الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire

وزارة التعليم العالي والبحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

جامعة غرداية

N• d'enregistrement

Université de Ghardaïa

Faculté des Sciences et de la Technologie

قسم أوتوماتيك والكتروميكانيك Département d'Automatique et Electromécanique Mémoire de fin d'étude, en vue de l'obtention du diplôme

Master

Domaine: Sciences et Technologies Filière: Energies renouvelables Spécialité: Energies renouvelables en électrotechnique

Thème

Étude et estimation de la production d'énergie électrique d'une station photovoltaïque

> Présenté par : Sofiane Lahreche

Kebbar Messaoud

Soutenue publiquement le 02/06/2022

Devant le jury composé de:

Grade

MCA

MRA

Grade

Grade

Nom et Prénom Dr. BOUCHELGA Fatma Dr. DAHBI Abdeldjalil Nom et Prénom Nom et Prénom UniversitéPrésidentUniversitéEncadrantURERMSCo-encadrantUniversitéExaminateurUniversitéExaminateur

Année universitaire 2021/2022

ملخص

يهدف عمل هاته الأطروحة إلى تحليل محاكاة الحقل الكهروضوئي تحت برنامج PVSys و الماتلاب، ودراسة التشغيل الكهربائي لنفس النظام من خلال تكييف التحكم في محول DC / DC بواسطة MPPT من أجل ضمان استمرار الطاقة القصوى التي يوفرها المولد الكهروضوئي. وفقًا لنتائج المحاكاة ، يترتب على ذلك أن أداء النظام الكهروضوئي يتأثر بشدة بالظروف البيئية التي يتعرض لمها مثل التغيرات الجوية العشوائية ، وخاصة الإشعاع الشمسي ودرجة الحرارة. بالإضافة إلى ذلك ، يعد التحكم في MPPT خطوة مهمة للغاية لتحسين إنتاجية المجال الكهروضوئي. من ناحية أخرى ، بناءً على المعلومات الحقيقية لموقع واد نشو، اقترحنا نموذج تحجيم عن طريق PVSys ، مما أدى إلى التحقق من صحة أداء هذا البرنامج الذي أعطانا تحليلًا مثاليًا على مدار العام، مع أخذه بعين الإعتبار المعلومات الكهروانية والمناخية ، والضياعات والماقة الكلمات المفتاحية : ألواح الطاقة الشمسية PVSys الكلمات المفتاحية : ألواح الطاقة الشمسية PV Matlab

Résumé :

Le travail de ce mémoire vise à analyser la simulation d'un champ photovoltaïque sous logiciel PVSys et Matlab, ainsi que l'étude du fonctionnement électrique du même système par l'application de la commande MPPT sur un convertisseur DC/DC Boost afin d'assurer la poursuite de la puissance maximale fournie par le générateur PV. D'après les résultats de simulation, il en découle que la performance du système photovoltaïque est fortement influencée par les conditions environnementales auxquelles il est soumis comme les variations atmosphériques aléatoires, particulièrement l'éclairement solaire et la température. De plus, la commande MPPT est une étape très importante pour améliorer le rendement d'un champ photovoltaïque. D'un autre côté, en se basant sur les paramètres réels du site d'Oued Nechou, nous avons proposé un modèle de dimensionnement au moyen du PVSys. Il a été montré la validation de la performance de ce logiciel qui nous a donné une analyse parfaite du fonctionnement de la station PV durant toute l'année. Il a pris en considération les paramètres électriques, climatiques, les pertes électriques et l'énergie produite.

Mots clés : Module PV, Commande MPPT, PVSys, Simulink / Matlab, Modélisation, convertisseur DC/DC Elevateur.

Abstract:

The aim of this work is to analyze the simulation of a photovoltaic field using PVSys and Matlab softwares, and the study of the electrical operation of the same system by applying the MPPT control on a DC / DC Boost converter, in order to ensure the tracking of the maximum power supplied from the PV generator. According to the simulation results, it deduced that the performance of the photovoltaic system is strongly influenced by the environmental conditions, to which it is subjected such as random atmospheric variations. Particularly, the solar irradiance and temperature. In addition, the MPPT control is a very important step to improve the yield of photovoltaic field on one hand. On the other hand, based on the real parameters of the Oued Nechou site, the model of sizing using PVSys is proposed. It results that the validation of the performance of this software which gave a perfect analysis of the PV station operation over the year, it took also into consideration the electrical and climatic parameters, the electrical losses and the energy produced.

Keywords: PV module, MPPT control, PVSys, Simulink / Matlab, Modeling, DC/DC Boost converter.

JE DEDIE CE MODESTE TRAVAIL DANS UN PREMIER LIEU A MES TRES CHERS PARENTS QUI M'ONT AIDE TOUT AU LONG DE CETTE CARRIERE D'ETUDE, ET POUR LESQUELS J'EXPRIME TOUTE MA TENDRESSE ET AMOUR. A mes freres et sœurs, a tous mes cousins, cousines, tantes, À tous mes amis et tous les etudiants de la promotion que j'ai partage avec eux des bons

MOMENTS ET DES BONS SOUVENIRS.

Et enfin a tous ceux que j'aime et qui m'aiment et nous ont aide

Sofiane Lahreche

Remerciements

D'abord et avant tout, nous remercions Allah, qui nous a donné la patience d'humilier les difficultés devant nous et nous a aidés à compléter ce travail.

Nous remercions ensuite Dr. FATMA BOUCHELGA pour la supervision qu'elle nous a donnée et pour les conseils précieux et judicieux qu'elle nous a donnés tout au long de la recherche.

Nous tenons également à exprimer notre gratitude au co-superviseur Dr. ABDELJALIL DAHBI pour son aide continue dans le développement et la rédaction de notre thèse, il nous a aidés étape par étape à atteindre l'objectif désiré.

Nous remercions également les distingués membres du comité de discussion pour l'acceptation de juger ce travail et de participer à la soutenance.

Nous exprimons aussi notre gratitude à nos collègues de l'université de Ghardaïa et l'Unité de recherche appliquée en énergies renouvelables (URAER) de Ghardaïa, surtout Dr Boualam Benlahbib pour leur soutien et leur aide.

Nous ne pouvons oublier nos enseignants pour leurs efforts durant toutes nos années d'étude dans l'université et pour leur soutien durant la réalisation de ce mémoire.

Enfin nous remercions toute personne qui a participé de près ou de loin pour rendre ce travail réalisable et présentable.

Sofiane Lahreche

INTRODUCTION GENERALE	1
CHAPITRE.I	
GÉNÉRALITES SUR LA STATION ET LES ÉNERGIES	
PHOTOVOLTAÏQUES	3
I.1. Introduction	
I.2. Entreprises du secteur énergétique en Algérie	3
I.2.1. Présentation de l'entreprise SONELGAZ	
I.2.2. Présentation du GRTG	6
I.2.3. Présentation du GRTE	6
I.2.4. Présentation du SKTM	6
I.3. Description de la station Oued Nechou de 1,1 MW à Ghardaia	7
I.4. Généralité sur le système photovoltaïque	9
I.4.1. L'histoire du photovoltaïque	9
I.4.2. Exploitation photovoltaïque de l'énergie solaire	9
I.4.3. Quelques types des cellules photovoltaïques	
I.4.4. Caractéristiques électriques des modules photovoltaïques dans la centrale d'O	ued Nechou15
I.5. Conclusion	24
CHAPITRE.II	25
MODELISATION ET SIMULATION DES PANNEAUX	
PHOTOVOLTAIOUES	25
II 1 Introduction	25
II 2 Paramètres affectant la quantité d'énorgia produita	23 25
IL 2.1. Effet de la température et l'éclairement	23
II.2. I. Ener de la temperature et reclamement	23 27
II.2.1 Courant de court circuit I	/ ۲
II.3.2 Tension du circuit ouvert V	27 27
II 3.3 Puissance maximale	27 28
II.3.4. Facteur de forme FF	
II.3.5. Rendement de conversion	
II.3.6. Point de puissance maximale (PM)	
II.3.7. Puissance-crête (Pc (Wc))	

Sommaire

II.3.8. Rendement d'un photo-générateur	30
II.4. Modélisation d'une cellule photovoltaïque	
II.4.1. Résistance série	31
II.4.2. Résistance parallèle (shunt)	31
II.4.3. Photo-courant I _{ph}	32
II.4.4. Courant de saturation I_0	32
II.4.5. Courant de saturation inverse de la diode (courant de fuite)I _{rs}	32
II.4.6. Courant de résistance shunt	33
II.4.7. Courant du panneau	33
II.5. Présentation du logiciel Matlab	défini.34
II.6. Simulation d'un panneau photovoltaïque	34
II.6.1. Définition de SIMULINK	34
II.6.2. Simulation de chaque bloc sous Matlab- Simulink	35
II.7. Résultats de simulation sous Matleb- Simulink	
II.7.1. Caractéristiques d'un module solaire	38
II.8. Assemblage des panneaux pv solaire	41
II.8.1. Caracteristiques du panneau au silicium monocristallin	41
II.8.2. Association en série des panneaux PV	42
II.8.3. Association en parallèle des panneaux PV	45
II.9. Conclusion	
CHAPITRE.III	
SIMULATION ET ESTIMATION DE LA PRODUCTION DE LA	
STATION PHOTOVOLTAÏQUE	52
III.1. Introduction	52
III.2. Modélisation d'une cellule et d'un module photovoltaïque sous Matlab	52
III.2.1. Résultat de la modélisation	55
III.3. Dimensionnement d'un champ photovoltaïque sous logiciel PVSys	63
III.3.1. Présentation du logiciel de simulation PVSys	63
III.3.2. Étapes de simulation en utilisant PVsys	64
III.3.3. Simulation du système photovoltaïque couplé au réseau d'Oued Nechou- Gha	rdaïa69
III.4. Conclusion	90
CONCLUSION GENERALE ET PERSPECTIVES	94
References Bibliographiques	92

Liste des figures

Figure I.1. Présentation de SONELGAZ	5
Figure I.2. Station photovoltaïque d'Oued Nechou	8
Figure I.3. Plan de masse de la Centrale Photovoltaïque Oued Nechou	8
Figure I.4. Panneaux en silicium monocristallin	
Figure I.5. Panneaux en silicium poly-cristallin	13
Figure I.6. Panneaux en silicium amorphe (a-Si)	15
Figure I.7. Modules photovoltaïques motorisée [mono/poly] et le moteur de motorisation	
Figure I.8. Branchement en série de Batterie	
Figure I.9. Branchement en parallèle de Batterie	
Figure I.10. Branchement en série et en parallèle de Batterie	19
Figure I.11. Onduleur de central PV Ghardaïa	
Figure I.12. Photo interne de boit de raccordement	
Figure I.13. Transformateurs de la centrale d'Oued Nechou.[2].	
Figure I.14. Poste d'évacuation moyen tension – HTA	
Figure II. 1. Influence de la température sur les caractéristiques I(V) et P(V) de la cellule photo	voltaïque26
Figure II. 2. Influence de l'éclairement sur les caractéristiques I(V) et P(V) d'une cellule photo	voltaïque26
Figure II.3. Courbe caractéristique P-V	
Figure II. 4. Schéma électrique d'une cellule photovoltaïque	
Figure II. 5. Schéma d'un générateur PV sous MATLAB SIMULINK	
Figure II. 6. Schéma d'un courant de module PV	
Figure II. 7. Schéma d'un photo-courant	
Figure II. 8. Schéma d'un courant de saturation Erreur ! Signe	et non défini.
Figure II. 9. Schéma d'un courant de résistance shunt	
Figure II. 10. Schéma d'un courant de saturation inverse de la diode	
Figure II. 11. Caractéristique I(V) d'un panneau PV (T=25°C, G=1000W/m ²)	
Figure II. 12. Caractéristique P(V) d'un panneau PV (T = 25° C ,G = 1000 W/m ²)	
Figure II. 13. Caractéristique I(V) pour différentes températures (G=1000W/m ²)	
Figure II. 14. Caractéristique P(V) pour différentes températures (G=1000W/m ²)	
Figure II. 15. Caractéristique I(V) pour différentes niveaux d'éclairement (T=25°C)	
Figure II. 16. Caractéristique P(V) pour différentes niveaux d'éclairement (T=25°C)	41
Figure II. 17. Association d'un panneau en série	
Figure II. 18. Evolution de la témpérateur appliquée sur le systéme photovoltaique	
Figure II. 19. Evolution de l'éclairement appliquée sur le système photovoltaique	

