rn, π−1

1

)
,
(
Rn, π−1

2

)
cover Sn. In addition, the change of

coordinates:

yj =
xj

1−xn+1
↔ y′j =

xj

1+xn+1
(y1, . . . , yn) ∈ Rn, j = 1, . . . , n

is given by

y′j =
yj∑n
i=1 y

2
i

(here we use the fact that
∑n+1

k=1 x
2
k = 1 ). Therefore, the family

{(
Rn, π−1

1

)
,
(
Rn, π−1

2

)}
is a

differentiable structure on Sn. Observe that the intersection π−1
1 (Rn)∩π−1

2 (Rn) = Sn−{N∪S}
is connected, thus Sn is orientable and the family given determines an orientation of Sn.

Now let A : Sn → Sn be the antipodal map given by A(p) = −p, p ∈ Rn+1 . A is differen-
tiable and A2 = Id .
Therefore, A is a diffeomorphism of Sn. Observe that when n is even, A reverses the orientation
of Sn and when n is odd, A preserves the orientation of Sn.

1.39 Affine Connections

Let us indicate by C∞(M) the ring of real-valued functions of class C∞ defined on M .

Definition 1.40. An affine connection ∇ on a differentiable manifold M is a mapping

∇ : Γ(TM)× Γ(TM) → Γ(TM)

which is denoted by (X, Y )
∇−→ ∇XY and which satisfies the following properties:
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Figure 1.8:

i) ∇fX+gYZ = f∇XZ + g∇YZ.

ii) ∇X(Y + Z) = ∇XY +∇XZ.

iii) ∇X(fY ) = f∇XY +X(f)Y ,

in which X, Y, Z ∈ Γ(TM) and f, g ∈ C∞(M).

Proposition 1.41. Let M be a differentiable manifold with an affine connection ∇. There
exists a unique correspondence which associates to a vector field V along the differentiable
curve c : I → M another vector field DV

dt
along c, called the covariant derivative of V along

c, such that:

a) D
dt
(V +W ) = DV

dt
+ DW

dt
.

b) D
dt
(fV ) = df

dt
V + f DV

dt
, where W is a vector field along c and f is a differentiable function

on I.

c) If V is induced by a vector field Y ∈ Γ(TM), i.e., V (t) = Y (c(t)), then

DV

dt
= ∇dc/dtY.

Remark 1.42. The last line of (c) makes sense, since ∇XY (p) depends on the value of X(p)
and the value Y along a curve, tangent to X at p.
In effect, part (iii) of Definition 1.40 allows us to show that the notion of affine connection is
actually a local notion . Choosing a system of coordinates (x1, . . . , xn) about p and writing

X =
∑
i

xiXi, Y =
∑
j

yjXj

where Xi =
∂
∂xi

, we have

∇XY =
∑
i

xi∇Xi

(∑
j

yjXj

)
=
∑
ij

xiyj∇Xi
Xj +

∑
ij

xiXi (yj)Xj

Setting ∇Xi
Xj =

∑
k Γ

k
ijXk, we conclude that the Γk

ij are differentiable functions and that
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∇XY =
∑
k

(∑
ij

xiyjΓ
k
ij +X (yk)

)
Xk

which proves that ∇XY (p) depends on xi(p), yk(p) and the derivatives X (yk) (p) of yk by X.

Proof. of Proposition 1.41. Let us suppose initially that there exists a correspondence satis-
fying (a), (b) and (c). Let x : U ⊂ Rn → M be a system of coordinates with c(I) ∩ x(U) ̸= ϕ
and let (x1(t), x2(t), . . . , xn(t)) be the local expression of c(t), t ∈ I. Let Xi =

∂
∂x
. Then we can

express the field V locally as V = Let Xi =
∂
∂xi

. Then we can express the field V locally as∑
j v

jXj, j = 1, . . . , n, where vj = vj(t) and Xj = Xj(c(t)).

By a) and b), we have

DV

dt
=
∑
j

dvj

dt
Xj +

∑
j

vj
DXj

dt
.

By c) and (i) of Definition 1.40,

DXj

dt
= ∇dc/dtXj = ∇(Σ dxi

di
Xi)Xj

=
∑
i

dxi

dt
∇Xi

Xj, i, j = 1, . . . , n.

Therefore,
DV

dt
=
∑
j

dvj

dt
Xj +

∑
i,j

dxi

dt
vj∇Xi

Xj. (1.5)

The expression (1.5) shows us that if there is a correspondence satisfying the conditions of
Proposition 1.41, then such a correspondence is unique.

To show existence, define DV
dt

in x(U) by (1.5). It is easy to verify that (1.5) possesses the
desired properties. If y(W ) is another coordinate neighborhood, with y(W ) ∩ x(U) ̸= ϕ and
we define DV

dt
in y(W ) by (1.5), the definitions agree in y(W )∩ x(U), by the uniqueness of DV

dt

in x(U). It follows that the definition can be extended over all of M , and this concludes the
proof.

The concept of parallelism now follows in a natural manner.

Definition 1.43. Let M be a differentiable manifold with an affine connection ∇. A vector
field V along a curve c : I → M is called parallel when DV

dt
= 0, for all t ∈ I.

Proposition 1.44. Let M be a differentiable manifold with an affine connection ∇. Let
c : I → M be a differentiable curve in M and let Vo be a vector tangent to M at c (to) , to ∈ I
(i.e. Vo ∈ Tc(to)M ). Then there exists a unique parallel vector field V along c, such that
V (to) = Vo, ((V (t) is called the parallel transport of V (to) along c).

Proof. Suppose that the theorem was proved for the case in which c(I) is contained in a local
coordinate neighborhood.
By compactness, for any t1 ∈ I, the segment c ([to, t1]) ⊂ M can be covered by a finite number
of coordinate neighborhoods, in each of which V can be defined, by hypothesis. From unique-
ness, the definitions coincide when the intersections are not empty, thus allowing the definition
of V along all of [to, t1].

we have only, therefore, to prove the theorem when c(I) is contained in a coordinate neigh-
borhood x(U) of a system of coordinates x : U ⊂ Rn → M. Let x−1(c(t)) = (x1(t), . . . , xn(t))
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be the local expression for c(t) and let Vo =
∑

j v
j
oXj, where Xj =

∂
∂xj

(c (to)) .

Suppose that there exists a vector field V in x(U) which is parallel along c with V (to) = Vo.
Then V =

∑
vjXj satisfies

DV

dt
=
∑
j

dvj

dt
Xj +

∑
i,j

dxi

dt
vj∇Xi

Xj = 0.

Putting ∇Xi
Xj =

∑
k Γ

k
ijXk, and replacing j with k in the first sum, we obtain

DV

dt
=
∑
k

{
dvk

dt
+
∑
i,j

vj
dxi

dt
Γk
ij

}
Xk = 0

The system of n differential equations in vk(t),

dvk

dt
+
∑
i,j

Γk
ijv

j dxi

dt
= 0, k = 1, . . . , n,

possesses a unique solution satisfying the initial conditions vk (to) = vko . It then follows that, if
V exists, it is unique.
Moreover, since the system is linear, any solution is defined for all t ∈ I, which then proves the
existence (and uniqueness) of V with the desired properties.

1.45 Tensors on a differential manifold

Definition 1.46. ((s, r)Tensor)
For all p ∈ M ,define the vectorial space

T (s,r)
p M = TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸

s times

⊗T ∗
pM ⊗ · · · ⊗ T ∗

pM︸ ︷︷ ︸
r times

An element T ∈ T
(s,r)
p M is a tensor of type (s, r) above p. In a coordinate associated basis

(xi) on neighborhood of p, write

T|p = T i1...io
j1...jr

(p)
∂

∂xi1
(p)⊗ · · · ⊗ ∂

∂xis
(p)⊗ dxj1

|p ⊗ · · · ⊗ dxjr
|p

Definition 1.47. (Tensor filed)
We can consider the differentiable manifold

T (s,r)M =
⋃
p∈M

T (s,r)
p M

which is a bundle over M , the bundle of tensors of type (s, r). C∞ sections of this bundle
will be called tensor fields of type (s, r). A tensor field T of type (s, r) above a local map of
M , with coordinates (xi), locally write as

T = T i1...iπ
j1...jr

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjr

Remark 1.48. Globally, a tensor of type (s, r) is an application F (M) multilinear on
A1(M)× · · · × A1(M)× Γ(TM)× · · · × Γ(TM) with values in F (M).
A tensor field of type (0, 0) is just a function on M .
A tensor of type (1, 0) is a vector field.
A tensor of type (0, 1) is a differential 1-form.
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When changing coordinates xi 7→ yj (xi), the components of the tensor change according to
the relation

T ′i1...is
j1...jr

=
∂yi1

∂xk1
· · · ∂y

is

∂xks
T k1...ks
ℓ1...ℓr

∂xℓ1

∂yj1
· · · ∂x

ℓr

∂yjr

1.49 Differential forms

Let V be a real n-dimensional vectorial space and let V ∗ be its dual space.

Definition 1.50. The space of alternating k-forms is defined as follows:

Λk (V ∗) = {ω : V × · · · × V (k times ) → R : ω is k-linears and alternating
}
. (1.6)

were the form ω is linear and alternating if ω (v1, . . . , vn) is linear in each argument and

ω
(
vσ(1), . . . , vσ(k)

)
= ε(σ)ω (v1, . . . , vn) . (1.7)

such that σ is an permutation of symetric group, and ε(π) is its signature.

Remark 1.51. dimΛk (V ∗) = n!k!
(n−k)!

.

Definition 1.52. (k-differential form filed) Choose a chart (U,φ) about x with local coor-
dinates (x1, . . . , xn).
An element ωx ∈ Λk (T ∗

xM) is called differntial k-form at x and can be written as

ωx =
∑

1≤i1<···<ik≤n

ai1...ik (dxi1)x ∧ · · · ∧ (dxik)x .

We denoted the set of all differential k−form by Λk (T ∗M) where

Λk (T ∗M) :=
⋃
x∈M

Λk (T ∗
xM) .

and it is called k-differential form filed, Then all k-differential form is a C∞section of this filed.

Proposition 1.53. Λk (T ∗M) is a manifold of dimension n+ nlk!
(n−k)!

.

Definition 1.54. ( k-differential form) A k-form on M is defined as a section of the bundle
Λk (T ∗M). That is a C∞ map ω : M → Λk (T ∗M).
We denote the space of k-forms on M by Ak(M).
We write A(M) :=

⊕n
k=0 A

k(M) and A0(M) = C∞(M,R).

Proposition 1.55. AA(M) is an algebra structure

Proposition 1.56. Let π : Λk (T ∗M) → M and ω : M → Λk (T ∗M) so that π ◦ ω = idM .

Definition 1.57. (Local expressions) If {dxi} is a local basis of differential 1-forms, over the
open set U of a local map of M , with coordinates (xi), for i1 < · · · < ir. then the dxin∧· · ·∧dxir

locally generate Ar(M) on functions. That is to say that any r-form ω is written, above U ,

ω = ωi1...irdx
i1 ∧ · · · ∧ dxir

where the second sum is over i1 < · · · < ir and where the ωi1...ir are functions U → R.
Sometimes, this second sum will relate to all the indices i1, . . . , ir, which supposes that we
extend the definition of dxi1 ∧ · · · ∧ dxir to all (i1, . . . , ir) and that ωi1...ir : U → R become
completely antisymmetric functions on their indices; it will then also be necessary to place a
factor 1

r!
in front of the sum.
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Definition 1.58. (Exterior product)
For ω ∈ Ar(M) and η ∈ As(M), we can define the exterior product ω ∧ η ∈ Ar+s(M) by
the formula:

(ω ∧ η) (X1, . . . , Xr+s) =
1

r!s!