Figure II. 20. Tension d'un seul panneau	43
Figure II. 21. Courant d'un seul panneau	44
Figure II. 22. Tension de trois panneaux	44
Figure II. 23. Courant de trois panneaux	45
Figure II. 24. Association d'un panneau en parallèle	45
Figure II. 25. Evolution de la témpérateur appliquée sur le systéme photovoltaique	46
Figure II. 26. Evolution de l'éclairement appliquée sur le systéme photovoltaique	46
Figure II. 27. Tension d'un seul panneau	47
Figure II. 28. Courant d'un seul panneau	47
Figure II. 29. Tension de trois panneaux	48
Figure II. 30. Courant de trois panneaux	48
Figure III.2 Schéma du système photovoltaïque testé	53
Figure III.3 Schéma électrique d'un convertisseur élévateur (Boost)	54
Figure III.4 Modèle Simulink de la commande MPPT avec un convertisseur DC/DC Boost	54
Figure III.5 Schéma block d'un panneau photovoltaïque connecté au convertisseur Boost comm MPPT sous Matlab/ Simulink	1andé par 55
Figure III.6 Schéma block du convertisseur Boost sous simulink	55
Figure III.7 Puissance de sortie d'un panneau monocristallin 250 W	56
Figure III.8 Tension (V_PV) du panneau monocristallin 250W	56
Figure III.9 Courant (Ipv) du panneau photovoltaïque monocristallin 250W	56
Figure III.10 Irradiation en fonction du temps	57
Figure III.11 Température en fonction du temps	57
Figure III.12 Puissance au niveau de la sortie du sous champs N°7 (PV monocristallin fix)	58
Figure III.13 Tension du sous champ N°7 après le convertisseur	58
Figure III.14 Courant du sous champ N°7 après le convertisseur	59
Figure III.15 Courant avant et après le convertisseur d'un panneau monocristallin Ipv_Is	60
Figure III.15 Tension avant et après le convertisseur d'un panneau monocristallin Vpv_Vs	61
Figure III.16 Puissance avant et après le convertisseur du sous champ N°7 (Ppv)	61
Figure III.17 Puissance totale avant et après le convertisseur pour une association des panneaux du so (Ppv)	us champ 62
Figure III.18 La fenêtre du logiciel PVSYST	64
Figure III.19 Définition du projet et d'outil de simulation.	65
Figure III.20 Base de données de PVSYST	65
Figure III.21 Paramètres de site géographique et Coordonnées géographiques	66
Figure III.22 Paramètres de site géographique météo mensuel	66
Figure III.23 Site de la station photovoltaïque Oued Nechou- Ghardaïa	67
Figure III.24 Angle d'orientation	68
Figure III.25 Horizon du Ghardaia	69

Figure III.26 Caractéristiques des cellules monocristallines fixes et de l'onduleur	71
Figure III.27 Rapport des résultats de simulation des cellules monocristallines fixes 255 kWc	73
Figure III.28 Caractéristiques des cellules monocristallines fixes et de l'onduleur	75
Figure III.29 Rapport des résultats de simulation des cellules monocristallines fixes 105 kWc	76
Figure III.30 Caractéristiques des cellules monocristallines motorisées et de l'onduleur	77
Figure III.31 Rapport des résultats de simulation des cellules monocristallines motorisé 105 kWc	78
Figure III.32 Caractéristiques des cellules polycristallines fixes et de l'onduleur	79
Figure III.33 Rapport des résultats de simulation des cellules polycristallines fixes 258.5 kWc	80
Figure III.34 Caractéristiques des cellules polycristallines fixes et de l'onduleur	81
Figure III.35 Rapport des résultats de simulation des cellules polycristallines fixes 98.5 kWc	82
Figure III.36 Caractéristiques des cellules polycristallines motorisées et de l'onduleur	83
Figure III.37 Rapport des résultats de simulation des cellules polycristallines motorisé 98.5 kWc	84
Figure III.38 Caractéristiques des cellules couches minces CdTte et de l'onduleur	85
Figure III.39 Rapport des résultats de simulation des cellules couche mince CdTte 100.8kWc	86
Figure III.40 Caractéristiques des cellules photovoltaïques amorphes a-si et de l'onduleur	
Figure III.41 Rapport des résultats de simulation des cellules amorphes a-si 100.116 kWc	89

Liste des tableaux

Tableau I.1. Caractéristiques des panneaux en silicium monocristallin.[1].	11
Tableau I.2 Caractéristiques des panneaux en silicium polycristallin [1]	12
Tableau I.3. Caractéristiques des panneaux en silicium Amorphe [1].	14
Tableau I.4. Les Caractéristiques électriques des (PV) dans la centrale	15
Tableau I.5. Les sous-champs dans la centrale PV de Ghardaïa	16
Tableau I.6. Caractéristiques électriques des onduleurs [2].	21
Tableau I.7. Eléments de la boite de raccordement .[2].	22
Tableau II.1. Caractéristique électrique dune photopile (cellule PV)	33
Tableau II.2. Caractéristique électrique d'un panneau PV dans les conditions standards $T = 25^{\circ}C$, $G = 1$ $/m^2$	1000W 34
Tableau II.3. Caractéristiques réelles de panneaux monocristallin de 250W dans la station	41
Tableau III.1. Paramètres climatique de site d'Oued Nechou- Ghardaïa	67
Tableau III.2. Les composantes de chaque sous-champ PV	71

Listes des Acronymes et Symboles

Acronymes

	M.P.P.T	Maximum Power Point tracking
	IGBT	Insulated Gate Bipolar Transistor
	MLI	Modulation de largeur d'impulsions
	DC / AC	Continu / Alternatif
	ONM	L'Office National de la Météorologie
	CDÉR	Centre de Développement des Énergies Renouvelables
	THD	Le facteur de distorsion (Total Harmonic Distorsion)
	IAEA	International Atomic Energy Agency
	SKTM	Sharikat Kahraba wa Takat l'Motajaddida
	HF	Haute fréquence
S	ymboles	

Symbole	Définition	unité
Ν	nombre de jour	
I_{cc}	Courant de court-circuit	
V_{co}	Tension de circuit ouvert	V
n	Le rendement	
I_{ph}	Photo courant créer par la cellule	А
I_{pv}	Courant de sortie	А
V_t	Tension thermique	V
P_c	puissance crête	Watt
PR_s	La puissance perdue par la résistance série	Watt
R	coefficient de réflexion	
N_s	Nombre de cellule en série	
N_p	Nombre de cellule parallèle	
P_{pv}	La puissance disponible en sortie du GPV	Watt
I_{pv}	Le courant de sortie du GPV	А
V_{pv}	La tension à la sortie du GPV	V
Ε	Champ électrique	
R_{sh}	La résistance shunt	Ω
R_s	La résistance série	Ω
P_m	Puissance optimale de panneau Solaire	W

V_m	Tension optimal	V
I_m	Courant optimal	А
Т	Température	
Eg	Bande interdite	
q	La charge de l'électron	coulomb
Tréf	Température de référence	
Isat	Courant de saturation	А
P_{0}	La pression atmosphérique	
Т	Température	
V_{dc}	Tension aux bornes du condensateur (bus continu)	
$V_{dc\text{-}ref}$	Tension de référence du condensateur	
С	Capacité du condensateur	
R_{ch}	Résistance de la charge	
L_{ch}	Inductance de la charge	
Т	Période	
U_{AC} , U_{dc}	Tensions alternative et continue de l'onduleur	
U_0	Tension d'entrée de l'onduleur	

INTRODUCTION GENERALE

La population mondiale actuelle est de 7,2 milliards d'habitants, qui devrait atteindre 9,6 milliards d'ici 2050, selon un rapport des Nations Unies qui souligne que la croissance se fera principalement dans les pays en développement, dont plus de la moitié en Afrique. Pour assurer à cette population croissante un niveau de vie raisonnable, un développement économique soutenu est essentiel; un tel développement nécessitera une augmentation correspondante de la production d'énergie. En outre, dans le cadre de la prise en compte du concept de développement durable, il convient de prendre en compte les sources d'énergie respectueuses de l'environnement. Ces sources d'énergie sont également appelées sources d'énergie renouvelables ou durables. L'énergie renouvelable est définie par l'énergie obtenue à partir des flux continus d'énergie présente dans l'environnement naturel, comme l'énergie solaire. Ces dernières années, l'utilisation des systèmes d'énergie renouvelable (SER) est devenue très importante en raison des préoccupations environnementales et de la demande croissante d'énergie. L'utilisation des SER peut réduire considérablement les émissions nocives dues à la pollution de l'environnement, tout en offrant des ressources inépuisables d'énergie primaire.

Les sources d'énergie renouvelables sont d'une immense nécessité, aussi bien aujourd'hui qu'à l'avenir. Parmi les différents systèmes d'énergie renouvelables, les systèmes photovoltaïques, cellesci jouent un rôle très important en tant que source d'énergie propre pour répondre à la demande future d'électricité. Les systèmes PV sont largement utilisés pour produire de l'énergie à partir de l'énergie solaire. De tous les systèmes d'énergie renouvelables, les systèmes photovoltaïques sont la solution énergétique la plus écologique pour produire de l'électricité.

Parmi les pays qui contient un gisement solaire les plus élevés, nous citons l'Algérie, sa superficie est estimée à plus de 2,3 millions de kilomètres carrés, dont 80 % sont désertiques, et 20 % de la superficie totale du sahara africain, ce qui constitue un avantage important pour le pays, car il dispose d'un énorme stock d'énergie renouvelable, il est considéré comme l'une des réserves les plus élevées au monde. Le temps d'ensoleillement de notre pays excède 2500 h/an et peut atteindre jusqu'à 3900 h/an ce qui donne un potentiel solaire moyen de 2500 kWh/m² soit près de 6000 TWh (150 fois la consommation algérienne actuelle).

Après l'énergie non-renouvelable, l'énergie solaire est la deuxième source d'énergie exploitée, car c'est le plus grand pourcentage d'énergie solaire au niveau des pays intermédiaires, contenant l'équivalent de quatre fois la consommation mondiale totale d'énergie, soit environ 37 mille milliards de mètres cubes de gaz.

L'Algérie a réalisé plusieurs opérations importantes dans ce domaine, dont la plus importante est l'achèvement de la troisième tour solaire au monde, et l'achèvement d'un hangar aérien dans la région d'Adrar. La hausse de la production algérienne en 2020, a entraîné une augmentation importante de ce type d'énergie. L'Algérie a mis en place une centrale électrique hybride à Hassi R'Mel, cette dernière est la première du genre au monde, fonctionnant à la fois au gaz et à l'énergie solaire, avec un taux de production de 150 mégawatts, et 21 centrales photovoltaïque différentes dont l'une d'elles est celle d'Oued Nechou, située dans la wilaya de Ghardaïa avec une capacité de 1,1 mégawatt.

L'objectif de notre travail est le dimensionnement et l'évaluation d'un champ photovoltaïque, en utilisant les deux programmes Simulink/Matlab et PV système, en prenant comme un exemple la station de Oued Nechou.

Afin de mettre en œuvre ce travail, ce mémoire comprend trois chapitres, arrangés comme suit:

Le premier chapitre est consacré à la présentation du secteur énergétique en Algérie, spécialement l'énergie photovoltaïque. Par la suite, nous allons citer des généralités sur la production photovoltaïque, les éléments de base d'un champ photovoltaïque, leurs avantages et inconvénients. Puis, nous concentrons beaucoup plus sur la centrale d'Oued Nechou.

Concernant le deuxième chapitre, il est dédié à la modélisation et simulation d'un module photovoltaïque par programme Simulink/Matlab. Ensuite, en variant quelques paramètres importants dans le but de découvrir les paramètres climatiques qui influent sur le système, ainsi que les types d'associations des panneaux photovoltaïques qui influent sur la tension et le courant globals.

Dans le dernier chapitre, nous passons en revue les résultats de la simulation de la centrale photovoltaïque d'Oued Nechou-Ghardaia par les deux programmes Simulink/Matlab et PV système, dans lesquels nous présentons les étapes des calculs théoriques et schématiques du système photovoltaïque. Enfin, nous discutons les résultats de la simulation.

Nous clôturons ce travail par une conclusion générale permettant de synthétiser les résultats obtenus.

CHAPITRE.I

GÉNÉRALITES SUR LA STATION ET LES ÉNERGIES PHOTOVOLTAÏQUES

I.1. Introduction

L'industrie photovoltaïque dans le monde a connu des innovations importantes. Il est en effet à noter que le photovoltaïque, avec des centrales électriques distantes et centrales intégrées générant des centaines de mégawatts, cette technologie qui a déjà prouvé sa fiabilité et assez prometteuse pour la production d'énergie électrique..

L'Algérie est classée parmi les pays Africains et Méditerranéens qui disposent un potentiel d'énergie solaire très important. Le potentiel solaire dans notre pays est très significatif avec une irradiation moyenne journalière de l'ordre de 3.000 à 6.000 Wh/M², soit l'équivalent de 10 fois la consommation mondiale pour une durée d'insolation de 2.000 à 3.900 heures par an.

L'énergie solaire photovoltaïque est connue comme l'une des technologies de conversion de l'énergie rayonnante en un flux d'électrons par l'effet photovoltaïque, en utilisant des cellules. A leur tour, les cellules solaires produisent de l'électricité qui peut être utilisée pour alimenter des équipements.

Une installation photovoltaïque connectée à un réseau électrique est constitué de plusieurs éléments avec une variété de technologies. Dans ce chapitre, nous allons discuter le principe de la production de l'énergie électrique à partir de l'énergie solaire. De plus, nous allons présenter l'un des champs solaire installé en Algérie.

I.2. Entreprises du secteur énergétique en Algérie

Le réseau électrique en Algérie est subdivisé en plusieurs parties, celles-ci assure l'acheminement de l'énergie électrique du centrale de production vers les consommateurs, chacune de ces entreprise assure une fonction précise :

I.2.1. Présentation de l'entreprise SONELGAZ

Elle est considérée comme étant l'opérateur historique dans le domaine de la fourniture des énergies électriques et gazières en Algérie. Elle assure la production, le transport et la distribution de l'électricité et du gaz par canalisations. Son nouveau statut lui donne la possibilité d'intervenir dans

d'autres segments d'activités tels que la commercialisation de l'électricité et du gaz à l'étranger. Sonelgaz a toujours joué un rôle majeur dans le développement économique et social du pays. Sa contribution dans la concrétisation de la politique énergétique nationale est à la mesure des importants programmes réalisés, en matière d'électrification rurale et de distribution publique gaz ; ce qui a permis de hisser le taux de couverture en électricité à 98% pour 10 494 000 clients et un taux de pénétration du gaz à 65% pour 6 451 000 clients.

I.2.1.1. Historique

Durant sa création, le groupe est passé par différentes phases d'évolution dont nous reprenons les principales dates :

En 1947 : Création de l'établissement public « Electricité et Gaz d'Algérie » par abréviation EGA, auquel est confié le monopole de la production de l'électricité, du transport et de la distribution de l'électricité et du gaz.

En 1962 : EGA est pris en charge par l'état algérien nouvellement indépendant et le personnel algérien assure effectivement le fonctionnement de l'établissement.

En 1969 : EGA qui est déjà une entreprise de taille importante avec un effectif de 6000 agents, devient (société nationale de l'électricité et du gaz).

En 1983 : SONELGAZ se dote de cinq (05) filiales travaux spécialisées (KAHRIF, KAHRAKIB, KANAGHAZ, INERGA, ETTERKIB et AMC).

En 1991 : SONELGAZ devient Etablissement Public à Caractère Industriel et Commercial (EPIC).

En 2002 : Suite à la promulgation de la loi 02-01 du 05 février 2002 relative à l'électricité et la distribution du gaz par canalisations, SONELGAZ devient une Société par Actions (SPA).

En 2004 : Création de trois filiales métier de base : Sonelgaz Production Electricité SPE, Gestionnaire Réseau Transport Electricité GRTE et celui du Gaz GRTG.

En 2006 : Création de quatre sociétés de distribution : Alger SDA, Centre SDC, Est SDE et Ouest SDO, et filialisation de l'Opérateur Système OS.

En 2008 : Parachèvement du processus de restructuration avec la filialisation des activités Systèmes d'information ELIT, de l'Engineering de l'électricité et du gaz CEEG et la gestion du patrimoine foncier SOPIEG.

La nouvelle organisation validée en février 2017, a érigé Sonelgaz en groupe industriel composé de 16 filiales. Ainsi, ses filiales métiers de base assurent la production, le transport et la distribution de l'électricité ainsi que le transport et la distribution du gaz par canalisations.

On compte :

- 1. La Société de Production de l'Electricité (SPE),
- 2. Sharikat Kahraba wa takat moutadjadida (SKTM)
- 3. La Société de l'Engineering de l'électricité et du Gaz (CEEG)
- 4. La Société de Gestion du Réseau de Transport de l'Electricité (GRTE),
- 5. La Société de Gestion du Réseau de Transport Gaz (GRTG),
- 6. L'Opérateur Système électrique (OS), chargée de la conduite du système Production /

Transport de l'électricité,

7. La Société de Distribution de l'électricité et du gaz (SADEG)

Les sociétés travaux du Groupe Sonelgaz, Kahrif, Kahrakib, Etterkib, Inerga et Kanaghaz, sont spécialisées dans le domaine de la réalisation des infrastructures énergétiques (engineering, montage industriel, réalisation de réseaux...) et c'est grâce à ces sociétés que l'Algérie dispose aujourd'hui d'infrastructures électriques et gazières répondant aux besoins du développement économique et social du pays.

Par ailleurs, les filiales métiers périphériques sont en charge d'activités annexes, telles que la maintenance d'équipements énergétiques, la distribution de matériel électrique et gazier, le transport et la manutention exceptionnels, ... etc.

De plus, Sonelgaz détient également des participations dans des sociétés, dont le métier est en rapport avec le domaine de l'électricité et du gaz.

Aujourd'hui, le groupe Sonelgaz est composé de 21 sociétés dont 02 Holding, dont 14 sociétés directement pilotées par la Holding, 02 sociétés contrôlées à hauteur de 50 et 51% et de 05 sociétés en participations avec des tiers.

Figure I. 1. Présentation de SONELGAZ

I.2.2. Présentation du GRTG [1]

La Société Algérienne de Gestion du Réseau de Transport du Gaz GRTG. Spa a été créée en 2004, en tant que filiale du groupe Sonelgaz. Il a en vertu de la loi N°02-01 du 05 février 2002 relative à l'électricité et à la distribution du gaz par canalisations, le statut d'une société par actions détenues à 100% par le holding SONELGAZ. Le GRTG a vu sa raison sociale modifiée pour devenir depuis le mois de décembre 2008 "Société Algérienne de Gestion du Réseau de Transport du Gaz", dénommée GRTG. Spa, avec le maintien du statut et du capital social.

Le GRTG est chargé de l'exploitation, de la maintenance et du développement du réseau de transport du gaz, en vue de garantir une capacité adéquate par rapport aux besoins de transit et de réserve. Le modèle économique édicté par la loi N°02-01 suivant lequel le GRTG opère sur le marché national, obéit aux principes d'activité économique régulée, ce qui lui donne le statut d'un monopole naturel sur l'activité de transport du gaz par canalisations sur le marché national.

I.2.3. Présentation du GRTE

La Société Algérienne de Gestion du Réseau de Transport de l'Electricité (GRTE), est une société par action (Spa), elle a pour mission l'exploitation, la maintenance et le développement du réseau de transport de l'énergie électrique dans les meilleurs conditions de qualité de service et au moindre coût créée en Janvier 2004. Le GRTE a un programme de développement et de modernisation de ses ouvrages d'une consistance exceptionnelle.

Le GRTE a pour ambition de devenir un opérateur compétitif dans les échanges. Internationaux s'intégrant dans la boucle méditerranéenne.

I.2.4. Présentation du SKTM [1]

Shariket Kahraba wa Taket Moutadjadida, SKTM (spa), est une société de production d'électricité, dont le capital est souscrit entièrement par la holding Sonelgaz. Créée le 07 avril 2013, par scission de la société SPE. Spa, sont siège social est basé à Ghardaïa [1].

SKTM est chargée, principalement de l'exploitation des réseaux d'énergie électrique isolés du sud et des énergies renouvelables, du développement des infrastructures électriques du parc de production des réseaux isolés du Sud (diesel et TG), de l'exploitation, de la maintenance et de la gestion des centrales électriques relevant de son champ de compétence ainsi que de la commercialisation de l'énergie produite.

Le poste combustible intervient au moyenne pour 33% dans la formation de ce déficit, Il est important de noter que ces résultats sont la conséquence de l'application d'un tarif unique pour l'ensemble des filières de SPE (péréquation des tarifs). Problématique qui sera réglée avec la mise en place des nouveaux contrats de fournitures avec les SDx.

La centrale solaire photovoltaïque de Ghardaïa s'inscrit dans le cadre du programme de développement des énergies renouvelables mis en place par le ministère de tutelle. Mandatée par la Société Algérienne de Production d'Electricité (SPE), la Compagnie de l'Engineering de l'Electricité et du Gaz (CEEG) a procédé à l'ouverture des plis des offres techniques relatives à ce projet le 28 Mars 2011, et le 21 décembre 2011: l'ouverture et à l'évaluation des offres financières, le marché a été attribué au Groupement ABB Italie / ABB Algérie [1].

- Le 12/02/2012 : début de la phase étude de l'ingénierie par le Groupement ABB Italie /

ABB Algérie;

- Le 28/05/2012 : Début des travaux de génie civil par SNC INDÉAL BATISSE;
- Le 22/08/2013 : Début des travaux d' ETTERKIB ;
- Le 27 mars 2014 : Début des essais de commissionnent ;
- Le 11 juin 2014 : La mise en service partiel [1].

Le But de SKTM s'était d'installer 23 centrales en filière photovoltaïque, dont dix-neuf centrales sont mises en service et injectent sur les réseaux 30 kV et 60 kV, totalisant une puissance installée de 268 MW_c. La centrale installée à Ghardaia est une station pilote, elle est utilisée pour l'expérimentation du rendement et l'adaptation des quatre technologies des panneaux photovoltaïque.

I.3. Description de la station Oued Nechou de 1,1 MW à Ghardaia

I. 2. 4. 1. Description de la station d'Oued Nechou de 1,1 MW à Ghardaia

La centrale est située sur un site à environ de 15 km au Nord de la ville de Ghardaïa, près du village d'Oued Nechou. Elle a une puissance nominale d'environ **de** 1 100 kW_c. Elle a comme coordonnées géographiques et caractéristiques:

- Latitude longitude de la station climatologique de Ghardaïa 32°24N 03°48 E ;
- La superficie: Dix (10) Hectares ;
- Tension d'injetcion : 30 kV ;

- Maitre d'ouvrage: Société algérienne de production de l'électricité SPE ;
- Maitre d'ouvrage finale: Shariket Khahraba wa Taket Moutadjadida SKTM ;
- Maitre d'ouvre: Cpmpagne d'Engineering de l'Éléctricite et de Gaz CEEG;
- Entreprise de montage: ETTERKIB ;
- Organisme de Contrôle : CTC Sud ;
- Entreprise de réalisation: SNC IDEAL BATISSE COMPAGNIE ;
- Prestataire:Groupement ABB (ABB spA Italie ABB Algérie Spa.

Figure I. 2. Station photovoltaïque d'Oued Nechou

Figure I. 3. Plan de masse de la Centrale Photovoltaïque Oued Nechou

I.4. Généralité sur le système photovoltaïque

I.4.1. L'histoire du photovoltaïque

Le terme photovoltaïque provient de « photo » qui signifie lumière, et de «Voltaïque »qui signifie électricité, désignant donc la production d'électricité à partir de la lumière. L'effet photovoltaïque a été découvert en 1839 par E. Becquerel, père d'Henri Becquerel qui a découvrit en 1896 la radioactivité. Il mit en évidence pour la première fois la propriété de certains matériaux à convertir directement la lumière en courant électrique. Pratiquement un siècle plus tard, les bases théoriques du photovoltaïque furent posées par Albert Einstein, en 1912. Il postula que la lumière entrant dans ce type de matériaux était à l'origine de collisions entre les photons et les atomes, provoquant ainsi l'expulsion des électrons de leur orbite et créant ainsi un courant électrique. Mais ce n'est qu'en 1954 que la première cellule photovoltaïque en semi-conducteur a été mise au point par des chercheurs du laboratoire Bell aux USA permettant d'obtenir un rendement de 4,5%.

Quelques dates importantes dans l'énergie photovoltaïque :

1839 : Le physicien français Edmond Becquerel découvre l'effet photovoltaïque.

1875 : Werner Von Siemens expose devant l'académie des sciences de Berlin un article sur l'effet photovoltaïque dans les semi-conducteurs.

1954: Trois chercheurs américains Chapin, Peason et Prince fabriquent une cellule Photovoltaïque.

1958 : Une cellule avec un rendement de 9 % ; les premiers satellites alimentés par des cellules Solaires sont envoyés dans l'espace.

1973 : La première maison alimentée par des cellules photovoltaïques est construite à l'université de Delaware.