∑
σ∈Gr+s

(−1)ε(σ)ω
(
Xσ(1), . . . , Xσ(r)

)
· η
(
Xσ(r+1), . . . , Xσ(r+s)

)
such Gr+s is the permutation of symetric group
This product gives the vector space A(M). It has the commutative property

ω ∧ η = (−1)rsη ∧ ω

Definition 1.59. We defined the differential d on A(M) by the linear maps

d : Ak(M) → Ak+1(M)

such d : A0(M) = C∞(M) → A1(M) the differential on the functions, and for all ω ∈ Ak(M)

dω(X0, . . . , Xk) =
k∑

i=0

(−1)iXi·ω(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+j · ω([Xi, Xj], . . . , X̂i, . . . , X̂j, . . . , Xk)

In the first term of the second member, Xi acts as a derivation on the function
ω(X0, . . . , X̂i, . . . , Xk)

Proprety 1.60. We have the important relation (which makes d an antiderivation of the algebra
A(M) ) :

d(ω ∧ η) = (dω) ∧ η + (−1)rω ∧ dη

where ω ∈ Ar(M). Above an open U of a local M chart, if ω = ωi1...indx
i1 ∧ · · · ∧ dxir , then

dω =

(
∂

∂xi
ωi1...ir

)
dxi ∧ dxi1 ∧ · · · ∧ dxir

This summation relates to all the values of i and to i1 < · · · < ir.

Definition 1.61. Let f : M → N be a C∞ map. We define the pull back of f as the map
f ∗ : A(N) → A(M) so that:

1 . f ∗(g) = g ◦ f for g ∈ A0(N) = C∞(N,R).

2 . (f ∗ω)x (X1, . . . , Xk) = ωf(x) (f∗X1, . . . , f∗Xk) for ω ∈ Ak(N) with k ≥ 1. such that
f∗ : Γ(TM) → Γ(TN)

Proprety 1.62. Properties of the pull-back map.

1 . f ∗(ω ∧ τ) = f ∗ω ∧ f ∗τ τ, ω ∈ A(N)

2 . f ∗(gω + hτ) = f ∗(g)f ∗ω ∧ f ∗(h)f ∗τ g, h ∈ A(N)

3 . (f ◦ g)∗ = g∗ ◦ f ∗

Proposition 1.63. A Pull-backs f ∗ and d commute:

d (f ∗ω) = f ∗(dω).

such, on one side, it is about the differential on M , and on the other side of the differential on
N .
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Proposition 1.64. If f : M → N is a diffeomorphism, we can define the pull-back map on the
tensor fields T of type (s, r) on N :

(f ∗T )
(
α1, . . . , αs, X1, . . . , Xr

)
= T

(
(f ∗)−1 α1, . . . , (f ∗)−1 αs, f∗X1, . . . , f∗Xr

)
where (f ∗)−1 : A(M) → A(N), αi ∈ A1(M) and Xi ∈ Γ(TM).

Proposition 1.65. Integral of n-forms.
Let M be an orientable manifold of dimension n.
1. If ω ∈ An (Rn) has compact support, and ω = fdx1 ∧ · · · ∧ dxn then∫

Rn

ω :=

∫
Rn

fdx1 . . . dxn.

2. If ω ∈ An(M) we define∫
[M ]

ω =
∑
i∈I

∫
Ui

ρiω :=
∑
i∈I

∫
φ(Ui)

(φ∗
i )

−1 (ρiω)

where {(Ui, φi) : i ∈ I} is a positively oriented atlas and {ρi : i ∈ I} is a partition of unity
subordinate to {(Ui, φi) : i ∈ I}.

Theorem 1.66. (Stokes theorem). Let M be a compact differentiable manifold of dimension
n with boundary ∂M . Let ω ∈ An−1(M). Then,∫

M

dω =

∫
∂M

ω.

where ∂M is provided with the canonical orientation induced by that of M .
In Particular, if M is a manifold without boundary, then∫

M

dω = 0.
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CHAPTER

2

THE RIEMANNIAN MANIFOLDS

In this chapter we introduce the notion of Riemannian manifold and define the Riemannian
metric with give the notion of levi-civita connection wich is play a important rule in the appli-
cations of Riemannian manifold.

the following references are used; [DCFF92] [BGM71] [Ura18][GY14]

2.1 Riemannian metric, Riemannian manifold

Definition 2.2. A Riemannian metric gp (or g) , on a differential manifold M , is a bilinear
tensor field of type (2, 0) which is required to be symmetric and positive-definite .

g : Γ(TM)× Γ(TM) → R
gp : TpM × TpM → R

(X, Y ) 7→ gp(X, Y )

It is bilinear in that the metric acts linearly on each of its two arguments,

gp (aX1 + bX2, Y ) = agp (X1, Y ) + bgp (X2, Y ) ∀X1, X2, Y ∈ TpM

gp (X, aY1 + bY2) = agp (X, Y1) + bgp (X, Y2) ∀X, Y1, Y2 ∈ TpM

It is symmetric in that the value given by the metric is independent on the order of operation,

gp(X, Y ) = gp(Y,X) ∀X, Y ∈ TpM

It is definite that
gp(X, Y ) = 0 ⇒ X = 0 or Y = 0

This implies that if gp(X, Y ) = 0 and either X or Y are not equal to zero, then X, Y are
orthogonal.
It is positive that

gp(X,X) > 0 ∀X ∈ TpM

More simply, it can be said that a Riemannian metric gp(·, ·) is a inner product on the
tangent space at each point ,
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The components gij of local representation

gp =
∑
i,j

gij(p)dx
i|p⊗ dxi|p gij = gp(

∂

∂xi

,
∂

∂xj

)

where gij are the differentiable functions.

Definition 2.3. A differentiable manifold with a given Riemannian metric g will be called a
Riemannian manifold, denoted (M, g).

Proposition 2.4. The Riemannian metric varies differentiably in the following sense: If
x : U ⊂ Rn → M is a system of coordinates around p, with x (x1, x2, . . . , xn) = q ∈ x(U)
and ∂

∂xi
(q) = dxq(0, . . . , 1, . . . , 0), then gij (x1, . . . , xn) = gq(

∂
∂xi

(q), ∂
∂xj

(q)) is a differentiable

function on U .

Definition 2.5. The symetric matrix gij is called the local representation of the Rie-
mannian metric (or ”the gij of the metric”) in the coordinate system x.

Proposition 2.6. This definition does not depend on the choice of coordinate system.

Definition 2.7. Let (M, g) and (N, h) be Riemannian manifolds. A diffeomorphism
f : M → N (that is, f is a differentiable bijection with a differentiable inverse) is called an
isometry if:

gp(u, v) = hf(p)(dfp(u), dfp(v)), for all p ∈ M, u, v ∈ TpM. (2.1)

Definition 2.8. Let (M, g) and (N, h) be Riemannian manifolds. A differentiable mapping
f : M → N is a local isometry at p ∈ M if there is a neighborhood U ⊂ M of p such that
f : U → f(U) is a diffeomorphism satisfying (2.1).

Proposition 2.9. A Riemannian manifold (M, g) is locally isometric to a Riemannian man-
ifold (N, h) if for every p in M there exists a neighborhood U of p in M and a local isometry
f : U → f(U) ⊂ N .

What follows are some examples of the notion of Riemannian manifold.

Example 2.10. The almost trivial example. M = Rn with ∂
∂xi

identified with ei = (0, . . . , 1, . . . , 0).
The metric is given by g(ei, ej) = δij such that :

δij =

{
1 if i = j

0 if i ̸= j

is called the canonical metric of Rn.

Definition 2.11. ( Immersed manifolds). Let f : Mn → Nn+k be an immersion, that is, f
is differentiable and dfp : TpM → Tf(p)N is injective for all p in M . If N has a Riemannian
structure h, f induces a Riemannian structure g on M by defining

gp(u, v) = hf(p)(dfp(u), dfp(v)) u, v ∈ TpM

Since dfp is injective, gp(. , .) is positive definite. The other conditions of Definition 2.2 are
verified. This metric g on M is then called the metric induced by f , and f is an isometric
immersion.

A particularly important case occurs when we have a differentiable function φ : Mn+k → Nk

and q ∈ N is a regular value of φ ( that is, dφp : TpM → Tφ(p)N is surjective for all p ∈ φ−1(q)).
It is then that φ−1(q) ⊂ M is a submanifold of M of dimension n, hence, we can put a Rie-
mannian metric on it induced by the inclusion.
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Example 2.12. Let φ : Rn → R be given by

φ (x1, . . . , xn) =
n∑

i=1

x2
i − 1.

Then 0 is a regular value of φ and

φ−1(0) =
{
x ∈ Rn : x2

1 + . . .+ x2
n = 1

}
= Sn−1

is the unit sphere of Rn. The metric induced from Rn on Sn−1 is called the canonical metric of
Sn−1.

Example 2.13. The product metric. Let (M1, g) and (M2, h) be Riemannian manifolds and
consider the cartesian product M1 ×M2 with the product structure k.
Let π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 be the natural projections. Introduce on
M1 ×M2 a Riemannian metric k as follows:

k(p,q)(u, v) = gp(dπ1(u), dπ1(v)) + hq(dπ2(u), dπ2(v)) ∀(p, q) ∈ M1 ×M2,

∀(u, v) ∈ T(p,q) (M1 ×M2)

This metric k is really a Riemannian metric on the product.
For example, the torus S1×· · ·×S1 = T n has a Riemannian structure obtained by choosing the
induced Riemannian metric from R2 on the circle S1 ⊂ R2 and then taking the product metric.
The torus T n with this metric is called the flat torus.

Let us now prove a theorem on the existence of Riemannian metrics.

Theorem 2.14. Every differentiable manifold has always a Riemannian metric.

Proof. Let {fα} be a differentiable partition of unity on (M, g) subordinate to a covering {Vα}
of M by coordinate neighborhoods. This means that {Vα} is a locally finite covering (i.e., any
point of M has a neighborhood U such that U ∩ Vα ̸= ϕ at most for a finite number of indices)
and {fα} is a family of differentiable functions on M satisfying:

1) fα ≥ 0, fα = 0 on the complement of the closed set V̄α.

2)
∑

α fα(p) = 1 for all p on M .

we can define a Riemannian metric gα(. , .) on each Vα : the metric induced by the system of
local coordinates. Let us then set

gp(u, v) =
∑
α

fα(p)g
α
p (u, v) for all p ∈ M,u, v ∈ TpM.

This construction defines a Riemannian metric on M .

we are going to show how a Riemannian metric permits us to define a notion of volume on
a given oriented manifold Mn.