1983 : La première voiture alimentée en énergie photovoltaïque parcourt une distance de 4000 Km en Australie.

I.4.2. Exploitation photovoltaïque de l'énergie solaire

L'énergie photovoltaïque est une technologie remarquable qui transforme le rayonnement lumineux en électricité. L'effet photovoltaïque a été découvert en 1839 par le physicien français Alexandre-Edmond Becquerel [2].

Le panneau solaire photovoltaïque est un ensemble des capteurs, ces derniers sont à leurs tours le

regroupement des cellules photovoltaïques, elles sont considérées comme un élément de base du système photovoltaïque. Les cellules photovoltaïques sont généralement reliées entre elles soit en série ou bien en parallèles.

Le rôle de ces cellules est de convertissent les rayons du soleil en électricité, la lumière du soleil se compose de photons qui vont frapper la surface du panneau solaire photovoltaïque. Ils vont ensuite transmettre l'énergie qu'ils comportent aux électrons du matériau semi-conducteur. Ce matériau a un comportement assez spécifique lorsqu'il est exposé au rayonnement solaire. Chaque cellule est constituée de deux couches semi-conductrices, l'une est de silicium de type N, elle est composée de silicium dopé par un élément contenant plus d'électrons, par contre, la deuxième couche est de type P, celle-ci est dopé par un élément produit un courant électrique continu. Le système permet ensuite d'additionner les quantités d'électricité produite par les différentes cellules qui composent le panneau solaire photovoltaïque.

Il est impératif de transformer le courant électrique continu résultant des panneaux solaires en courant alternatif. C'est le rôle de ce qu'on appelle les onduleurs, ceux-ci sont des convertisseurs statiques qui contiennent des interrupteurs électroniques fonctionnent, de manière périodique et en régime de commutation, de plus, ils se composent des éléments réactifs afin d'assurer le stockage intermédiaire de l'énergie électrique.

I.4.3. Quelques types des cellules photovoltaïques

I.4.3.1. Cellules photovoltaïques

Il existe une variété de technologies des cellules solaires, à savoir, la technologie cristalline, la technologie couches minces et celle amorphe.

A. Panneaux en silicium monocristallin

Ce type des panneaux est la première génération des cellules, elle représente environ 85% du marché mondial actuel, c'est la technologie la plus répandue. Elles utilisent des cellules peu épaisses (0,15 à 0,2 mm), connectées en série et encapsulées dans un revêtement étanche. Il les protège de l'eau et de la vapeur d'eau.

Ces cellules ont une durée de vie d'au moins 25 ans, on distingue deux types, en premier lieu on trouve le panneau solaire monocristallin, celui-ci a un meilleur rendement, il est de 18 à 21 %, jusqu'à 24 % pour les cellules PERC à deux faces. Ce type de cellule est fabriqué à partir d'un seul bloc de silicium fondu en forme de barreau. Durant un refroidissement lent et maîtrisé, le silicium se

solidifie en ne formant qu'un seul cristal de grande dimension. Après le cristal est découpé en fines tranches qui donneront les cellules. Ces cellules sont en général octogonales et d'une couleur uniforme sombre, noir, bleu marine ou gris.

De plus, ces cellules sont considérées comme étant les plus performantes, elles produisent plus d'énergie avec moins de surface.

Le tableau résume les différentes caractéristiques des panneaux en silicium monocristallin.

Tableau I. 1. Caractéristiques des panneaux en silicium monocristallin [1]

Modèle	A-250M
Puissance nominale (Pmp)	250 W
Tension max (Vmp)	30.35 V
Courant max (Imp)	8.24 A
Tension en circuit ouvert (Voc)	37.62 V
Courant de court-circuit (Isc)	8.79 A
Maximum system voltage (V _{max})	1000 V
ID	6M44-6x10 3B1014114
S.N.	L1041210008911

Avantages d'utilisation de ce type

- Un coût de production et d'acquisition un peu plus élevé ;
- Fonctionnement optimal dans les régions froides et ensoleillées;
- Bonne résistance à la chaleur ;
- Bon ratio Wc/m^2 (environ 150 Wc/m^2) et un gain de surface ;
- Nombre de fabricants élevé ;
- Neutre pour l'environnement et aisément recyclable.

Inconvénients d'utilisation de ce type

- Fabrication couteuse et gain de productivité moindre;
- Rendement faible sous un faible éclairement.

Figure I. 4. Panneaux en silicium monocristallin

B. Panneaux en silicium polycristallin

Les modules « silicium multi-cristallin », sont les plus courants, d'un rendement de conversion d'environ 13 à 15 %, elles représentent 60 % des installations. Les cellules polycristallines sont créées à partir d'un bloc de silicium cristallisé en forme de cristaux multiples de formes irrégulières. Les orientations différentes des cristaux sont très claires. Ce type de cellules ont une forme rectangulaire et de couleur bleu pailletée avec des reflets.

Concernant le prix de cette technologie des panneaux solaires photovoltaïques, il est moins élevé que celui des panneaux monocristallins. Le photovoltaïque polycristallin a le même fonctionnement que tout autre système photovoltaïque. Il peut être de petite taille, pour alimenter différents appareils électroniques en site isolé. Egalement, Il est très souvent utilisé pour les équipements autonomes non reliés au réseau électrique. Dans ce qui suit les principales caractéristiques des panneaux en silicium polycristallin :

Modèle	A-235P
Puissance nominale (Pmp)	235 W
Tension max (Vmp)	29.04 V
Courant max (Imp)	8.10 A
Tension en circuit ouvert (Voc)	36.94 V
Courant de court-circuit (Isc)	8.64 A
Maximum system voltage (Vmax)	1000 V
ID	6P50-6x10 1014113
S.N.	M1021209015656

Tableau I. 2 Caractéristiques des panneaux en silicium polycristallin [1]

Avantage d'utilisation de ce type

- Production plus régulière par an;

- Rendement plus élevé par forte température (adaptés aux régions et pays chauds) ;

- Plus économique et moins cher;

-Empreinte écologique plus faible;

- Cellule carrée (à coins arrondis dans le cas du Si monocristallin) permettant un meilleur foisonnement dans un module ;

- Moins sensible aux variations de température.

Inconvénients d'utilisation de ce type

- Rendement moins faible qu'une cellule monocristalline : 11 à 15% ;
- Ratio W_c/m² moins bon que pour la technologie monocristalline (environ 100 Wc/m²) ;
- Rendement faible sous un faible éclairement.

Figure I. 5. Panneaux en silicium polycristallin

C. Panneaux en silicium amorphe (a-Si)

Le silicium intégré dans les cellules a-Si n'a pas fait l'objet d'une cristallisation. Ses atomes sont donc agencés sans réelle organisation, ce qui leur permet de mieux capter la lumière (par rapport au silicium cristallin).

Les panneaux photovoltaïques en silicium amorphe sont bien adaptés pour l'alimentation électrique des équipements de faible puissance, installée dans des zones à faible éclairement (à l'intérieur, sous éclairage artificiel) et sous ensoleillement diffus (à l'extérieur, soumis à un ombrage

important). Le panneau solaire amorphe présent en revanche le silicium amorphe qu'est l'une des technologies photovoltaïques couches minces les plus respectueuses de l'environnement, puisqu'elle n'utilise pas de métaux toxiques. Les modules photovoltaïques à couches minces, comme CdTe (tellurure de cadmium) permettent le captage de différentes fréquences du spectre lumineux. Ils ont une excellente sensibilité à la faible luminosité et un faible coefficient de sensibilité à la température. Le tableau suivant résume les caractéristiques de ce type :

Tableau I. 3. Caractéristiques des panneaux en silicium Amorphe [1]

Modèle	ASI-103
Puissance nominale (Pmp)	103 W
Tension max (Vmp)	30.43 V
Courant max (Imp)	3.39 A
Tension en circuit-ouvert (V_{oc})	42.80 V
Courant de court-circuit (Isc)	1.88 A
Tension max du système (Vmax)	1000 V

Avantage d'utilisation de ce type

- Bon fonctionnent malgré un éclairement faible;
- Moins chères que les autres types de panneaux;
- Intégration sur supports souples ou rigides.

Inconvénients d'utilisation de ce type

- Rendement faible en plein soleil (max. 60W/m²);
- Performance se dégradant sensiblement avec le temps ;

- Nécessité de couvrir des surfaces plus importantes que lors de l'utilisation de silicium cristallin (ratio Wc/m² plus faible, environ 60 Wc/m²) ;

- Performances qui diminuent avec le temps (environ 7%).

Figure I. 6. Panneaux en silicium amorphe (a-Si)

I.4.4. Caractéristiques électriques des modules photovoltaïques dans la centrale d'Oued Nechou

I.4.4.1. Les panneaux photovoltaïques

Le tableau ci-dessous, présente les différentes informations sur les caractéristiques électriques des diverses types de cellules photovoltaïques, installées dans le site d'Oued Nechou à Ghardaïa.

Туре	Panneau au	Panneau au	Panneau	Panneau au Cd-	
	silicium	silicium poly		Te (couche	
	monocristallin	cristallin	amorphe	mince)	
Puissance de	250 Wg	235 Wc	$103 W_C$ (valeur	80 Wc	
crête	250	255 WC	stabilisée)		
Rendement	15,35%	14,43%	7,1%	11,1 %	
Tension	30 35 V	29.04 V	30,4 V (valeur	48 5 V	
$max (V_{mpp})$	50,55 V	27,04 1	stabilisée)		
Intensité	8 74 A	8 10 A	3,39 A (valeur	1 65 A	
max (I _{mpp})	0,271	0,1071	stabilisée)	1,05 /1	
Tension			41.1 V (valeur		
circuit	37,62 V	36,94 V	stabilisée)	60,8 V	
ouvert			statilisee)		
Courant de	8.79 A	8.64 A	4,00 (valeur	1.88 A	
court-circuit	·,· / · ·		stabilisée)	-,0011	

Tableau I.4. Les caractéristiques électriques des (PV) dans la centrale

Dans le champ, le montage du module photovoltaïque devra tenir compte des exigences suivantes :

- Solidement fixés pour résister au vent.
- Facilité d'accès pour permettre leur entretien (nettoyage, désherbage, déneigement...).

- Pour un fonctionnement correct, le panneau doit être ensoleillé sur toute la surface durant la journée. Les structures fixes seront orientées vers le sud avec un angle de «tilt» de 28 dégrées.

- Il faut choisir un emplacement où les panneaux solaires ne reçoivent pas d'ombre portée par un obstacle quelconque (bâtiment, arbre, clôture, colline...) et ceci quelles que soient les périodes des jours et de l'année (conditions plus défavorables en hivers).

Dans la central de Oued Nechou, toutes les technologies utilisées des panneaux sont divisées en deux structures : dont l'une est fixe et l'autre est motorisée ; les panneaux motorisées vont suivre un pic programmé qui contient un programme annuel bien détaillé.

La puissance dans la centrale est partagée en huit (08) sous-champs ; contenant (04) modules photovoltaïques de technologies différentes et (02) types de structure (fixe et Motorisée). Les paramètres électriques de chaque sous champ sont illustrés dans le tableau suivant :

Sous champ	Puissance kWc	Surface m ²	Energie produite
			MWh/an
Si mono motorisé	105	684	250.2
Si Poly motorisé	98.7	684	235.4
CdTe	100.8	907	193.6
amorphe fixe	100.116	1409	187.1
Si mono fixe 2	105	684	188.3
Si Poly fixe2	98.7	684	177.1
Si mono fixe 1	255	1661	464,7
Si Poly fixe1	258.5	1791	472.1

Tableau I.5. Les sous-champs dans la centrale PV de Ghardaïa

Figure I. 7. Modules photovoltaïques motorisée [mono/poly] et le moteur de motorisation

I.4.4.1. Batteries

Le stockage d'énergie dans les systèmes photovoltaïques s'effectue exclusivement à l'aide des batteries d'accumulateurs. Dans ce type de système, la batterie remplit trois fonctions importantes :

a) Autonomie : Une batterie permet de répondre aux besoins de la charge en tout temps ;

b) Courant de surcharge : Une batterie permet de fournir un courant de surcharge pendant quelques instants, c'est-à-dire un courant plus élevé que celui que peut fournir le champ PV.

Ceci est nécessaire pour faire démarrer les moteurs et les autres appareils requérant un courant de démarrage de 3 à 5 fois supérieur au courant d'utilisation, même la nuit ou par temps nuageux [6].

c) Stabilisation de la tension : Une batterie permet de fournir une tension constante, en éliminant les écarts de tension du champ PV et en permettant aux appareils un fonctionnement à une tension optimisée [3].