Let p ∈ M and let x : U ⊂ Rn → M be a parametrization about p which belongs to a family
of parametrizations consistent with the orientation of M (we say that, any parametrizations
are positive). Consider a orthonormal basis {e1, . . . , en} of TpM and write Xi(p) =

∂
∂xi

(p) in
the basis {ei} : Xi(p) =

∑
j aijej (by changing the bases). Then

gik|p = gp(Xi, Xk) =
∑
jℓ

aij akℓ gp(ej, eℓ) =
∑
j

aij akj. (2.2)

22



Definition 2.15. On any oriented Riemannian manifold (M, g), there is a unique n-form
known as the volume form ω (ω : (Γ(TM))n → R), satisfying the property that
ωp (e1, . . . , en) = 1, whenever (e1, . . . , en) is an oriented orthonormal basis for a tangent space
TpM .
Let (xi) a local map on M in point p, locally, the associated volume form is expressed by:

ω =
√

det (gij|p) · dx1 ∧ . . . ∧ dxn

Proposition 2.16. Let ω be the volume form formed by the vectors X1(p), . . . , Xn(p) in TpM ,
we obtain

ω (X1(p), . . . , Xn(p)) = det (aij) · ω (e1, . . . , en) = det (aij) =
√

det (gij|p)

such that (aij) is the matrix given by (2.2)

Proposition 2.17. If y : V ⊂ Rn → M is another positive parametrization about p, with
Yi(p) =

∂
∂yi

(p) and hij|p = hp(Yi, Yj), we obtain√
det (gij|p) = ω (X1(p), . . . , Xn(p))

= Jω (Y1(p), . . . , Yn(p))

= J
√

det (hij|p)

(2.3)

where J = det
(

∂xi

∂yj

)
= det (dy−1 ◦ dx) |p > 0 is the determinant of the derivative of the change

of coordinates.

Definition 2.18. Now let R ⊂ M be a region (an open connected subset), whose closure is
compact. We suppose that R is contained in a coordinate neighborhood x(U) with a positive
parametrization x : U → M , and that the boundary of x−1(R) ⊂ U has measure zero in Rn

(observe that the notion of measure zero in Rn is invariant by diffeomorphism). Let us define
the volume vol(R) of R by the integral in Rn

vol(R) =

∫
x−1(R)

√
det (gij)dx1 . . . dxn (2.4)

The expression above is well-defined.

Proposition 2.19. If R is contained in another coordinate neighborhood y(V ) with a positive
parametrization y : V ⊂ Rn → M , we obtain from the change of variable theorem for multiple
integrals, (using the same notation as in (2.3),

vol(R) =

∫
x−1(R)

√
det (gij)dx1 . . . dxn =

∫
y−1(R)

√
dethijdy1 . . . dyn

which proves that the definition given by (2.4) does not depend on the choice of the coordinate
system (here the hypothesis of the orientability of M enters by guaranteeing that vol(R) does
not change sign).

Definition 2.20. In order to define the volume of a compact region R, which is not contained
in a coordinate neighborhood it is necessary to consider a partition of unity {φi} subordinate to
a (finite) covering of R consisting of coordinate neighborhoods x (Ui) and to take

vol(R) =
∑
i

∫
x−1
i (R)

φiν

such that ν is a volume form where ν =
√
det (gij)dx1 . . . dxn.

The expression above does not depend on the choice of the partition of unity.
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Remark 2.21. The existence of a globally defined positive differential form of degree n (volume
element) leads to a notion of volume on a differentiable manifold. A Riemannian metric is only
one of the ways through which a volume element can be obtained.

2.22 Riemannian submersions

Definition 2.23. . (Riemannian submersions) Let φ is a C∞ map of a Riemannian manifold
(M, g) into another Riemannian manifold (N, h) is called a Riemannian submersion if :

(1) φ is surjective.

(2) the differential φ∗ = dφ : TpM → Tφ(p)N (p ∈ M) of φ : M → N is sujective for each
p ∈ M .

(3) each tangent space TpM at p ∈ M has the direct decomposition:

TpM = Vp ⊕Hp

which is orthogonal decomposition with respect to g such that Vp = Ker (φ∗p) ⊂ TpM
means that Vp = φ∗(0p)

−1 (Vp is the vertical subspace at p).
and is Hp := V⊥

p ⊂ TpM (Hp is the horizontal subspace at p)

(4) the restriction of the differential φ∗ to Hp is an isometry,
φ∗|Hp : (Hp, gp) →

(
Tφ(p)N, hφ(p)

)
for each p ∈ M .

Definition 2.24. Let φ : M → N a submersion of (M, g) in (N, h) is called Riemannian
submersion if φ∗|Hp induces an isometric of Euclidian spaces of Hp on Tφ(p)N .

Proposition 2.25. A manifold M is the total space of a Riemannian submersion over N with
the projection π : M → N A Riemannian metric g on M , called adapted metric on M which
satisfies

g = π∗h+ k

where k is the Riemannian metric on each fiber π−1(q), (q ∈ N). Then, TpM has the orthogonal
direct decomposition of the tangent space TpM .

TpM = Vp ⊕Hp p ∈ M (2.5)

where Vp = Ker (π∗p) ⊂ TpM , and Hp is H := V⊥ ⊂ TpM .

Proposition 2.26. fixing locally frame, called adapted local orthonormal frame field to the
projection π : M → N, Corresponding to the decomposition (2.5), the tangent vectors Xp, and
Yp in TpM can be defined by

Xp = XV
p +XH

p , Yp = Y V
p + Y H

p XV
p , Y

V
p ∈ Vp,

XH
p , Y

H
p ∈ Hp

for p ∈ M . Then, there exist a unique decomposition such that

g (Xp, Yp) = h (π∗Xp, π∗Yp) + k
(
XV

p , Y
V
p

)
, Xp, Yp ∈ TpM, p ∈ M
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2.27 Riemannian connections

Definition 2.28. Let M be a differentiable manifold with an affine connection ∇ and a Rieman-
nian metric g. A connection is said to be compatible with the metric g, when for any smooth
curve c and any pair of parallel vector fields P and P ′ along c, we have g(P, P ′) = constant.

Definition 2.28 is justified by the following proposition which shows that if ∇ is compatible
with g, then we are able to differentiate the inner product by the usual ”product rule”.

Proposition 2.29. Let M be a Riemannian manifold. A connection ∇ on M is compatible with
a metric if and only if for any vector fields V and W along the differentiable curve c : I → M
we have

d

dt
g(V,W ) = g(

DV

dt
,W ) + g(V,

DW

dt
), t ∈ I. (2.6)

Proof. It is obvious that equation (2.6) implies that ∇ is compatible with g . Therefore, let
us prove the converse. Choose an orthonormal basis {P1 (to) , . . . , Pn (to)} of Tx(to)(M), to ∈ I.
Using Proposition 1.44, we can extend the vectors Pi (to) , i = 1, . . . , n, along c by parallel
translation. Because ∇ is compatible with the metric, {P1(t), . . . , Pn(t)} is an orthonormal
basis of Tc(t)(M), for any t ∈ I. Therefore, we can write

V =
∑
i

viPi, W =
∑
i

wiPi, i = 1, . . . , n

where vi and wi are differentiable functions on I. It follows that

DV

dt
=
∑
i

dvi

dt
Pi,

DW

dt
=
∑
i

dwi

dt
Pi

Therefore,

g(
DV

dt
,W ) + g(V,

DW

dt
) =

∑
i

{
dvi

dt
wi +

dwi

dt
vi
}

=
d

dt

{∑
i

viwi

}
=

d

dt
g(V,W ).

Corollary 2.30. A connection ∇ on a Riemannian manifold M is compatible with the metric
if and only if

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ), X, Y, Z ∈ Γ(TM) (2.7)

Proof.. Suppose that ∇ is compatible with the metric. Let p ∈ M and let c : I → M be a
differentiable curve with c (to) = p, to ∈ I, and with dc

dt

∣∣
t=t0

= X(p). Then

X(p)g(Y, Z) =
d

dt
g(Y, Z)

∣∣∣∣
t=t0

= gp
(
∇X(p)Y, Z

)
+ gp

(
Y,∇X(p)Z

)
Since p is arbitrary, (2.7) follows. The converse is obvious.

Definition 2.31. A torsion of an affine connection ∇ on a smooth manifold M is defined as

T : Γ(TM)× Γ(TM) → Γ(TM)

(X, Y ) → T (X, Y ) = ∇XY −∇YX − [X, Y ].

T is called torsion-free if T (X, Y ) = 0 ∀X, Y ∈ Γ(TM)
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Definition 2.32. . An affine connection ∇ on a smooth manifold M is said to be torsion-free
when

∇XY −∇YX = [X, Y ] for all X, Y ∈ Γ(TM).

Remark 2.33. In a coordinate system (U,x), the fact that ∇ is free torsion implies that for
all i, j = 1, . . . , n,

∇Xi
Xj −∇Xj

Xi = [Xi, Xj] = 0, Xi =
∂

∂xi

, (2.8)

which justifies the terminology (observe that (2.8) is equivalent to the fact that Γk
ij = Γk

ji ).

Theorem 2.34. (Levi-Civita) Given a Riemannian manifold M , there exists a unique affine
connection ∇ on M satisfying the conditions

a) ∇ is torsion-free,.

b) ∇ is compatible with the Riemannian metric.

The connection called Levi-Civita (or Riemannian) connection on M.

Proof. Suppose initially the existence of such a ∇. Then

Xg(Y, Z) = g (∇XY, Z) + g (Y,∇XZ) , (2.9)

g(Y Z,X) = g (∇YZ,X) + g (Z,∇YX) , (2.10)

Zg(X, Y ) = g (∇ZX, Y ) + g (X,∇ZY ) . (2.11)

Adding (2.9) and (2.10) and subtracting (2.11), we have, using the symmetry of ∇, that

Xg(Y, Z) + Y g(Z,X)− Zg(X, Y ) = g([X,Z], Y ) + g([Y, Z], X) + g([X, Y ], Z) + 2g (Z,∇YX)

Therefore

g (Z,∇YX) =
1

2
(Xg(Y, Z)+Y g(Z,X)−Zg(X, Y )− g([X,Z], Y )− g([Y, Z], X)− g([X, Y ], Z))

(2.12)
The expression (2.12) shows that ∇ is uniquely determined from the metric g. Hence, if it
exists, it will be unique.

To prove existence, define ∇ by (2.12). It is easy to verify that ∇ is well-defined and that
it satisfies the desired conditions.

In a coordinate system (U,x), we can say that the functions Γk
ij defined on U by

∇Xi
Xj =

∑
k Γ

k
ijXk, the coefficients of the connection ∇ on U or the Christoffel symbols of the

connection. From (2.12) it follows that∑
ℓ

Γℓ
ijgℓk =

1

2

{
∂

∂xi

gjk +
∂

∂xj

gki −
∂

∂xk

gij

}
where gij = g(Xi, Xj).
Since the matrix (gkm) admits an inverse

(
gkm
)
, we obtain that

Γm
ij =

1

2

∑
k

{
∂

∂xi

gjk +
∂

∂xj

gki −
∂

∂xk

gij

}
gkm. (2.13)

The equation (2.13) is a classical expression for the Christoffel symbols of the Riemannian
connection in terms of the gij (given by the metric).
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Observe that for the Euclidean space Rn, we have Γk
ij = 0.

In terms of the Christoffel symbols, the covariant derivative has the classical expression

DV

dt
=
∑
k

{
dvk

dt
+
∑
i,j

Γk
ijv

j dxi

dt

}
Xk

which follows from (1.5). Observe that DV
dt

differs from the usual derivative in Euclidean space
by terms which involve the Christoffel symbols. Therefore, in Euclidean spaces the covariant
derivative coincides with the usual derivative.