A. Critères de choix d'une batterie solaire

Lors du choix d'une batterie, on doit prendre en considération les points suivants :

1- Prix : En générale les batteries ont des coûts très élevés dans l'installation PV,

2- Capacité : Le choix de la taille de batterie adaptée aux besoins est important,

3- Durée de vie du cycle : En général, plus la batterie est bonne, plus la durée du cycle est longue.

4- Remplacement et disponibilité : Il est sage de choisir une batterie disponible localement.
Lorsque vient le temps de remplacer l'ensemble, il est plus probable que vous serez en mesure de trouver un type similaire. Le transport de batteries dans le monde entier est coûteux, long et énergivore [4].

5- Maintenance : Choisissez une batterie qui répond à vos besoins d'entretien et à vos capacités. S'il est peu probable que les batteries soient maintenues, pensez à dépenser un peu plus pour des appareils " sans entretien ". Mais aucune batterie n'est vraiment " sans entretien " parce que le système doit être géré sinon il ne fonctionnera pas bien [4].

6- Taille : Soyez conscient de la taille physique de la batterie et de l'endroit où elle va être Placée[4].

B. Association de batteries

1. Association en série : Ce branchement permet d'additionner les tensions (en volts), en gardant l'intensité fixe.

Figure I. 8. Branchement en série de Batterie

2. Association en Parallèle : Ce branchement permet d'additionner les intensités (en ampères, A), par contre la tension reste stable.

Figure I. 9. Branchement en parallèle de Batterie

3. Association en mixte : C'est l'ensemble des deux associations en série et en parallèle, c'est le branchement qui s'impose lorsque il y'a besoin d'une certaine puissance à une tension voulue.

Figure I. 10. Branchement en série et en parallèle de Batterie

I.4.4.2. Régulateur de charge

Il implique une vigilance continue pour éviter les surcharges et les décharges profondes que la batterie peut produire. Il sert à prendre l'information sur l'état de charge du système et la comparer avec les valeurs maximales et minimales admissibles pour que la batterie n'endure pas de surcharges ou de décharges extrêmes. Afin de protéger la batterie de la surcharge, l'interrupteur s'ouvre quand la tension de la batterie atteint sa tension d'arrêt de la charge, et se ferme de nouveau quand la batterie retourne à la tension de réinitialisation de charge. La tension d'arrêt de la charge est environ 2,45V par chaque élément de la batterie à 25°C [5].

En ce qui concerne la sur-décharge, l'interrupteur s'ouvre quand la tension de la batterie est inférieure à la tension d'arrêt de la décharge, et se ferme quand la batterie retourne à la tension de réinitialisation de décharge. La tension d'arrêt de la décharge est environ 1,95V par chaque élément [5].

A. Différentes types de régulateur

1- Les régulateurs de charge PWM (Pulse Width Modulation) : Sont considérés comme étant des régulateurs de base. Ils sont idéals pour les petites installations (inférieures à 150W) du fait de leur faible prix. Il ne peut fonctionner qu'avec un seul panneau de 36 cellules en 12V, ou un seul panneau de 72 cellules en 24 V (ou 2 panneaux 12V en série), d'une puissance relativement basse. De plus, pour une batterie de 12V, il faudra un panneau de 12 V, et pour une batterie de 24 V un panneau de 24 V.

2- Les régulateurs de charge MPPT : Sont les plus performant en raison de leur microprocesseur et algorithmes de charges plus perfectionnés. Ils ne sont pas compliqués à l'utilisation. De plus, cette technologie permet d'obtenir jusqu'à 30% de rendement supplémentaire par rapport à un PWM (notamment lors des périodes nuageuses). Les régulateurs MPPT généralement acceptent une tension d'entrée plus élevée (75 V, 100 V, 150 V et jusqu'à 250 V) par rapport aux PWM (23 V ou 55 V max) et permettent ainsi de limiter la perte par effet joule. Ils permettent également de charger un parc de batterie de 12 V avec des panneaux de 24 V ou plus.

B. Paramètres qui définissent un régulateur

1- Tension de travail : 12, 24 ou 48 V

2- Intensité maximale : Elle doit être supérieure au courant maximal du générateur photovoltaïque[5].

3- Les valeurs de la tension d'arrêt de la charge (surcharge) et de la tension d'arrêt de la décharge (sur-décharge) ;

4- L'existence de compensation avec la température, les tensions qui indiquent l'état de charge de la batterie sont influencées par la température, et c'est pour cette raison que quelques régulateurs mesurent la température et utilisent cette information pour corriger les tensions de surcharge.

5- L'instrumentation de mesure et ses indicateurs : les régulateurs ont souvent un voltmètre qui mesure la tension de la batterie et un ampèremètre qui mesure le courant. La plupart d'eux ont des indicateurs qui notifient certaines situations comme : l'état minimal de charge de la batterie, déconnexion des panneaux avec la batterie, etc.

I.4.4.3. Onduleurs DC/AC

Les onduleurs sont des appareils capables de transformer l'énergie continue du champ photovoltaïque en énergie alternative compatible avec le réseau publique. Ils consomment de l'électricité (en fonction de leur rendement).

A. Caractéristiques des onduleurs

-Puissance nominale (= somme de la puissance des appareils qui peuvent être branchés/supportés par l'onduleur) ;

- Plage de tension de sortie (= tension à la sortie) ;

- Plage de tension d'entrée (= tension qui entre dans l'onduleur) ;

- Rendement = Puissance de sortie / Puissance d'entrée ;

- La puissance nominale doit être environ 2 à 3 fois supérieure à la puissance des appareils à alimenter (permet d'absorber les pics de courant de démarrage de certains appareils électriques).

Figure I. 11. Onduleur de central PV Ghardaïa

B. Types d'onduleurs DC/AC

Il existe huit (8) onduleurs dans la centrale de marque ASI (Ansaldo Sistemi Industriali), Type PV8L et PV8M, un pour chaque sous-champ [2].

	Onduleur des sous-champs 1 à 6	Onduleur des sous- champs 7 et 8	
Туре	ASI - PV8L 121	ASI - PV8M 291	
Puissance nominale côté CC	101 W	245 W	
Puissance crête recommandé côté CC	119 W	288 W	
Max. tension côté CC	880 Vcc	880 Vcc	
Courant nominale côté CC	221 A	536 A	
Tension côté CA	400 V / 50 Hz	270 V / 50 Hz	
Facteur de puissance	>0,99		
Puissance nominale côté CA	96 kW	239 kW	
Puissance max côté CA	105 kW	262 W	
Courant nominale côté CA	210 A	510 A	
Rendement max à la puissance nominale	96,1 %	97,91 %	
Alimentation auxiliaire	230 Vca (normal et ASI)	400 Vca (normal) 230 Vca (ASI)	
Refroidissement	Forcé (par ventilateur interne)		

Tableau I. 6. Caractéristiques électriques des onduleurs [2]

I.4.4.4. Boite de jonction

En électricité, une boîte de jonction (BJ) est un boîtier électrique situé en aval d'un tableau électrique. Elle est située au plus près des installations sur le terrain et permet de centraliser les départs vers les différents appareils électriques.

Cette boîte de jonction doit être mise à la terre (si elle est en métal) pour éviter les risques d'électrisation en cas de défaillance. On doit aussi mettre un couvercle pour éviter de toucher

Figure I. 12. Boite de jonction [3]

Les conducteurs accidentellement. Les connexions sont réalisées avec des capuchons de connexion ou avec des borniers. Les fils qui entrent dans la boîte peuvent être dans des câbles ou dans des conduites. On les fixe à la boîte avec des connecteurs [3].

Figure I.12. Photo interne de boit de raccordement **Tableau I. 7**. Eléments de la boite de raccordement [6]

:

Composant	Description	Composant	Description
01	Port-fusible double 32A	11	Module PLC-AI531-XC
02	Borne 300 MMQ	12	Module PLC-AI541-XC
03	Alimentateur	13	Plaque PLC-TU516-XC
04	Borne jaune-verte 35MMQ	14	Plaque PLC-TU518-XC
05	Bloc d'arrête	15	Shunts en parallèle
06	Parafoudre	16	Borne 6 MMQ-jaune-vert
07	Interrupteur générale	17	Borne 6 MMQ-tronçonnable
08	Borne 35 MMQ-Bleue	18	Séparateur
09	Borne 35 MMQ-Grise	19	Transducteur voltmétrique
10	Convertisseur	20	Bloc d'arrêt haut

I.4.4.5. Transformateurs MT/BT

Plus du module photovoltaïque, la centrale d'Oued Nechou contient trois transformateurs MT/BT

- Deux transformateurs élévateurs de tension, le TP_1 destiner aux onduleurs des sous-champs 1 à 6, Par contre le TP_2 est destiné aux sous champ 7 et 8.

- Un transformateur TSA pour les auxiliaires de la centrale [6].

Figure I.13. Transformateurs de la centrale d'Oued Nechou [6]

I.4.4.6. Poste d'évacuation moyen tension - HTA

Le poste se compose de :

- Une (01) cellule arrivée TP_1 ;
- Une (01) cellule arrivée TP_2 ;
- Une (01) cellule arrivée TSA ;

- Une (02) cellule disjoncteur remontée bar ;
- Une (02) cellule de mesure et de protection ;
- Une (01) cellule départ réseau ;
- Deux (02) Cellules arrivées réserves.
- Deux (02) Cellules arrivées réserves [6].

Figure I. 14. Poste d'évacuation moyen tension – HTA

Afin de transmettre l'énergie produite en basse tension par le champ photovoltaïque au réseau de distribution, il faut la convertir en moyenne tension (30 kV). Dans la station d'Oued Nechou à Ghardaïa, cette transformation est réalisée grâce à deux transformateurs MT/BT, situés dans le bâtiment technique au milieu du champ photovoltaïque [6].

I.5. Conclusion

Dans ce chapitre, nous avons présenté une description générale du secteur énergétique en Algérie et nous avons cité les déférents présentateurs de de ce secteur, en particulier, la société Sktm, qui a une station pilote à Ghardaia. De plus, une analyse de la technologie photovoltaïque, le rôle et les diverses types de ses éléments ont été aussi discuté.

D'après les informations présentées auparavant, nous allons effectuer dans le reste de travail une modélisation et simulation sous deux interfaces différents des diverses technologies des cellules photovoltaïques installées dans la centrale d'Oued Nechou, nous prenons en considération tous les caractéristiques et le rendement extraits de chaque panneau solaire photovoltaïque.
CHAPITRE.II

MODELISATION ET SIMULATION DES PANNEAUX PHOTOVOLTAIQUES

II.1. Introduction

Généralement, avant de commencer la modélisation des cellules photovoltaïque, il faut bien choisir les éléments de circuits électriques équivalents. Il existe diverses modèles électriques représentant le comportement des cellules PV. Ces modèles sont souvent présentés en fonction des valeurs nominales fournies par le fabricant, tels que : la tension à vide, le courant de court-circuit, la tension et le courant correspondant au point de puissance maximale...etc.

Pendant la modélisation il faut prendre en considération l'influence de différentes grandeurs physiques, à savoir ; la température, l'irradiation, la résistance en série, la résistance shunt et le courant de saturation de la diode.

Dans ce qui suit, nous allons modéliser et simuler sous l'interface Matleb l'une des technologies des cellules photovoltaïques utilisées dans le champ de SKTM d'Oued Nechou Ghardaïa, à savoir, la technologie monocristallin, cette simulation est réalisée sous conditions standard ($E = 1000W/m^2$, T = 25°C). De plus, nous allons traiter l'effet de la variation de la température et l'éclairement sur l'énergie produite de la cellule PV.

II.2. Paramètres affectant la quantité d'énergie produite

II.2.1. Effet de la température et l'éclairement

La température est un paramètre très important qui décrit le bon fonctionnement des cellules photovoltaïques. La chaleur ambiante fait surchauffer les composants électriques de l'installation, donc elle affecte les propriétés électriques d'un semi-conducteur qui sont habituellement très sensibles à la température, ce qui devient alors moins performante.

De plus, les fortes chaleurs peuvent affecter négativement le processus de conversion de la lumière en énergie. Ainsi que, l'augmentation de la température des cellules photovoltaïques implique la diminution de la tension au sein du système photovoltaïque. Par conséquent, nous constatons la présence des pertes en puissance et par la suit une réduction au niveau de la production d'énergie.

Cette dernière influe un peu la valeur du courant de court-circuit (I_{CC}). Par contre la tension en

circuit ouvert (V_{CO}) ainsi que le point de puissance maximal (PPM) de chaque courbe baissent assez fortement lorsque la température est élevée. Ce comportement est présenté dans la Figure II. 1 pour un éclairement fixe de l'ordre de $E = 1000 \text{W/m}^2$.

Figure II. 1. Influence de la température sur les caractéristiques I(V) et P(V) de la cellule photovoltaïque [7]

D'après la figure II.1, nous constatons que la valeur du courant du court-circuit est proportionnelle à l'intensité du rayonnement. Par contre la tension en circuit-ouvert ne varie pas dans la même proportion, elle reste quasiment identique même à faible éclairement. Ceci implique que la puissance est pratiquement proportionnelle à l'intensité lumineuse.

Figure II. 2. Influence de l'éclairement sur les caractéristiques I(V) et P(V) d'une cellule photovoltaïque [7]

II.3. Paramètres caractéristiques d'un panneau photovoltaïque

Les paramètres des cellules photovoltaïques (I_{cc} , V_{co} , FF, η) extraits des caractéristiques couranttension, permettent de comparer les différentes cellules éclairées dans des conditions identiques.

II.3.1. Courant de court-circuit Icc

Il s'agit du courant obtenu en court-circuitant les bornes de la cellule (V=0). Ce courant croît linéairement avec l'intensité d'illumination de la cellule, il dépend de la surface éclairée, de la longueur d'onde du rayonnement, de la mobilité des porteurs et de la température [8].

II.3.2. Tension du circuit ouvert V_{co}

Comme son nom l'indique, c'est la tension aux bornes de la cellule lorsqu''elle n'est pas connectée à une charge de résistance infinie. Elle dépend essentiellement du type de cellule solaire (jonction PN, jonction Schottky), des matériaux de la couche active et de la nat²ure des contacts de la couche active-électrode. Elle dépend de plus de l'éclairement de la cellule [9].

$$V_{C0} = \ln\left(\frac{nkt}{q}\right) \tag{II. 1}$$

Avec :

n: Facteur d'idéalité de la diode ;

K : constante de Boltzmann (1,381.10-23 Joule/Kelvin).T : Température de la jonction p-n des cellules ;

q: Charge d'électron (1,602.10-19 C).E : Eclairement reçu ;

E₀: Eclairement de référence ;

Il peut aussi être calculé par :

$$V_{oc} = \frac{nkt}{q \cdot \ln\left(\frac{I_{CC}}{I_{S}+1}\right)} \tag{II. 2}$$

 I_{cc} : Courant continu de la cellule ;

 I_s : Courant de saturation de la diode ;

II.3.3. Puissance maximale

Dans des conditions ambiantes de fonctionnement fixes (éclairement, température, etc..), la puissance électrique (P) disponible aux bornes d'une cellule PV est égale au produit du courantcontinu fourni (I) par une tension continue donnée (V) :

P = I * V

- P : Puissance mesurée aux bornes de la cellule PV (Watt) ;
- V : Tension mesurée aux bornes de la cellule PV (Volt) ;
- I : Intensité mesurée aux bornes de la cellule PV (Ampère).

Figure II. 3. Courbe caractéristique P-V

Pour une cellule solaire idéale, la puissance maximum P_{max} idéale correspondrait donc à la tension de circuit ouvert V_{co} multipliée par le courant de court-circuit I_{cc} :

$$P_{max}id\acute{e}ale = V_c * I_{cc}$$
(II. 3)

P max idéale: Puissance mesurée aux bornes de la cellule PV idéale (Watt) ;

V co: Tension de circuit ouvert mesurée aux bornes de la cellule PV(Volt) ;

Icc: Intensité de court-circuit mesurée aux bornes de la cellule PV(Ampère).

Par simplification, les professionnels caractérisent un module PV par sa puissance nominale aux conditions de fonctionnement standard (STC). Ce paramètre n'est autre que la puissance maximale mesurée sous ces conditions (en général un ensoleillement de 1000W/m² et une température de 25°C) [9].

II.3.4. Facteur de forme FF

Le facteur de forme FF est un rapport entre la puissance maximum délivré par la cellule photovoltaïque P_{max} , avec le produit du courant de court-circuit (I_{cc}) par la tension de circuit ouvert (V_{co}) (c'est à dire la puissance maximale d'une cellule idéale) :

$$FF = \frac{Pmax}{(Vco*Icc)}$$
(II. 4)

FF : Facteur de forme

II.3.5. Rendement de conversion

Le rendement des cellules PV désigne le rendement de conversion en puissance. Il est défini comme étant le rapport entre la puissance maximale délivrée par la cellule et la puissance lumineuse incidente Pin [7].

$$n = \frac{Pmax}{Pin}$$
(II. 5)

Pin : Puissance incidente.

Ce rendement peut être amélioré en augmentant le facteur de forme, le courant de court-circuit et la tension de circuit ouvert [9].

II.3.6. Point de puissance maximale (PM)

L'utilisation optimale d'une photopile consiste à alimenter une charge sous la tension maximale et à un courant maximal. En effet, suivant la formule P = UI, pour que la puissance soit maximale, il faut être dans les conditions où le produit UI est maximal.

C'est le point de charge idéal de la photopile, ou point de puissance maximale P_m . On a coutume d'appeler U_m et I_m la tension et le courant correspondant à ce point $P_m = U_{pm} \cdot I_{pm}$.

II.3.7. Puissance-crête (Pc (Wc))

La puissance maximale est fonction de l'éclairement. Lorsqu'il s'agit de la puissance maximale dans les conditions normalisées d'ensoleillement STC (1 000 W/m², 25 °C, spectre solaire AM 1,5), on parle alors de watts-crête (W_c) ou de puissance-crête.

II.3.8. Rendement d'un photo-générateur

Le rendement η des cellules PV est la propriété la plus importante d'une cellule solaire. Il est défini comme étant le rapport entre la puissance maximale délivrée par la cellule et la puissance lumineuse incidente.

$$\eta = \frac{P_{maxx}}{P_{in}} = \frac{P_{max}}{G \cdot S} = \frac{FF \cdot I_{ec} V_{co}}{P_{in}}$$
(II. 6)

Comme toute la surface du module n'est pas recouverte de cellules solaires (par exemple, les cadres et l'espace entre les cellules solaires individuelles ne sont pas des surfaces actives), la valeur de rendement du module est inférieure à celle de la cellule individuelle On peut calculer ce rendement pour différents éclairements

$$\eta = \frac{P_c}{1000 \cdot S} \tag{II. 7}$$

II.4. Modélisation d'une cellule photovoltaïque

Des variétés des modèles sont utilisées afin de bien analyser le système photovoltaïque, ce qui différencier ces modèles est le nombre des paramètres intervenants dans le calcul de la caractéristique courant- tension.

La photopile présentée dans ce qui suit comporte en réalité une résistance série (R_s) et une résistance shunt (R_{sh}). Ces résistances auront une certaine influence sur la caractéristique I = f(V) :

II.4.1. Résistance série

Elle représente la résistance interne de la cellule, elle dépend principalement de la résistance du semiconducteur utilisé, de la résistance de contact, des grilles collectrices et de la résistivité de ces grilles [9].

II.4.2. Résistance parallèle (shunt)

Elle est due à un courant de fuite au niveau de la jonction, elle dépend de la façon dont celle-ci a été réalisée [9].

Figure II. 4. Schéma électrique d'une cellule photovoltaïque

De plus, ce modèle fait intervenir un générateur de courant pour modéliser le flux lumineux incident, une diode pour les phénomènes de polarisation de la cellule et bien-sûre les deux résistances (série et shunt) pour les pertes [9].

Le modèle est caractérisé par cinq paramètres essentiels :

- 1- Photo-courant (I_{ph}),
- 2- Courant de saturation (I₀),
- 3- Facteur d'idéalité de la jonction (n),
- 4- Résistance série (Rs) et la résistance shunt (Rsh)

Si on néglige l'effet de la résistance shunt R_{sh} (en le considérant infini) on obtient un modèle à quatre paramètres, ce dernier est très utilisé. En outre, si on néglige la résistance série, on retrouvera alors le modèle à trois paramètres.

Généralement, le choix du modèle se fait en fonction des besoins de l'étude même le modèle a cinq paramètres offre un bon compromis entre simplicité et précision.

Les équations présentées ci-dessous permettent de décrire la caractéristique (I-V) de la cellule et du module en donnant les expressions des différents courants :

L'étude physique d'une photopile nous permet d'obtenir l'équation de courant de la charge

$$I_{cel} = I_{ph} - I_d - I_{rs} \tag{II. 8}$$

Avec :

Icell: Courant délivrer par la photopile ;

 I_{ph} : Photo courant ;

Id: Courant de la diode ;

I_{Rsh}: Courant shunt.

Le courant I_{Rsh} est négligée à cause de la très grande valeur de la résistance (R_{sh}) donc l'équation s'écrit :

$$I_{cel} = I_{ph} - I_d \tag{II. 9}$$

II.4.3. Photo-courant Iph

C'est le courant généré par une cellule, il est proportionnel à l'irradiation solaire et est légèrement influencé par la température selon l'équation suivante :

$$I_{ph} = I_{sc} - K_i (T - 298) \frac{G}{1000}$$
(II. 10)

Avec :

Icc [A] : Courant de court-circuit du panneau (donné par le constructeur) ;

K_i [A/K] : Courant de court-circuit divisé par le coefficient de température du panneau ;

T [K] : Température ambiante ;

G [W/m²] : Irradiation sur la surface de la cellule ;

T_{ref} [K] : Température de référence (298 K).

II.4.4. Courant de saturation I₀

Ce courant varie avec la température et est donné p

$$I_0 = I_{rs} \left(\frac{T}{T_n}\right)^3 \exp\left[\frac{qE_{g0} \times \left(\frac{1}{T_n} - \frac{1}{T}\right)}{n \times K}\right]$$
(II. 11)

Avec :

Eg [eV] : Énergie de gap du semi-conducteur

II.4.5. Courant de saturation inverse de la diode (courant de fuite)Irs

Son expression est donnée par l'équation :

$$IrS = \frac{lsc}{\exp\left(\frac{q \cdot V_{0C}}{n \cdot N_{S} \cdot K \cdot T}\right) - 1}$$
(II. 12)

Où :

Voc [V] : Tension de circuit ouvert du module (donnée par le constructeur) ;

q [°C] : Charge de l'électron (1.602. 10 -19 °C) ;

Ns : Nombre de cellules connectées en série ;

n : Constante d'idéalité de la jonction (1<n<2) ;

K [J/K] : Constante de Boltzmann (1.3805 .10 -23 J/K).

II.4.6. Courant de résistance shunt

Son expression est donnée par l'équation :

$$I_{rs} = \frac{I_{sc}}{\exp\left(\frac{q \cdot V_{0c}}{n \cdot N_{s} \cdot K \cdot T}\right) - 1}$$
(II. 13)

II.4.7. Courant du panneau

Les équations décrites précédemment ne peuvent représenter la caractéristique (I- V) d'un module PV puisqu'elles sont propres à une seule cellule PV qui représente l'élément de base du panneau [9] , on introduit donc l'équation spécifique à un module :

$$Ipv = I_{ph-}I_0 \left[\exp\left(\frac{q(V+I.Rs)}{n \cdot KN_{s.}T}\right) - 1 \right] - I_{sh}$$
(II. 14)

Avec :

Ns : Nombre de cellules connectées en série dans un module ;

N_p : Nombre de cellules connectées en parallèle dans un module.

 Institution
 Reference

 Isc
 8,79 A en 25 °C et 1000W/m²

 T
 T=273 k

 Tn
 T=25 °C

 G
 G=1000W/m²

 Q
 (1,6.10⁻¹⁹)

Tableau II.1. Caractéristique électrique dune photopile (cellule PV)

V _{os}	37.62 V
Ν	1,3
K	$(1,38.10^{-23} \text{ j/k})$
E_{g0}	(1,1eV)
Ns	60 Cellule
Np	1
R _s	0.08
R _{sh}	415,405

Tableau II.2. Caractéristique électrique d'un panneau PV dans les conditions standards T =

Puissance nominal	250 W
Tension a puissance maximal	30.35 V
Courant a puissance maximal	8.24 A
Tension de circuit ouvert	37.62 V
Courant de court-circuit	8.79 A
Nombre des cellules en série Ns	60
Nombre des cellules en parallèle N _p	1

2

 $25^{\circ}C, G = 1000W / m^2$

II.5. Simulation d'un panneau photovoltaïque

II.5.1. Définition de SIMULINK

Simulink est une plate-forme de simulation multi-domaine et de modélisation de systèmes dynamiques. Il fournit un environnement graphique et un ensemble de bibliothèques contenant des blocs de modélisation qui permettent le design précis, la simulation, l'implémentation et le contrôle de systèmes de communications et de traitement du signal. Simulink est intégré à MATLAB,

fournissant ainsi un accès immédiat aux nombreux outils de développement algorithmique, de visualisation et d'analyse de données de MATLAB [9].