2.35 curvature

Definition 2.36. The curvature R of a Riemannian manifold M is a correspondence that
associates to every pair X, Y ∈ Γ(TM) a mapping R(X, Y ) : Γ(TM) → Γ(TM) given by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, Z ∈ Γ(TM)

where ∇ is the Riemannian (Levi-Civita) connection of M .

Example 2.37. Observe that if M = Rn, then R(X, Y )Z = 0 for all X, Y, Z ∈ Γ (TRn) . In
fact, if the vector field Z is given by Z = (z1, . . . , zn), with the components of Z coming from
the natural coordinates of Rn, we obtain

∇XZ = (Xz1, . . . , Xzn) (2.14)

hence
∇Y∇XZ = (Y Xz1, . . . , Y Xzn) (2.15)

which implies that

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z = 0

as was stated. We are able, therefore, to think of R as a way of measuring how much M deviates
from being Euclidean.

Remark 2.38. Another way of viewing definition 2.36 is to consider a system of coordinates

{xi} around p ∈ M . Since
[

∂
∂xi

, ∂
∂xj

]
= 0, we obtain

R

(
∂

∂xi

,
∂

∂xj

)
∂

∂xk

=
(
∇∂/∂xj

∇∂/∂xi
−∇∂/∂xi

∇∂/∂xj

) ∂

∂xk

that is the curvature measures the non-commutativity of the covariant derivative.

Proposition 2.39. The curvature R of a Riemannian manifold has the following properties:

(i) R is bilinear in Γ(TM)× Γ(TM), that is,

R (fX1 + gX2, Y1) = fR (X1, Y1) + gR (X2, Y1)

R (X1, fY1 + gY2) = fR (X1, Y1) + gR (X1, Y2)

f, g ∈ C∞(M), X1, X2, Y1, Y2 ∈ Γ(TM).

(ii) For any X, Y ∈ Γ(TM), the curvature operator R(X, Y ) : Γ(TM) → Γ(TM) is linear,
that is,

R(X, Y )(Z +W ) = R(X, Y )Z +R(X, Y )W,

R(X, Y )fZ = fR(X, Y )Z,

f ∈ C∞(M), Z,W ∈ Γ(TM).
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Proof. Let us verify (i), by the properties of the connection and Lie bracket we have the first
part of (i),

R (fX1 + gX2, Y1) = ∇Y1∇fX1+gX2 −∇fX1+gX2∇Y1 +∇[fX1+gX2,Y1]

= ∇Y1(f∇X1 + g∇X2)− (f∇X1 + g∇X2)∇Y1 +∇[fX1+gX2,Y1]

= ∇Y1f∇X1 +∇Y1g∇X2 − f∇X1∇Y1 − g∇X2∇Y1 +∇[fX1+gX2,Y1]

= ∇Y1f∇X1 +∇Y1g∇X2 − f∇X1∇Y1 − g∇X2∇Y1 +∇f [X1,Y1] +∇g[X2,Y1]

= ∇Y1f∇X1 +∇Y1g∇X2 − f∇X1∇Y1 − g∇X2∇Y1 + f∇[X1,Y1] + g∇[X2,Y1]

= f∇Y1∇X1 +−f∇X1∇Y1 + f∇[X1,Y1] + g∇Y1∇X2 − g∇X2∇Y1 + g∇[X2,Y1]

= f(∇Y1∇X1 +−∇X1∇Y1 +∇[X1,Y1]) + g(∇Y1∇X2 −∇X2∇Y1 +∇[X2,Y1])

= fR (X1, Y1) + gR (X2, Y1) .

The second part of (i)

R (X1, fY1 + gY2) = ∇fY1+gY2∇X1 −∇X1∇fY1+gY2 +∇[X1,fY1+gY2]

= (f∇Y1 + g∇Y2)∇X1 −∇X1(f∇Y1 + g∇Y2) +∇[X1,fY1+gY2]

= f∇Y1∇X1 + g∇Y2∇X1 −∇X1f∇Y1 −∇X1g∇Y2 +∇[X1,fY1+gY2]

= f∇Y1∇X1 + g∇Y2∇X1 −∇X1f∇Y1 −∇X1g∇Y2 +∇[X1,fY1] +∇[X1,gY2]

= f∇Y1∇X1 + g∇Y2∇X1 −∇X1f∇Y1 −∇X1g∇Y2 + f∇[X1,Y1] + g∇[X1,Y2]

= f∇Y1∇X1 + g∇Y2∇X1 − f∇X1∇Y1 − g∇X1∇Y2 + f∇[X1,Y1] + g∇[X1,Y2]

= f∇Y1∇X1 − f∇X1∇Y1 + f∇[X1,Y1] + g∇Y2∇X1 − g∇X1∇Y2 + g∇[X1,Y2]

= f(∇Y1∇X1 −∇X1∇Y1 +∇[X1,Y1]) + g(∇Y2∇X1 −∇X1∇Y2 +∇[X1,Y2])

= fR (X1, Y1) + gR (X1, Y2)

and verify (ii) The first part of (ii) is obvious. As for the second, we have

∇Y∇X(fZ) = ∇Y (f∇XZ + (Xf)Z) = f∇Y∇XZ + (Y f) (∇XZ)

+ (Xf) (∇YZ) + (Y (Xf))Z.

Therefore,

∇Y∇X(fZ)−∇X∇Y (fZ) = f (∇Y∇X −∇X∇Y )Z + ((Y X −XY )f)Z

hence

R(X, Y )fZ = f∇Y∇XZ − f∇X∇YZ + ([Y,X]f)Z + f∇[X,Y ]Z + ([X, Y ]f)Z

= fR(X, Y )Z.

Remark 2.40. An analysis of the proof above shows that the necessity of the appearance of
the term ∇[X,Y ]Z in the definition of the curvature is connected to the fact that we want the
mapping R(X, Y ) : Γ(TM) → Γ(TM) to be linear.

Proposition 2.41. (Bianchi identity)

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Proof. From the symmetry of the Riemannian comection, we have,

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y

= ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z +∇Z∇YX −∇Y∇ZX +∇[Y,Z]X +∇X∇ZY

−∇Z∇XY +∇[Z,X]Y

= ∇Y [X,Z] +∇Z [Y,X] +∇X [Z, Y ]−∇[X,Z]Y −∇[Y,X]Z −∇[Z,Y ]X

= [Y, [X,Z]] + [Z, [Y,X]] + [X, [Z, Y ]]

= 0,

28



where the last equality follows from the Jacobi identity for vector fields.

From now on, we shall write g(R(X, Y )Z, T ) = R(X, Y, Z, T ).

Proposition 2.42.

R(X, Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T ) = 0 (2.16)

R(X, Y, Z, T ) = −R(Y,X,Z, T ) (2.17)

R(X, Y, Z, T ) = −R(X, Y, T, Z) (2.18)

R(X, Y, Z, T ) = R(Z, T,X, Y ). (2.19)

Proof.

(2.16) is just the Bianchi identity again, such

R(X, Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T )

= g(R(X, Y )Z, T ) + g(R(Y, Z)X,T ) + g(R(Z,X)Y, T )

= g(R(X, Y )Z +R(Y, Z)X +R(Z,X)Y, T )

= g(0, T )

= 0

(2.17) follows directly from Definition 2.36;

R(X, Y, Z, T ) = g(R(X, Y )Z, T )

= g(∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z, T )

= g(−(−∇Y∇XZ +∇X∇YZ −∇[X,Y ]Z), T )

= −g((−∇Y∇XZ +∇X∇YZ −∇[X,Y ]Z), T )

= −g(∇X∇YZ −∇Y∇XZ −∇−[Y,X]Z), T )

= −g(∇X∇YZ −∇Y∇XZ +∇[Y,X]Z), T )

= −g(R(Y,X)Z, T )

= −R(Y,X,Z, T )

(2.18) is equivalent to R(X, Y, Z, Z) = 0, whose proof follows:

R(X, Y, Z, Z) = g
(
∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z,Z

)
But

g (∇Y∇XZ,Z) = Y (∇XZ,Z)− g (∇XZ,∇YZ)

and

g
(
∇[X,Y ]Z,Z

)
=

1

2
[X, Y ]g(Z,Z)

Hence

R(X, Y, Z, Z) = Y g (∇XZ,Z)−Xg (∇YZ,Z) +
1

2
[X, Y ]g(Z,Z)

=
1

2
Y (Xg(Z,Z))− 1

2
X(Y g(Z,Z)) +

1

2
[X, Y ]g(Z,Z)

= −1

2
[X, Y ]g(Z,Z) +

1

2
[X, Y ]g(Z,Z)

= 0,
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which proves (2.18).

In order to prove (2.19), we use (2.16), and write:

R(X, Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T ) = 0
R(Y, Z, T,X) +R(Z, T, Y,X) +R(T, Y, Z,X) = 0
R(Z, T,X, Y ) +R(T,X,Z, Y ) +R(X,Z, T, Y ) = 0
R(T,X, Y, Z) +R(X, Y, T, Z) +R(Y, T,X, Z) = 0

Summing the equations above, we obtain

2R(Z,X, Y, T ) + 2R(Y, T, Z,X) = 0

and, therefore,
R(Z,X, Y, T ) = R(Y, T, Z,X)

It convenient to express what was seen above in coordonate system (U,x) based at the point
p ∈ M . Let us indicate, as usual, ∂

∂xi
= Xi. We put

R (Xi, Xj)Xk =
∑
ℓ

Rℓ
ijkXℓ.

Thus Rℓ
ijk are the components of the curvature R in (U,x). If

X =
∑
i

uiXi, Y =
∑
j

vjXj, Z =
∑
k

wkXk

we obtain, from the linearity of R,

R(X, Y )Z =
∑
i,j,k,ℓ

Rℓ
ijku

ivjwkXℓ. (2.20)

To express Rℓ
ijk in terms of the coefficients Γk

ij of the Riemannian connection, we write,

R (Xi, Xj)Xk = ∇Xj
∇Xi

Xk −∇Xi
∇Xj

Xk

= ∇Xj

(∑
ℓ

Γℓ
ikXℓ

)
−∇Xi

(∑
ℓ

Γℓ
jkXℓ

)
which by a direct calculation yields

Rs
ijk =

∑
ℓ

Γℓ
ikΓ

s
jℓ −

∑
ℓ

Γℓ
jkΓ

s
iℓ +

∂

∂xj

Γs
ik −

∂

∂xi

Γs
jk.

Putting

Rijks = g (R (Xi, Xj)Xk, Xs) =
∑
ℓ

Rℓ
ijkgℓs

we can write the ideritities of Proposition 2.42 as:

Rijks +Rjkis +Rkijs = 0
Rijks = −Rjiks

Rijks = −Rijsk

Rijks = Rksij.

Remark 2.43. The equation (2.20), which depends on the linearity of the operator R, shows
that the value of R(X, Y )Z at the point p depends uniquely on the values of X, Y, Z at p and the
values of the functions Rℓ

ijk at p. Observe that this contrasts with the behavior of the covariant
derivative , the reason being that the covariant derivative is not linear in all of its arguments.
In general, entities, such as the curvature, that are linear, are called tensors on M

30



2.44 Sectional curvature

Closely related to the curvature operator is the sectional curvature that we are now going to
define.

In what follows it is convenient to use the following notation.

Definition 2.45. Given a vector space V , we denote by the expression

|x ∧ y| =
√

|x|2|y|2 − ⟨x, y⟩2,

which represents the area of a two-dimensional parallelogram determined by the pair of vectors
x, y ∈ V .

Proposition 2.46. Let σ ⊂ TpM be a two-dimensional subspace of the tangent space TpM and
let x, y ∈ σ be two linearly independent vectors. Then

K(x, y) =
R(x, y, x, y)

|x ∧ y|2

does not depend on the choice of the vectors x, y ∈ σ.

Proof. To avoid calculating, we observe that we can pass from the basis {x, y} of σ to any
other basis {x′, y′} by iterating the following . elementary transformations:

(a) {x, y} → {y, x}, such from 2.17 and 2.18

K(y, x) =
R(y, x, y, x)

|y ∧ x|2

=
−R(x, y, y, x)

|y ∧ x|2

=
−(−R(x, y, x, y))

|y ∧ x|2

=
R(x, y, x, y)

|x ∧ y|2

(b) {x, y} → {λx, y}, by the linearity of R

K(λx, y) =
R(λx, y, λx, y)

|λx ∧ y|2

=
gp(R(λx, y)λx, y)

|λx|2|y|2 − gp(λx, y)2

=
gp(λR(x, y)λx, y)

λ2|x|2|y|2 − gp(λx, y)2

=
λ2gp(R(x, y)x, y)

λ2|x|2|y|2 − gp(λx, y)2

=
λ2gp(R(x, y)x, y)

λ2|x|2|y|2 − λ2gp(x, y)2

=
λ2gp(R(x, y)x, y)

λ2(|x|2|y|2 − gp(x, y)2)

=
gp(R(x, y)x, y)

(|x|2|y|2 − gp(x, y)2)

=
R(x, y, x, y)

|x ∧ y|2
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(c) {x, y} → {x+ λy, y}.

K(x+ λy, y) =
R(x+ λy, y, x+ λy, y)

|x+ λy ∧ y|2

=
gp(R(x+ λy, y)(x+ λy), y)

|x+ λy|2|y|2 − gp(x+ λy, y)2

=
gp(R(x+ λy, y)x+R(x,+λy, y)λy), y)

|x+ λy|2|y|2 − gp(x+ λy, y)2

=
gp(R(x, y)x+ λR(y, y)x+ λR(x, y)y + λ2R(y, y)y, y)

gp(x+ λy, x+ λy)|y|2 − gp(x+ λy, y)2

we have R(y, y)x and R(y, y)y are equal to 0 then

K(x+ λy, y) =
gp(R(x, y)x+ λR(x, y)y, y)

(gp(x+ λy, x) + λgp(x+ λy, y))|y|2 − gp(x+ λy, y)2

=
R(x, y, x, y) + λR(x, y, y, y)

(gp(x, x) + λgp(y, x) + λgp(x, y) + λ2gp(x, y))|y|2 − (gp(x, y) + λgp(y, y))2

=
R(x, y, x, y)

(gp(x, x) + λgp(y, x) + λgp(x, y) + λ2gp(x, y))|y|2 − (gp(x, y) + λgp(y, y))2

=
R(x, y, x, y)

((gp(x, x) + λgp(y, x) + λgp(x, y) + λ2gp(x, y))|y|2 − (gp(x, y)2 + λ|y|)4 + 2gp(x, y) · λ|y|2)

=
R(x, y, x, y)

|x|2|y|2 + 2λgp(x, y)|y|2 + λ2gp(x, y))|y|2 − gp(x, y)2 − λ2|y|4 − 2gp(x, y) · λ|y|2)

=
R(x, y, x, y)

|x|2|y|2 − gp(x, y)2

=
R(x, y, x, y)

|x ∧ y|2

We can see that K(x, y) is invariant by such transformations and that completes the proof.

Definition 2.47. Given a point p ∈ M and a two-dimensional subspace σ ⊂ TpM , the real
number K(x, y) = K(σ), where {x, y} is any basis of σ, is called the sectional curvature of
σ at p.

Lemma 2.48. Let V be a vector space of dimension ≥ 2, provided with an inner product ⟨ , ⟩.
Let R : V × V × V → V and R′ : V× V × V → V be tri-linear mappings such that conditions
of Proposition 2.42 are satisfied by

R(x, y, z, t) = ⟨R(x, y)z, t⟩, R′(x, y, z, t) = ⟨R′(x, y)z, t⟩ .

If x, y are two linearly independent vectors, we may write,

K(σ) =
R(x, y, x, y)

|x ∧ y|2
, K ′(σ) =

R′(x, y, x, y)

|x ∧ y|2

where σ is the bi-dimensional subspace generated by x and y. If for all σ ⊂ V,K(σ) = K ′(σ),
then R = R′.

Proof. It suffices to prove that R(x, y, z, t) = R′(x, y, z, t) for any x, y, z, t ∈ V . Observe first
that, by hypothesis, we have R(x, y, x, y) = R′(x, y, x, y), for all x, y ∈ V . Then

R(x+ z, y, x+ z, y) = R′(x+ z, y, x+ z, y)

g(R(x+ z, y)x+ z, y) = g(R′(x+ z, y)x+ z, y)
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g(R(x, y)x, y) + g(R(x, y)z, y) + g(R(z, y)x, y) + g(R(z, y)z, y)

= g(R′(x, y)x, y) + g(R′(x, y)z, y) + g(R′(z, y)x, y) + g(R′(z, y)z, y)

because of 2.19 we have

g(R(x, y)x, y)+2g(R(x, y)z, y)+g(R(z, y)z, y) = g(R′(x, y)x, y)+2g(R′(x, y)z, y)+g(R′(z, y)z, y)

hence

R(x, y, x, y) + 2R(x, y, z, y) +R(z, y, z, y) = R′(x, y, x, y) + 2R′(x, y, z, y) +R′(z, y, z, y)

and, therefore
R(x, y, z, y) = R′(x, y, z, y)

for all x,y,z ∈ V Using what we have just proved, we obtain

R(x, y + t, z, y + t) = R′(x, y + t, z, y + t)

g(R(x, y + t)z, y + t)) = g(R′(x, y + t)z, y + t)

R(x, y, z, t) +R(x, t, z, y) +R(x, y, z, y) +R(x, t, z, t) = R′(x, y, z, t) +R′(x, t, z, y)

+R′(x, y, z, y) +R′(x, t, z, t)

hence
R(x, y, z, t) +R(x, t, z, y) = R′(x, y, z, t) +R′(x, t, z, y),

which can be written further as

R(x, y, z, t)−R′(x, y, z, t) = R(y, z, x, t)−R′(y, z, x, t).

It follows that, the expression R(x, y, z, t)−R′(x, y, z, t) is invariant by cyclic permutations of
the first three elements. Therefore, by (a) of Proposition 2.42, we have

3 [R(x, y, z, t)−R′(x, y, z, t)] = 0,

hence
R(x, y, z, t) = R′(x, y, z, t)

for all x, y, z, t ∈ V .

Definition 2.49. M has constant sectional curvature if there exist Ko ∈ R such that

K(p, σ) = Ko ∀p ∈ M,σ ⊂ TpM

Lemma 2.50. Let M be a Riemannian manifold and p a point of M. Define a tri-linear
mapping R′ : TpM × TpM × TpM × TpM → TpM by

R′(X, Y,W,Z) = g(X,W )g(Y, Z)− g(Y,W )g(X,Z)

for all X, Y,W,Z ∈ TpM . Then M has constant sectional curvature Ko if and only if R = KoR
′,

where R is the curvature of M .

Proof. Assume that K(p, σ) = Ko for all σ ⊂ TpM , and set R(X, Y,W,Z). Observe that R′

satisfies the properties of Proposition 2.42. Since

R′(X, Y,X, Y ) = g(X,X)g(Y, Y )− g(X, Y )2,

we have that, for all pairs of vectors X, Y ∈ TpM ,
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R(X, Y,X, Y ) = Ko

(
|X|2|Y |2 − ⟨X, Y ⟩2

)
= KoR

′(X, Y,X, Y )

Lemma 2.48 implies that, for all X, Y,W,Z,

R(X, Y,W,Z) = KoR
′(X, Y,W,Z),

hence R = KoR
′.

Corollary 2.51. Let M be a Riemannian manifold of dimension n, p a point of M and
{e1, . . . , en}, an orthonormal basis of TpM . Define Rijkℓ = gp (R (ei, ej) ek, eℓ),
i, j, k, ℓ = 1, . . . , n. ThenK(p, σ) = Ko for all σ ⊂ TpM , if and only if Rijkℓ = Ko (δikδjℓ − δiℓδjk)
In other words, K(p, σ) = Ko for all σ ⊂ TpM if and only if Rijij = −Rijji = Ko for all i ̸= j,
and Rijkℓ = 0 in the other cases.

2.52 Ricci curvature and scalar curvature

Definition 2.53. Let (M, g) be a Riemannian manifold, then we define
(i) the Ricci operator Ric : Γ(TM) → C∞

1 (M) by

Ric(X) =
n∑

i=1

R (X, ei) ei,

(ii) the Ricci curvature Ric : Γ(TM)× Γ(TM) → R by

Ric(X, Y ) =
n∑

i=1

g (R (X, ei) ei, Y ) ,

(iii) the scalar curvature Scal ∈ C∞(M) by

Scal =
n∑

j=1

Ric (ej, ej) =
n∑

j=1

n∑
i=1

g (R (ei, ej) ej, ei) .

Here {e1, . . . , en} is any local orthonormal frame for the tangent bundle.

In the case of constant sectional curvature we have the following result.

Corollary 2.54. Let (Mn, g) be a Riemannian manifold of constant sectional curvature κ.
Then its scalar curvature satisfies the following

Scal = n · (n− 1) · κ.

Proof. Let {e1, . . . , en} be any local orthonormal frame. Then

Ric (ej, ej) =
n∑

i=1

g (R (ej, ei) ei, ej)

=
n∑

i=1

g (κ (g (ei, ei) ej − g (ej, ei) ei) , ej)

= κ

(
n∑

i=1

g (ei, ei) g (ej, ej)−
n∑

i=1

g (ei, ej) g (ei, ej)

)

= κ

(
n∑

i=1

1−
n∑

i=1

δij

)
= (n− 1) · κ.
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then

Scal =
n∑

j=1

Ric (ej, ej)

=
n∑

j=1

(n− 1) · κ

= n · (n− 1) · κ.

Let x = zn be a unit vector in TpM ; we take an orthonormal basis {z1, z2, . . . , zn−1} of the
hyperplane in TpM orthogonal to x . We are going to prove that the expressions above do not
depend on the choice of the corresponding orthonormal basis.
To prove these facts, we give an intrinsic characterization of the expressions above. First, define
a bilinear form on TpM as follows: let x, y ∈ TpM and put

Q(x, y) = trace of the mapping z 7→ R(x, z)y.

Q is obviously bilinear. Choosing x a unit vector and then completing it to an orthonormal
basis {z1, . . . , zn−1, zn = x} of TpM we have

Q(x, y) =
∑
i

g (R (x, zi) y, zi)

=
∑
i

g (R (y, zi)x, zi) = Q(y, x)

that is, Q is symmetric and Q(x, x) = (n− 1)Ricp(x); this proves that Ricp(x) is intrinsically
defined.

On the other hand, the bilinear form Q on TpM corresponds to a linear self-adjoint mapping
K, given by

g(Scal(x), y) = Q(x, y).

Taking an orthonormal basis {z1, . . . , zn}, we have

Trace of Scal =
∑
j

g (Scal (zj) , zj)

=
∑
j

Q (zj, zj)

= (n− 1)
∑
j

Ricp (zj)

= n(n− 1)Scal,

which proves the statement.