II.5.2. Simulation de chaque bloc sous Matlab- Simulink

La figure.II.5 représente le modèle de simulation d'un générateur PV sous Simulink/Matlab.

Figure II. 5. Schéma d'un générateur PV sous Simulink/Matlab

Comme il est montré dans le modèle, nous avons deux entrées principales à déclarer; à savoir, la température et l'irradiation, et comme sortie nous obtenons la tension et courant.

La figure II.6 représente le sous modèle testé sous Simulink.

Figure II. 6. Schéma d'un courant de module PV

$$I_{ph} = I_{sc} - K_i (T - 298) \frac{G}{1000}$$
(II. 15)

Figure II. 7. Schéma d'un photo-courant

La figure II.8 représente le modèle de la simulation d'un courant de saturation qui a comme équation:

$$I_0 = I_{rs} \left(\frac{T}{T_n}\right)^3 \exp\left[\frac{qE_{g0} \times \left(\frac{1}{T_n} - \frac{1}{T}\right)}{n \times K}\right]$$
(II. 16)

Figure II. 8. Schéma d'un courant de saturation

La figure II. 9 représente la simulation de la formule du courant de résistance shunt et :

$$I_{Sh} = \left(\frac{V + I.RS}{R_{Sh}}\right) \tag{II. 17}$$

Figure II. 9. Schéma d'un courant de résistance shunt

La figure.II.10 représente une simulation de l'équation du courant de saturation inverse de la diode :

$$I_{rS} = \frac{Isc}{\exp\left(\frac{q \cdot V_{0C}}{n \cdot N_{S} \cdot K \cdot T}\right) - 1}$$
(II. 18)

Figure II. 10. Schéma d'un courant de saturation inverse de la diode

II.6. Résultats de simulation sous Matleb- Simulink

II.6.1. Caractéristiques d'un module solaire

II.6.1.1. Caractéristiques I(V) et P(V) sous les conditions standard (T=25°C, E=1000 W/m^2)

Les résultats obtenus de la simulation d'unecaractéristiques courant –tension I(V) et puissance tension P(V) d'un panneau photovoltaïque dans les conditions standards (T= 25° C, E= 1000 W/m^2) sont représentés dans les figures II.11 et II.12.

La figure II. 11. représente la caractéristique courant – tension d'un panneau PV dans les conditions de fonctionnement standard (STC), (E=1000 W/m² et T=25°C). Le courant de courtcircuit est égale 8.79 A et la tension de circuit ouvert V_{oc} est égale à 37.62 V.

Il est à noter que le courant de court-circuit reste fixe indépendamment de l'augmentation de la tension, jusqu'à une valeur limite qui simule la tension inferieur à celle du V_{mp} , à partir de laquelle la caractéristique du courant de notre panneau diminue jusqu'au zéro.

Figure II. 11. Caractéristique I(V) d'un panneau PV (T=25°C, G=1000W/m²)

Figure II. 12 illustre la caractéristique puissance – tension d'un panneau PV dans les conditions de fonctionnement standard (STC), (E=1000 W/m² et T=25°C). La puissance maximale est de l'ordre de 250 W. Comme nous constatons que l'augmentation du niveau de la tension implique l'élévation de la valeur de la puissance jusqu'elle atteindre la valeur optimale (P_{max}), puis elle diminue jusqu'au zéro.

Figure II. 12. Caractéristique P(V) d'un panneau PV (T = 25° C ,G = 1000W/m²)

II.6.1.1. Influence de la température

Les figures suivantes représentent simultanément les caractéristiques courant – tension I(V) et puissance tension P(V) dans la même condition de l'éclairement (E=1000 W/m²) et en la valeur de la température (T = 25° C, T=40°C, T = 50° C) :

D'après les caractéristiques mentionnées dans les deux figures, il est à signaler la réduction de la valeur de la tension de circuit ouvert au fur et à mesure que la température augmente. Cependant, la variation de la température n'as pas un effet notable sur le niveau du courant de court-circuit. Par conséquence, la variation de ces deux grandeurs implique la variation de la valeur de la puissance maximale (Figure II.14).

Figure II. 14. Caractéristique P(V) pour différentes températures (G=1000W/m²)

II.6.1.2. Influence de l'éclairement

Généralement, la luminosité à un effet considérable sur les performances des cellules photovoltaïque.

Les figures suivantes montre que à une température fixe ($T = 25^{\circ}C$), l'irradiation a une influence importante sur le niveau du courant, une fois elle augmente l'allure du courant augmente aussi. Cependant, Il est à remarquer que ce paramètre n'as pas une grande influence sur la valeur de la tension.

Concernant l'effet de la variation de l'éclairement sur la caractéristique de la puissance, la figure II. 16. illustre une croissance de l'allure de celle-ci en fonction de l'augmentation du niveau de l'irradiation.

Figure II. 16. Caractéristique P(V) pour différentes niveaux d'éclairement (T=25°C)

II.7. Assemblage des panneaux pv solaire

En réalité les modules sont généralement réalisés par association, soit en série ou bien en parallèle, de cellules élémentaires. L'association en série a comme conséquence l'augmentation de la tension pour une même valeur du courant, alors que celle en parallèle permet d'additionner les intensités, ainsi que la puissance générée par le panneau.

Dans ce qui suit, nous assistons à la simulation de l'une des technologies utilisée dans le site d'Oued Nechou (monocristallin) on les associant une fois en série et une autre en parallèle.

II.7.1. Caractéristiques du panneau au silicium monocristallin

Tableau II.3. Caractéristiques réelles du panneau monocristallin de 250W dans la station

Caractéristiques électriques	
Туре	ATERSA A-250M
Pays d'origine	Espagne
Puissance de crête	250 W _c
Tolérance de la puissance de crête	0 / +5 W _c
Rendement du module	15,35%
Tension max (V _{mpp})	30,35 V
Intensité max (I _{mpp})	8,24 A
Tension circuit ouvert	37,62 V
Courant de court-circuit	8,79 A
Tension max. du système	1000 V
Normes de référence	IEC 61730-1, IEC 61730-2, IEC 61215
Caractéristiques thermiques	
NOCT (Température nominale opérative de la cellule)	47 +/- 2 [°C]
Coefficient de température Isc	+0,03% [°K]
Coefficient de température Voc	- 0,34% [°K]
Coefficient de température Pmax	-0,43% [°K]

II.7.2. Association en série des panneaux PV

Dans un groupement en série, les panneaux sont traversés par le même courant et la caractéristique résultante du groupement en série est obtenue par l'addition des tensions à courant donné.

Figure II. 17. Association d'un panneau en série

II.7.2.1 Simulation de l'association des panneaux photovoltaïques en série

Les figures II. 18, 19, 20, 21, 22, 23 représentent la caractéristique d'une association de trois panneaux en série de type monocristallins, dans les conditions standards (STC).

Figure II. 18. Evolution de la témpérateur appliquée sur le système photovoltaique

Figure II. 20. Tension d'un seul panneau

Figure II. 22. Tension de trois panneaux

Figure II. 23. Courant de trois panneaux

Il en découle de ces résultats que les grandeurs électrique de la sortie de panneau sont stables et égales aux valeurs réelles dans le cas des conditions STC constantes. Dans l'association en série le courant global égale la méme valeur d'un suel panneau, par contre la tension devient le produit du nombre des panneaux par la tension d'un seul panneau.

II.7.3. Association en parallèle des panneaux PV

Dans un groupement des panneaux connectés en parallèle, les cellules sont soumises à la même tension et la caractéristique résultante du groupement est obtenue par addition des courants à tension donnée.

Les figures II.25, 26, 27, 28, 29, 30 représentent la caractéristique d'une association de trois panneaux en parallèle de type monocristallins, dans les conditions standards (STC).

Figure II. 25. Evolution de la témpérateur appliquée sur le système photovoltaique

Figure II. 26. Evolution de l'éclairement appliquée sur le système photovoltaique

Figure II. 27. Tension d'un seul panneau

Figure II. 28. Courant d'un seul panneau

Figure II. 29. Tension de trois panneaux

Figure II. 30. Courant de trois panneaux

Toujours sous les conditions STC constantes, en remarque que dans l'association des panneaux en paralléle, la tension globale a la même valeur que celle d'un seul panneau, par contre le courant est égale au produit du nombre des panneaux par le courant d'un seul panneau.

II.8. Conclusion

Dans ce chapitre, notre analyse a été concentrée sur la simulation du fonctionnement d'une cellule photovoltaïque lorsqu'elle est soumise aux différentes conditions d'ensoleillement et de température. Il est à signaler que les performances d'un module PV sont fortement influencées par les conditions climatiques, essentiellement l'éclairement solaire et la température. Nous concluons que les cellules photovoltaïques ont de meilleures performances lorsqu'elles sont dans un environnement froid et un ciel clair et que l'énergie électrique produite par la cellule dépend de la lumière qu'elle reçoit à sa surface.

De plus, la valeur du courant (tension) est liée au nombre des cellules ou modules (montés en série ou en parallèle) selon le besoin et le domaine d'utilisation, ce qui influe par la suite la valeur de la puissance engendrée par le panneau photovoltaïque.

CHAPITRE.III

SIMULATION ET ESTIMATION DE LA PRODUCTION DE LA STATION PHOTOVOLTAÏQUE

III.1. Introduction

Vue l'effet du rendement d'un système photovoltaïque installé dans un champ quelconque sur l'assurance de la continuité de l'écoulement d'énergie dans un réseau électrique, il faut prendre quelques paramètres en considération pour bien maitrisé ce système, de plus, de profiter le maximum de celui-ci.

Dans le cadre de ce travail, nous avons choisi d'analyser le fonctionnement de la station d'Oued Nechou déjà mentionnée auparavant. Dans la première partie de ce chapitre, une étude de la conception et la simulation du fonctionnement électrique d'un système photovoltaïque adapté par la commande MPPT, on assurant la poursuite de la puissance maximale fournie par le générateur PV.

Dans l'autre côté, nous avons pensé au dimensionnement de la même station en gardant les mêmes technologies de cellules exploitées et puissances délivrées par ces panneaux. Généralement, Il existe deux méthodes du dimensionnement ; soit manuellement à l'aide des formules définis, au bien au moyen d'un logiciel. L'installation dimensionnée manuellement reste une installation qui manque de fiabilité. Par contre, l'utilisation du logiciel offre une haute précision à l'étude de projet.

III.2. Modélisation d'une cellule et d'un module photovoltaïque sous Matlab

Afin d'augmenter l'efficacité des systèmes photovoltaïques, nous proposons l'utilisation de l'une des méthodes de suivi du point de puissance maximale (MPPT). Dans cette partie, nous allons analyser l'exécution d'un convertisseur élévateur Boost pour un système photovoltaïque, celui-ci est construit en utilisant 20 panneaux PV associés, celui-ci contient 51 panneaux dans un arrangement bien défini pour obtenir la tension délivrée par l'un des sous-champs de la station d'Oued Nechou. Les cellules testées sont de type monocristallines avec un courant de court-circuit I_{sc} de l'ordre de 8.79A, tension à circuit ouvert V_{oc} 37.62 V, courant maximum 8.24 A, tension maximale 30.35 A, puissance maximale 250 W.

Nous allons utiliser la commande MPPT qui permet de faire fonctionner le système en produisant en permanence le maximum de la puissance indépendamment des conditions météorologiques (température et irradiation), la commande du convertisseur place le système à son point de fonctionnement maximum (V_{PPM} et I_{PPM}), afin de maximiser la puissance à la sortie du panneau photovoltaïque, le système de régulation est basé sur la variation automatique d'un rapport cyclique α à la valeur adéquate.

Une comparaison du rendement de ces cellules et l'examination des performances du système seront effectuées, lorsque celui-là est soumis à une irradiation de 1000 W/m^2 et à une température de 25°C.

Figure III.1 Schéma du système photovoltaïque testé

Le schéma illustré dans la figure III.1. est constitué d'un panneau solaire sous étude, le hacheur Boost, la charge et le contrôleur MPPT a base de Incrément de conductance. Les deux paramètres essentiels V_{pv} et I_{pv} du module photovoltaique, sont introduits dans les ports du bloc de la commande MPPT. La commutation sur le circuit du convertisseur Boost à travers IGBT est contrôlée par le port B. De plus, la tension de sortie est augmentée en fonction de l'algorithme optimisé en fonction du rapport cyclique (D), qui est fonction des principaux paramètres de détection V_{pv} et I_{pv} du module.