The bilinear form 1
n−1

Q is, at times, called the Ricci tensor.

As usual we should express what was done above in a coordinate system (xi). Let Xi =
∂
∂xi

,

gij = g (Xi, Xj), and gij the inverse matrix of gij (i.e.,
∑

k gikg
kℓ = δℓi ). Then the coefficients

of the bilinear form 1
n−1

Q in the basis {Xi} are given by

1

n− 1
Rik =

1

n− 1

∑
j

Rj
ijk =

1

n− 1

∑
sj

Rijksg
sj.

We observe now that if A : TpM → TpM is a linear self-adjoint mapping and
B : TpM × TpM → R is the associated bilinear form,
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i.e., B(X, Y ) = g(A(X), Y ), then the trace of A is equal to
∑

ik B (Xi, Xk) g
ik. Thus, the scalar

curvature in the coordinate system (xi) is given by

K =
1

n(n− 1)

∑
ik

Rikg
ik

Let f : A ⊂ R2 → M be a parametrized surface and let (s, t) be the usual coordinates of R2.
Let V = V (s, t) be a vector field along f . For each (s, t), it is possible to define R

(
∂f
∂s
, ∂f
∂t

)
V

in an obvious manner.

Lemma 2.55.
D

∂t

D

∂s
V − D

∂s

D

∂t
V = R

(
∂f

∂s
,
∂f

∂t

)
V

.

Proof. The proof is a long calculation. Choose a system of coordinates (U,x) based at p ∈ M .
Let V =

∑
i v

iXi, where vi = vi(s, t)e Xi =
∂
∂xi

. Then

D

∂s
V =

D

∂s

(∑
i

viXi

)
=
∑
i

vi
D

∂s
Xi +

∑
i

∂vi

∂s
Xi

and
D

∂t

(
D

∂s
V

)
=
∑
i

vi
D

∂t

D

∂s
Xi +

∑
i

∂vi

∂t

D

∂s
Xi +

∑
i

∂vi

∂s

D

∂t
Xi +

∑
i

∂2vi

∂t∂s
Xi

Therefore, interchanging the roles of s and t in the expression above, and subtracting, we
obtain

D

∂t

D

∂s
V − D

∂s

D

∂t
V =

∑
vi
(
D

∂t

D

∂s
Xi −

D

∂s

D

∂t
Xi

)
.

Let us now calculate D
∂t

D
∂s
Xi. Put

f(s, t) = (x1(s, t), . . . , xn(s, t)) .

Then ∂f
∂s

=
∑

j
∂xj

∂s
Xj and

∂f
∂t

=
∑

k
∂xk

∂t
Xk. Thus, we have

D

∂s
Xi = ∇Σj(∂xj/∂s)Xj

(Xi) =
∑
j

∂xj

∂s
∇Xj

Xi

and

D

∂t

D

∂s
Xi =

D

∂t

(∑
j

∂xj

∂s
∇Xj

Xi

)

=
∑
j

∂2xj

∂t∂s
∇Xj

Xi +
∑
j

∂xj

∂s
∇Σk(∂xk/∂t)Xk

(
∇Xj

Xi

)
=
∑
j

∂2xj

∂t∂s
∇Xj

Xi +
∑
jk

∂xj

∂s

∂xk

∂t
∇Xk

∇Xj
Xi

or (
D

∂t

D

∂s
− D

∂s

D

∂t

)
Xi =

∑
jk

∂xj

∂s

∂xk

∂t

(
∇Xk

∇Xj
Xi −∇Xj

∇Xk
Xi

)

36



Joining everything together, we finally get(
D

∂t

D

∂s
− D

∂s

D

∂t

)
V =

∑
ijk

vi
∂xj

∂s

∂xk

∂t
R (Xj, Xk)Xi

= R

(
∂f

∂s
,
∂f

∂t

)
V.

2.56 Tensors on Riemannian manifolds

For what follows it is useful to observe that Γ(TM) has a linear structure when we take as
”scalars” the elements of C∞(M).

Definition 2.57. A covariant tensor T of order r on a Riemannian manifold is a multi-
linear mapping

T : Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
r factors

→ C∞(M)

This means that given Y1, . . . , Yr ∈ Γ(TM), T (Y1, . . . , Yr), is a differentiable function on M ,
and that T is linear in each argument, that is,

T (Y1, . . . , fX + gY, . . . , Yr) = fT (Y1, . . . , X, . . . , Yr) + gT (Y1, . . . , Y, . . . , Yr)

for all X, Y ∈ Γ(TM), f, g ∈ C∞(M).

A tensor T is a pointwise object in a sense that we now explain. Fix a point p ∈ M and let U
be a neighborhood of p in M on which it is possible to define vector fields E1 . . . , En ∈ Γ(TMn),
in such a fashion that at each q ∈ U , the vectors {Ei(q)} , i = 1, . . . , n, form a basis of TqM ,
we say, in this case, that {Ei} is a moving frame on U . Let

Y1 =
∑
i1

yi1Ei1 , . . . , Yr =
∑
ir

yirEir , i1, . . . , ir = 1, . . . , n

be the restrictions to U of the vector fields Y1, . . . , Yr, expressed in the moving frame {Ei}. By
linearity,

T (Y1, . . . , Yr) =
∑

i1,...,ir

yi1 . . . yirT (Ei1 , . . . , Eir)

The functions T (Ei1 , . . . Eir) = Ti1,...,ir is on U are called the components of T in the frame {Ei}

The expression above implies that the value of T (Y1, . . . , Yr) at a point p ∈ M depends only
on the values at p of the components say that T is a pointwise object.

Example 2.58. The curvature tensor

R : Γ(TM)× Γ(TM)× Γ(TM)× Γ(TM) → C∞(M)

is defined by
R(X, Y, Z,W ) = g(R(X, Y )Z,W ), X, Y, Z,W ∈ Γ(TM)

We can verify that R is a covariant tensor of order 4, whose components in the frame
{
Xi =

∂
∂xi

}
associated with the system of coordinates (xi) is

Rijkℓ = R (Xi, Xj, Xk, Xℓ) .
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Example 2.59. The ”metric tensor” G : Γ(TM)× Γ(TM) → C∞(M) is defined by
G(X, Y ) = ⟨X, Y ⟩, X, Y ∈ Γ(TM). G is a covariant tensor of order 2 and its components
in the frame {Xi} are the coefficients gij of the Riemannian metric in the given system of
coordinates.

Example 2.60. The Riemannian connection ∇ defined by:

∇ : Γ(TM)× Γ(TM)× Γ(TM) → C∞(M)
∇(X, Y, Z) = g (∇XY, Z) , X, Y, Z ∈ Γ(TM)

is not a tensor, because ∇ is not linear with respect to the argument Y .

Definition 2.61. Let T be a tensor of order r. The covariant differential ∇T of T is a
tensor of order (r + 1) given by

∇T (Y1, . . . , Yr, Z) = Z (T (Y1, . . . , Yr))− T (∇ZY1, . . . , Yr)− · · · − T (Y1, . . . , Yr−1,∇ZYr)

For each Z ∈ Γ(TM), the covariant derivative ∇ZT of T relative to Z is a tensor of order r
given by

∇ZT (Y1, . . . , Yr) = ∇T (Y1, . . . , Yr, Z)

We are going to show that, in a convenient frame, the definition of the covariant derivative
of a tensor T relative to Z ∈ Γ(TM) becomes quite natural. For this, let p ∈ M and let
α : (−ε, ε) → M be a differentiable curve with α(0) = p, α′(t) = Z(α(t)). Let {e1, . . . , en} be a
basis of TpM and let ei(t) be the parallel transport of ei along α = α(t), for i = 1, . . . , n. Let
Ti1...ir(t) be the components, in the basis {ei(t)}, of the restriction T (α(t)) of T to the curve α.
Then, by the definition of ∇zT ,

(∇ZT ) (ei1(t), . . . , eir(t)) =
d

dt
Ti1...ir(t)− T (∇Zei1(t), . . . , eir(t))− · · · − T (ei1(t), . . . ,∇Zeir(t))

Since ∇Zei(t) = 0, we have, by linearity,

(∇zT )i1...ir = (∇zT ) (ei1(t), . . . , eir(t)) =
d

dt
Ti1...ir

In other words, in this frame, the components of the corariant derivative of T are the usual
derivatives of the components of T.

Example 2.62. The covariant differential of the metric tensor is the zero tensor. Indeed, for
all X, Y, Z ∈ Γ(TM),

∇G(X, Y, Z) = Zg(X, Y )− g (∇ZX, Y )− g (X,∇ZY ) = 0

because ∇ is the Riemannian connection.
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CHAPTER

3

THE LAPLACIAN IN RIEMANNIAN
MANIFOLD

The Laplacian is the most important operator such it used in many of the equations in physics
to descibe natural phenomena .It generalize to functions defined on a manifold. Were George de
Rham realized that it was fruitful to define a version of Laplacian operating on differential forms,
because of a fondamental relationship between harmonic forms and the de Rham colomology
groups on a smooth manifold.
In this chapter , the following references are used; [BGM71] [Can13] [RS97] [JJ08] [CS08] [GQ12]

3.1 Divergence of vector field, δ operator

On the Riemannian manifold (M, g), we define a linear mapping of Γ(TM) in C∞(M), called
divergence, and defined as follos:

Definition 3.2. the divergent of vector field ξ on M is the function div ξ locally define by :

divξ : Γ(TM) → C∞(M)

divξ ω = d(ξ⌟ω) (3.1)

such ω design the volume form wich correspondent in a local orientation, and ξ⌟ω design the
contract product of ξ and of the n-form ω (n is the dimension of Riemannian manifold M),
means that the (n-1)-form defined by:

ξ⌟ω(X1, . . . , Xn−1) = ω(ξ,X1, . . . , Xn−1),∀X1, . . . , Xn−1 ∈ Γ(TM) .

Remark 3.3. The div ξ does not depend on the choose of the volume form ω, so the divergence
is defined globally in (M,g).

Proposition 3.4.
div(f.ξ) = f. div ξ + df(ξ) ∀f ∈ C∞(M)

∀ξ ∈ Γ(TM) .

by duality, we obtain from the divergence an operator on the space A1(M) of 1-forms, called
δ and defined as follows:
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Definition 3.5. δ is operator of A1(M) in C∞(M) defined by :

δα = − div(α∗) α ∈ A1(M) (3.2)

such α∗ =
∑

i,j (g
ijαj) ·Xi.

Remark 3.6. On 0-forms, δ is simply the zero linear functional.

If M is compact, the spaces AP (M) are endowed with a structure pre-Hilbertian, defined
from the inner product (.|.) on the euclidean space Γ(∧pT ∗M), and from the canonical measure
vg, on (M,g) , the global inner product is denoted < ., . >. We therefore have, if α and β are
two-forms on M :

< α, β > =

∫
M

(α|β) · vg.

Proposition 3.7.
< df, a > = < f, δa > ∀f ∈ A0(M)

∀a ∈ A1(M)

this equality also written : ∫
M

(df | α) · vg =
∫
M

f · δα · vg.

Proof. To prove it, we must prove that :∫
M

(df | α) · ω =

∫
M

fδα · ω.

where ω is form volume deffned locally near any point of the manifold.
Posed:

I =

∫
M

(df | α) · ω −
∫
M

(fδα) · ω

=

∫
M

((df | α)− fδα) · ω.

Because of the definitions of the operators δ and div, we have:

I =

∫
M

((df | α) + f div a∗) · ω

However, by proposition3.4, we have:

f divα∗ = div (fα∗)− df (α∗)

and , by definition,

(df | α) = df (α∗) ,

so that,

I =

∫
M

((df | α) + div (fα∗)− df (α∗)) · ω

=

∫
M

(df (α∗) + div (fα∗)− df (α∗)) · ω

=

∫
M

div (fα∗) · ω

=

∫
M

d(fα∗⌟ω),
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that is, because of stokes

I =

∫
M

d(fα∗⌟ω)

=

∫
M

dω(fα∗, X1, . . . , Xm−1) ∀X1, . . . , Xm−1 ∈ Γ(TM)

= 0

which demonstrates the proposition previous.

3.7.1 The Divergence and δ operator of differential forms

Definition 3.8. The divergent is tace operator wich define by:

div : Ap(M) → Ap−1(M)

ω → divω

such that for all p-form :

divω(X,X1, . . . , Xp−1) = ∇Xω (X,X1, X2, . . . , Xp−1)

Proposition 3.9. We can express the differential d in function of the connection ∇ by:
∀ω ∈ Ap(M), ∀, i = 1, 2, . . . , p

dω (X,X1, X2, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1∇Xiω
(
X1, X2, . . . , X̂i, . . . , Xp+1

)
.

Definition 3.10. δ operator of p-form define as:

δ : Ap(M) −→ Ap−1(M)

α 7−→ δα

such that for all α ∈ Ap−1(M) and β ∈ Ap(M) we have:

(dα, β) = (α, δβ) .

wich have the propriety :

δα (X2, X3, . . . , Xp) = −
n∑

i=1

∇Xi
α (X,X2, . . . , , Xp) .

The definition of the divergent we have :

∀α ∈ Ap(M), δα = − divα.

3.10.1 Calculation of divergence and δ in local coordinates:

Let (xi) a local map on M in point m , to which is attached a real function θ =
√
det (gij),

such that, locally, the associated volume form is expressed by:

ω = θ · dx1 ∧ . . . ∧ dxn

.
If (xi) is the local filed of the frame associated with the map (xi), (means that xi =

∂
∂xi ),

we have:
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ξ⌟ω (x1, . . . , x̂i, . . . , xn) = ω (ξ, x1, . . . , x̂i, . . . , xn)

= (−1)i−1ω (x1, . . . , ξ, . . . , xn) .

= (−1)i−1θ · dx1 ∧ . . . ∧ dxn (x1, . . . , ξ, . . . , xn)

= (−1)i−1θ.ξi

such , ξi design the ith component of ξ. then we have:

ξ⌟ω =
n∑
i

(−1)i−1
(
θ.ξi
)
dxi ∧ . . . ∧ d̂xi ∧ . . . dxn

and therefore :

d(ξ⌟ω) = d

(
n∑
i

(−1)i−1
(
θ.ξi
)
dxi ∧ . . . ∧ d̂xi ∧ . . . dxn

)

=
n∑
i

(−1)i−1∂ (θ · ξi)
∂xi

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ . . . dxn

=
n∑
i

∂ (θ · ξi)
∂xi

dx1 ∧ · · · ∧ dxn

=

(
n∑
i

∂ (θ · ξi)
∂xi

· θ−1 · ω

)

= θ−1

(
n∑
i

∂ (θ · ξi)
∂xi

· ω

)

= θ−1

(
n∑
i

∂ (θ · ξi)
∂xi

)
· ω.

by (3.1), so that:

div ξ = θ−1
∑
i

∂ (θ · ξi)
∂xi

. (3.3)

In the same map, a 1 -form α is expressed by:

α =
∑
i

αidx
i

and therefore :

α∗ =
∑
i,j

(
gijαj

)
·Xi (3.4)

where gij is the generic element of the inverse matrix of (gij). It then follows from (3.4
)that:

δα = − div(α∗)

= −θ−1

(∑
i,j

∂(θgijαj)

∂xi

)
.

(3.5)

Proposition 3.11. From (3.3) , for any X, Y ∈ Γ(TM) and ω ∈ Ap(M) we have:

div(X + Y ) = divX + div Y.

and, from (3.3) and (3.1) we have:

(X + Y )⌟ω = X⌟ω + Y ⌟ω
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3.11.1 Geometric formulation of δ

The 2-form Dα is a covariant derivative of 1-form α such that :

trace Dα =
∑
i

Dα(Xi, Xi)

such (Xi) is the orthonormal fram .
as we have :

Dα(Xi, Xi) = (DXi
α∗|Xi)

Proposition 3.12. For all 1-form α define on the Riemannian manifold (M, g) :

δα = − trace α

3.13 The Laplacien operator of a function

Definition 3.14. The Laplacien, noted ∆, is an operator of A0(M) in A0(M) define by :

∆f = δdf f ∈ A0(M) .

3.14.1 Expression in local coordonnates:

It given by the equation (3.5) such we replace α by df , means that αj by
∂f
∂xj . It comes :

∆f = −θ−1
∑
i,j

∂
(
θ gij df

dxj

)
dxi

So the Laplacian is a second-order differential operator , its homogeneous part of the second
order is written :

σ = −
∑
i,j

gij
∂2f

∂xi∂xj
.

Proposition 3.15. In n-dimensional Euclidean space, the Laplace operator or Laplacian ∆ is
differentiable operator is the divergence of the gradient such that :

div =

(
∂

∂x1

+ . . .+
∂

∂xn

)
and∇ =

(
∂

∂x1

, . . . ,
∂

∂xn

)
∆ = − div .∇

= −
n∑

i=1

∂2

∂x2
i

Example 3.16. Let (Rn, g0)be connected (g0 is the metric on Rn) the gij are constants, and
consider the operator acting on A0(Rn) such that simply differentiates a function f ∈ A0(Rn)
two two times with respect to each position variable, the expression of the Laplacian is :

∆f = −
∑
i

∂2f

∂xi2
, f ∈ A0(Rn)

means that the opposite of the usual Laplacian.
Extending the known notion on Rn, we will say that a real function defined on a Riemannian
manifold is harmonic if it verifies equality:

∆f = 0.
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3.16.1 Geometric formulation of the Laplacien

Let Ddf is the second covariant derivative of f , For all f of A0(M) :

∆f = − trace(Ddf)

means that
∆f = − trace(Hess f)

such Hess f design the Hessien of f (the Hessien of f is the second covariant derivative of f
such Hess f = d2f = Ddf).
If Xi is the orthonorms frame then :

∆f =
∑
i

Hess f(Xi, Xi)

Example 3.17. (Laplacien on the sphere) The sphere (Sn, g) being considered as immersed in
(Rn+1, g0), compare the two following applications of Sn in R :

∆Sn

(f |sn) and
(
∆Rn+1

f
)
|sn

such f is an application C∞ of Rn in R.
we have the quality: (

∆Rn+1

f
)
|sn = ∆Sn

(f |sn)−
∂2f

∂r2
|Sn − n · ∂f

∂r1
|Sn (3.6)

for all f : Rn+1 → R

A point p of sn determines a unit vector x on Rn+1. We complete it with the xi,
i = 2, . . . , n+ 1, so as to obtain an orthonormal basis {x, xi}i=2,...,n+1 of Rn+1 and therefore an
orthonormal basis {xi}i=2,...,n+1 of Tns

n.

The geodesic γi (is a curvature γi : I → M ; I ⊂ R such that D
dt
γi(t) = 0 ; t ∈ I where D is

curvature derivation.) , determined on (Sn, g0) par xi, written:

γi : a → cos a.x+ sin a · xi i = 2, . . . , n+ 1

(ou x and xi are considered as points of Rn+1 and therefore γi(a) as a point of sn ).

The map f has partial derivatives
(

∂f
∂xi

)
i=1,...,n+1 corresponding to the basis of Rn+1

{x = x1, xi}i=2,...,n+1. With cos notations the first derivative, with respect to a, of f ◦γi written,
at the point γi(a) :

d (f ◦ γi)
da

(a) = − sin a · ∂f

∂x1
+ cos a · ∂f

∂xi

and the second derivative, at the point n = γi(0) :

d2 (f ◦ γi)
da2

(0) =
∂f

∂x1
(p) +

∂2f

∂xi2
(p).

It follows, the following value of ∆sn(f |sn) :

∆sn (f |sn) (p) =
n+1∑
i=2

d2

da2
(f ◦ γ1) (0)

=
n+1∑
i=2

∂2f

∂xi2
(p) + p · ∂f

∂x1
(p).
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While we have

(
∆Rn+1

f
)
(p) = −

n+1∑
i=2

∂2f

∂xi2
(p)

= −
p+1∑
i=2

∂2f

∂xi2
(p)− ∂2f

∂x1
(p).

So that: (
∆Rn+1

f
) ∣∣

sn(p) = ∆sn(f
∣∣
sn)(p)−

∂2f

∂x2
(p)− n · ∂f

∂x1
(p),

that is to say precisely (3.6)

3.18 The Laplacien of compact manifold

As the operators d and δ are adjuncts on the compact Riemannian manifold (M, g), for all f,
for all g in A0(M) we have :

⟨∆f, g⟩ = ⟨f,∆g⟩

⟨∆f, f⟩ = ∥df∥2 (3.7)

Definition 3.19. ( The Hodge-de Rham Laplacian) On a n-dimensional compact Rie-
mannian manifold (M, g) the Laplacian is defined on the Ap(M), for all p, by the formula:

∆ : Ap(M) → Ap(M)

α → dδ(α) + δd(α)

Proposition 3.20. The Laplacien of a n-dimensional compact Riemannian manifold (M, g) is
an operator positive-definite and self-adjoint that is:

⟨∆α, β⟩ = ⟨α,∆β⟩ ∀α, β ∈ Ap(M); 0 < p < n

Remark 3.21. From (3.7) we deduce that a harmonic function is locally constant, means that
constant on each connected component of M .

Proposition 3.22. (Bochner-Liohnerowicz formula)
For all f ∈ A0(M), we have :

−1

2
∆
(
|df|2

)
=| Hess f |2 − |∆f |2 + ρ (df ∗, df ∗)

when , ρ design the Ricci courvature of the Riemannian manifold (M, g).

Lemma 3.23. For all form α ∈ A1(M) and all X, Y ∈ Γ(TM), we have :

DXDY α
∗ −DYDXα

∗ −D[X,Y ]α
∗ = (R(X, Y )α∗)

The lemma follows from the definition of curvature.

Proposition 3.24. For the Laplacian, thus defined on the p-forms, we have the following
generalized Bochner-Lichnerowicz formula:

−1

2
∆
(
|α|2
)
= |Dα|2 − (α | ∆α) + F (α) ∀α ∈ Ap(M)

where F (α) is quadratic in α and linear in the curvature tensor R, such that, for all
Xa, Xb, Xa2 , Xa3 , · · · , Xap ∈ {Xi}i≤n an orthonormal and parallal frame :

F (α) =
1

(p− 1)!

∑
a,b,a2,...,ap

(∇Xa∇Xb
−∇Xb

∇Xa)α
(
Xa, Xa2 , Xa3 , · · · , Xap

)
·α
(
Xb, Xa2 , Xa3 , · · · , Xap

)
.
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3.25 Hodge Theory

Definition 3.26. (Hodge star operator )is an isomorphism (the unique isomorphism) be-
tween smooth p forms to smooth n− p forms on compact n-dimensional Riemannian manifold,
defined by:

∗ : Ap(M) → An−p(M) 0 < p < n

α 7−→ ∗α
such that for all pour α, β ∈ Ap(M) :

α ∧ ∗β =< α, β > ω.

such ω is a volume form.

Definition 3.27. We can define an inner product on the vector space Ap(M) of p-forms on M
by setting

⟨α, β⟩ =
∫
M

α ∧ ∗β for α, β ∈ Ap(M) (3.8)

and we denote the corresponding norm by ∥α∥.

Proprety 3.28. Let {Xi}1≤i≤n the orthonormal fram of M and {X∗
i }1≤i≤n the associated or-

thonormal basis, then for all σ ∈ S(k, n) :

∗
(
X∗

σ(1) ∧X∗
σ(2) ∧ · · · ∧X∗

σ(k)

)
= Sign(σ)

(
X∗

σ(k+1) ∧X∗
σ(k+2) ∧ · · · ∧X∗

σ(n)

)
Proprety 3.29. For all forms α, β ∈ Ap(M)

- (α, β) =
∫
M
α ∧ ∗β

- ∗ ∗α = (−1)p(n−p)α
- δα = (−1)np−n+1 ∗ d ∗ α
- ∗∆α = ∆ ∗ α
- αΛ ∗ β = βΛ ∗ α
- ∗ 1 = ω , ∗ω = 1
- ⟨∗α, ∗β⟩ = ⟨α, β⟩.

Theorem 3.30. We can also define the operator δ from p-forms to (p− 1) forms by setting

δ = (−1)n(p+1)+1 ∗ d∗
where d denotes exterior derivative

Proof. For α ∈ Ap−1(M), β ∈ Ap(M)

d(α ∧ ∗β) =dα ∧ ∗β + (−1)p−1α ∧ d ∗ β
=dα ∧ ∗β + (−1)p−1(−1)(p−1)(n−p+1)α ∧ ∗ ∗ (d ∗ β)

by propriety 3.29 (d ∗ β is a (n− p+ 1)-form ) then

d(α ∧ ∗β) =dα ∧ ∗β − (−1)n(p+1)+1α ∧ ∗ ∗ d ∗ β
=± ∗

(
⟨dα, β⟩ − (−1)n(p+1)+1⟨α, ∗d ∗ β⟩

)
.

We integrate this formula. By Stokes’ theorem, the integral of the left hand side vanishes,we
have ∫

M

± ∗
(
⟨dα, β⟩ − (−1)n(p+1)+1⟨α, ∗d ∗ β⟩

)
= 0
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then ∫
M

± ∗ ⟨dα, β⟩ =
∫
M

(−1)n(p+1)+1⟨α, ∗d ∗ β⟩

so
± ∗ ⟨dα, β⟩ = (−1)n(p+1)+1⟨α, ∗d ∗ β⟩

then
± ∗ ⟨α, δβ⟩ = (−1)n(p+1)+1⟨α, ∗d ∗ β⟩

so
δ = (−1)n(p+1)+1 ∗ d∗

and the claim results.

Proposition 3.31. We may consider 0 ≤ p ≤ n as inner product on

A(M) =
n⊕

p=0

Ap(M)

with Ap(M) and Aq(M) being orthogonal for p ̸= q.

Proposition 3.32. The operator δ define on Ap(M) , just as d is defined on Ap(M) ,the pair
δ and d are adjuncts of each other.

A
p
(M)

δ→
←−
d

A
p−1(M)

⟨dα, β⟩ = ⟨α, δβ⟩ ∀α ∈ Ap−1(M), β ∈ Ap(M)

Proof. Linearity and orthogonality of the Ap(M) provides reduction to consideration of the
case in which α is (p− 1) form and β is a p-form.

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β
= dα ∧ ∗β − α ∧ ∗δβ

by integrating both side over M and applying Stokes’ theorem to left-hand side, we get∫
M

(dα ∧ ∗β − α ∧ ∗δβ) =
∫
M

(dα ∧ ∗β)− (α ∧ ∗δβ)

=

∫
M

(dα ∧ ∗β)−
∫
M

(α ∧ ∗δβ)

= ⟨dα, β⟩ − ⟨α, δβ⟩
= 0

hence

⟨dα, β⟩ = ⟨α, δβ⟩

Theorem 3.33. Laplacian commutes with ∗, that is

∗∆ = ∆∗

Proposition 3.34. ∆α = 0 if and only if dα = 0 and δα = 0.
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Proof. Clearly ∆α = 0 if dα = 0 and δα = 0. Now,

⟨∆α, α⟩ = ⟨(dδ + δd)α, α⟩ = ⟨δα, δα⟩+ ⟨dα, dα⟩
Thus if ∆α = 0, then dα = 0 and δα = 0.

Corollary 3.35. The only harmonics function (∆f = 0) on a compact, connected, oriented,
Riemannian manifold are the constant functions.

Definition 3.36. A form ω ∈ Ap(M) is called harmonic if ∆ω = 0.

Definition 3.37. Let M be an orientable and compact Riemannian manifold of dimension n.
For every p, with 0 ≤ p ≤ n, let

Hp(M) = {ω ∈ Ap(M) | ∆ω = 0} ,
be the space of harmonic p-forms.

Proposition 3.38. Let M be an orientable and compact Riemannian manifold of dimension
n, we have a linear map,

∗ : Hp(M) → Hn−p(M).

Theorem 3.39. (Hodge Decomposition Theorem) Let M be an orientable and compact
Riemannian manifold of dimension n. For every p, with 0 ≤ p ≤ n, the space, Hp(M), is
finite dimensional and we have the following orthogonal direct sum decomposition of the space
of p-forms:

Ap(M) = Hp(M)⊕∆(Ap(M))

= Hp(M)⊕ d (δ (Ap(M)))⊕ δ (d (Ap(M)))

= Hp(M)⊕ d
(
Ap−1(M)

)
⊕ δ

(
Ap+1(M)

)
.

Proposition 3.40. For every p ≥ 0, the composition Ap(M)
d−→ Ap+1(M)

d−→ Ap+2(M) is
identically zero, that is,

d ◦ d = 0, (d ◦ d : Ap(M) → Ap+2(M))

or, using superscripts, dp+1 ◦ dp = 0.

Definition 3.41. A differential form, ω, is closed iff dω = 0, exact iff ω = dη, for some
differential form η . For every p ≥ 0, let

Zp(M) = {ω ∈ Ap(M) | dω = 0} = Ker d : Ap(M) → Ap+1(M),

be the vector space of closed p-forms, also called p-cocycles and for every p ≥ 1, let

Bp(M) = {ω ∈ Ap(M) | ∃ η ∈ Ap−1(M), ω = dη} = Im d : Ap−1(M) → Ap(M)

be the vector space of exact p-forms, also called p-coboundaries. Set B0(M) = (0). Forms
in Ap(M) are also called p-cochains. As Bp(M) ⊆ Zp(M) (by Proposition 3.40), for every
p ≥ 0, we define the pth de Rham cohomology group of M as the quotient space

Hp
DR(M) = Zp(M)/Bp(M).

An element of Hp
DR(M) is called a cohomology class and is denoted [ω], where ω ∈ Zp(M)

is a cocycle.
The real vector space, HDR(M) = ⊕p≥0H

p
DR(M), is called the de Rham cohomology algebra

of M.
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The Hodge Decomposition Theorem has a number of important corollaries, one of which is
Hodge Theorem:

Theorem 3.42. (Hodge Theorem) Let M be an orientable and compact Riemannian man-
ifold of dimension n. For every p, with 0 ≤ p ≤ n, there is an isomorphism between Hp(M)
and the de Rham cohomology vector space, Hp

DR(M) :

Hp
DR(M) ∼= Hp(M).

Proof. Since by Proposition 3.34, every harmonic form, ω ∈ Hp(M), is closed, we get a linear
map from Hp(M) to Hp

DR(M) by assigning its cohomology class, [ω], to ω. This map is injective.
Indeed if [ω] = 0 for some ω ∈ Hp(M), then ω = dη, for some η ∈ Ap−1(M) so

(ω, ω) = (dη, ω) = (η, δω).

But, as ω ∈ Hp(M) we have δω = 0 by Proposition3.34, so (ω, ω) = 0, that is, ω = 0. Our
map is also surjective, this is the hard part of Hodge Theorem. By the Hodge Decomposition
Theorem, for every closed form, ω ∈ Ap(M), we can write

ω = ωH + dη + δθ

with ωH ∈ Hp(M), η ∈ Ap−1(M) and θ ∈ Ap+1(M). Since ω is closed and ωH ∈ Hp(M), we
have dω = 0 and dωH = 0, thus

dδθ = 0

and so

0 = (dδθ, θ) = (δθ, δθ),

that is, δθ = 0. Therefore, ω = ωH + dη, which implies [ω] = [ωH ], with ωH ∈ Hp(M),
proving the surjectivity of our map.

Theorem 3.43. Let Mn be a compact Riemannian manifold. Then every cohomology class in
Hp(M) (0 ≤ p ≤ n) contains precisely one harmonic form.

Proof. Uniqueness : Let ω1, ω2 ∈ AP (M) be cohomologous and both harmonic. Then either
p = 0 (in which case ω1 = ω2 anyway) or

(ω1 − ω2, ω1 − ω2) = (ω1 − ω2, dη)

for some η ∈ Ap−1(M), since ω1 and ω2 are cohomologous

(ω1 − ω2, ω1 − ω2) = (δ (ω1 − ω2) , η) = 0,

since ω1 and ω2 are harmonic,
hence satisfy δω1 = 0 = δω2.

Since (·, ·) is positive definite, we conclude ω1 = ω2, hence uniqueness.
For the proof of existence, which is much harder, we shall use Dirichlet’s principle (Dirichlet’s
principle states that, if the function u(x) is the solution to ∆u + f = 0). Let ω0 be a (closed)
differential form, representing the given cohomology class in Hp(M). All forms cohomologous
to ω0 then are of the form

ω = ω0 + dα
(
α ∈ Ωp−1(M)

)
.

We now minimize the L2-norm
D(ω) := (ω, ω)
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in the class of all such forms. The essential step consists in showing that the infimum is achieved
by a smooth form η. Such an η then has to satisfy the Euler-Lagrange equations for D, i.e.

0 =
d

dt
(η + tdβ, η + tdβ)|t=0 for all β ∈ Ωp−1(M)

= 2(η, dβ)

This implies δη = 0. Since dη = 0 anyway, η is harmonic.
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Conclusion

This thesis has proposed a proof of Hodge theorem by starting from the notion of Riemannian
manifold with give some examples and some information of the connection , curvature and the
tensor . Afterwards , the Laplacian has been cited with the generalization of the Laplacian on
Riemannian manifolds. Eventually, Hodge theorem has been proved and Hodge Decomposition
Theorem has been stated as a consequence of Hodge theorem. Hodge theorem is an important
bridge that filling the gap between the field of partial differential equations and Algebraic
topology. Some problems that are hard in the nature of Partial differential equations can easily
approached via Algebraic topology and vice versa, thus a smart use of Hodge can be helpful to
open up many new possibilities in both fields

51



BIBLIOGRAPHY

[BGM71] Marcel Berger, Paul Gauduchon, and Edmond Mazet. Le spectre d’une variété
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