Le convertisseur élévateur Boost est illustrée dans la figure, le rôle de cet élément est d'assurer la conversion de la tension continue d'entrée à une tension de sortie de valeur plus élevée. Ce convertisseur est constituant d'une interrupteur (S), une inductance (L), une diode qui protège l'interrupteur et empêche le retour du courant et le condensateur C_2 qui sert à lisser la tension de sortie [10].

Figure III.2 Schéma électrique d'un convertisseur élévateur (Boost)

L'objectif principal de notre simulation est d'analyser les différentes caractéristiques de la tension V, le courant I et la puissance P délivrés par le panneau photovoltaïque avant d'introduire le convertisseur statique, ainsi que à la sortie du celui-ci. Les figurent III. 3. 4 et 5 présentent le modèle réalisé sous Simulink, de la commande MPPT associé à un convertisseur DC/DC élévateur de tension lorsque ceux-ci sont connectés à un panneau photovoltaïque.

Figure III.3 Modèle Simulink de la commande MPPT avec un convertisseur DC/DC Boost

Figure III.4 Schéma block d'un panneau photovoltaïque connecté au convertisseur Boost commandé par MPPT sous Matlab/ Simulink

Figure III.5 Schéma block du convertisseur Boost sous simulink

III.2.1. Résultat de la modélisation

Les résultats sont subdivisés en deux parties essentielles, l'uns sont obtenus avant l'utilisation du convertisseur, et les autres après ce dernier.

III.2.1.1. Résultats avant le convertisseur DC/DC Boost

Les figures III.6, 7 et 8 Illustrent successivement les performances électriques de la puissance, la tension et le courant résultants d'une seule cellule monocristalline. Sachant que, le système proposé est étudié sous un taux d'irradiation uniforme 1000 W/m² et 25 °C comme il est présenté dans les figures III. 9 et 10.

Il est à noter que les allures des paramètres simulés commencent par des valeurs plus grande (255 W, 35 V et 8 A), puis après 2 seconds nous constatons un déclin de ces trois grandeurs jusqu'à des valeurs limites à partir desquelles elles deviennent constantes (150 W, 24V et 6.5 A).

Figure III.6 Puissance de sortie d'un panneau monocristallin 250 W

Figure III.7 Tension (V_PV) du panneau monocristallin 250W

Figure III.10. Température en fonction du temps

III.2.1.2. Résultats après le convertisseur DC/DC Boost

Sur les figures III. 11, 12 et 13 sont présentés les caractéristiques de puissance, tension et courant de sortie après l'association d'un panneau PV monocristallin avec la commande MPPT sous condition STC. Il est à signaler la diminution des oscillations au niveau des deux parties des courbes (t = 0, 2 s), ainsi que la puissance, la tension et le courant se stabilisent respectivement autour de 150 W, 24 V et 6.5A.

Selon les figures III.14, 15 et 16 qui illustrent une comparaison entre les courants, tensions et puissances d'entrée et sortie du convertisseur, il en découle une petite variation dans les oscillations du courant. Concernant la valeur de tension il y a une différence de l'ordre de 1 V, et de 1W dans la puissance de sortie.

La figure III.17 montre l'allure de la puissance totale du champ après la déclaration du nombre réel du string et des panneaux les constituant (20*51). Il est à souligner que la différence entre la puissance à la sortie du panneau et celle du convertisseur fournie à la charge reste dans la limite de $0.1*10^5$ Watts. Ces pertes sont attribuées aux pertes par commutation et par conduction dans le transistor IGBT, dans la diode et le système de câblage.

Figure III.11 Puissance au niveau de la sortie du sous champs N°7 (PV monocristallin fix)

Figure III.13 Courant du sous champ N°7 après le convertisseur

(**b**) Zoom de la première partie (t = 0 s)

(c) Zoom de la deuxième partie (t = 2 s)

Figure III.15 Tension avant et après le convertisseur d'un panneau monocristallin Vpv_Vs

Figure III.16 Puissance avant et après le convertisseur du sous champ N°7 (Ppv)

Le dimensionnement d'un champ photovoltaïque est tout simplement l'évaluation de la consommation électrique souhaitée par ce dernier et la validation du choix du kit panneau solaire qui répondra le plus aux besoins énergétiques désirés. Néanmoins, l'objectif principale du dimensionnement de panneaux solaires est d'avoir une production d'énergie la plus efficace. Il s'agit donc de trouver un juste milieu entre la production et la consommation.

Il existe plusieurs conditions que nous devons connaître avec une grande précision avant de commencer le dimensionnement d'un champ photovoltaïque, à savoir:

-L'étude de l'environnement du site sur lequel les panneaux doivent être installés, il faut savoir si le site est un lieu ouvert et non obscurci par la lumière du soleil ou non.

- Détermination du type de système solaire approprié, et déterminer le type de connexion du système (connecté au réseau, isolé ou hybride).

- Définir la capacité requise du système.

CHAPITRE .III

- Assurer que le site n'est entouré d'aucun obstacle pouvant causer de l'ombrage sur les panneaux solaires, sinon, nous pouvons proposer comme solution l'utilisation d'un système fixe ou bien motorisé des panneaux photovoltaïque, ce qui implique, l'analyse de l'orientation, l'angle d'inclinaison et l'ombrage des panneaux de l'installation. La localisation de l'installation sur le toit est très importante.

- La rentabilité de l'investissement et Budget maximal.

Dans la deuxième partie de notre étude nous avons choisi le logiciel PVSys pour assurer le dimensionnement du champ d'Oued Nechou.

III.3.1. Présentation du logiciel de simulation PVSys

PV SYST est une plateforme conçu pour être utilisé par les architectes, les ingénieurs et les chercheurs, c'est aussi un outil pédagogique très utile. Il inclut une aide contextuelle approfondie, qui explique en détail la procédure et les modèles utilisés et offre une approche ergonomique avec guide dans le développement d'un projet. Ce logiciel permet d'importer des données météo d'une dizaine de différentes sources.

Il permet le :

- Pré-dimensionnement ;
- Estimation rapide de la production pour une première étude de nos installations ;
- Conception de projet ;
- Importation de diverses données météo, génération synthétique ;
- Base de données de composante (module PV, onduleur, batteries, pompes, etc.) ;
- Analyse de données réelles mesurées (avancé).

III.3.2. Étapes de simulation en utilisant PVsys

Avant de commencer le dimensionnements du projet, on a plusieurs choix selon le type de connexion du champ, dans notre cas nous avons traité la réalisation d'un projet couplé au réseau électrique.

Figure III.18 La fenêtre du logiciel PVSYST

Comme une deuxième étape, il faut nommer le projet à réaliser et l'enregistrer (figure III. 19). Puis, l'étape de la déclaration des données météorologique, celle-ci est considéré comme étant le point de départ de l'évaluation d'un projet et la base de toute simulation. La figure III. 20 illustre les bases de données, dans ce cas nous cliquons sur les sites géographiques considérés afin de choisir le pays puis l'endroit exact. En donnant: le nom du site, pays, région, latitude, longitude,, fuseau horaire. Ensuite, nous appuyons sur importer pour obtenir les informations de météo. En remplissant l'irradiation globale

et la température moyenne obtenue à partir du site meteonorm. Ces données résument les caractéristiques climatiques (l'irradiation - la température - la vitesse du vent -humidité) du site Oued Nechou- Ghardaïa, Il est conseillé de définir soigneusement la source des données meteonorm. Les valeurs horaires de Meteonorm sont des données synthétiques qui sont construites de la même manière que les valeurs horaires synthétiques dans PV SYST à partir de valeurs mensuelles.

La simulation nécessite des valeurs horaires pour : Irradiation global annuel de ce site Oued Nechou- Ghardaïa qu'il est élevé 2160.0 KWh/m²/mois; Les valeurs d'irradiation diffuse Horizontal sont : 627.1 kWh/m²/mois, la température ambiantes de 20.4° C; et la valeur minimale de la vitesse du vent est de 4.2 m/s, humidité relative de 37.7 %.

Picher ste		1	a 🐮 📼
Pichier Météo		1	0.002.000
		<u> </u>	0 0
Please laad the geographical site.	Weyest will search the available	rmetur files accordingly.	Base données mét
This would co	domatically set geographical a	de Carriero de	O Paramètres du pro
iante du Système (version de calcul)			
Nº de Variante (vC0 : Nouvelle variante de simulation		2	M+ × + -
uramètres d'entrée	Simulation	Résultats principaux	
Paramétres principaux Optionnel	and a second	Type de système Pas de sci	ene 3D, pas d'ombrage
O Crientalium O Harbort	> Lancer is simulation	Production du système	0.00 kW/h/m
O Systeme O Ordersproproduce		Productible Indice de performance	0.00 kWh/kWp/an
O Fartes délafées O Colocrage	Sinulation avances	Production normalisée Periles charus	0.00 kWh/kWp/peur
0	III Factory	Pertes système	0.00 kWh/kWb/bour
O state consideration			

Figure III.19 Définition du projet et d'outil de simulation.

Figure III.20 Base de données de PVSYST

onnees Geog	raphiques Météo mensuelle Carte intéractive	
tieu	🔮 Voir carte	
Nom du site	Ghardaia oued nachou Ohtenir den is les	1
Pays	Algérie Région Afrique coordonnées	
Coordonn	ées Géographiques	Meteonorm 7.2 NASA-SSE PVGIS TMY
Latitude Longitude	Decimal Deg. min. sec. 32.6003 [°] 32 36 1 (+ = Nord, - = Hemisph. Sud) 3.6999 [°] 3 41 59 (+ = Est, - = Ouest de Greenwich)	C NREL / NSRD8 TMY
Altitude Fus. horaire	572 M au-dessus du niv. de la mer 1.0 • Correspondant à une différence moyenne Temps Légal - Temps Solaire = 0h 45m ?	E/S tableaux (Excel)
		Exporter la ligne
		Exporter la table

Figure III.21 Paramètres de site géographique et Coordonnées géographiques

Irradiation globale horizontale Irradiation diffuse horizontale rempérature borizontale Vitesse du vent Linke Turbidity Relative Humidity Arrivier 118.9 20.0 10.6 3.39 2.971 54.5 Darivier 118.9 20.0 10.6 3.39 2.971 54.5 Mars 191.8 34.3 17.9 3.90 4.212 36.9 Avril 218.7 42.9 21.2 4.70 4.130 32.6 Mai 243.1 59.3 26.5 4.40 5.831 28.3 Juin 244.1 56.4 31.1 3.60 4.698 24.5 Juilet 253.6 53.4 35.4 3.50 5.750 21.2	Irradiation obale zontale Irradiation diffuse horizontale rempérature vent Vitesse du vent Linke Turbidity Relative Humidity \mminimum horizontale nm/s [-] % 8.9 20.0 10.6 3.39 2.971 54.5 2.3 25.3 13.1 3.51 3.308 44.0 1.8 34.3 17.9 3.90 4.212 36.9 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 Wites d'irradiation Went Went Wites d'irradiation 4.4 19.7 15.8 2.99 3.041 49.3 6 KWh/m².ms KWh 3.244 54.4 54.4	ource des do	gnardaia (A	Algeria) 2 (1986-2005), 1	Sat = 100%				-	
kWh/m².ms kWh/m².ms °C m/s [-] % banvier 118.9 20.0 10.6 3.39 2.971 54.5 banvier 132.3 25.3 13.1 3.51 3.308 44.0 dars 191.8 34.3 17.9 3.90 4.212 36.9 kvnil 218.7 42.9 21.2 4.70 4.130 32.6 Vail 243.1 59.3 26.5 4.40 5.831 28.3 vain 244.1 56.4 31.1 3.60 4.698 24.5 vallet 253.6 53.4 35.4 3.50 5.750 21.2	V/m².ms kWh/m².ms °C m/s [-] % 8.9 20.0 10.6 3.39 2.971 54.5 2.3 25.3 13.1 3.51 3.308 44.0 1.8 34.3 17.9 3.90 4.212 36.9 8.7 42.9 21.2 4.70 4.130 32.6 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 Whites 19.7 15.8 2.99 3.041 49.3 6 KWh/m².ms 54.4 54.4 54.4 54.4		Irradiation globale horizontale	Irradiation diffuse horizontale	l'empérature	Vitesse du vent	Linke Turbidity	Relative Humidity		
Invier I18.9 20.0 I0.6 3.39 2.971 54.5 Données requises Février I32.3 25.3 I3.1 3.51 3.308 44.0 Mars I91.8 34.3 I7.9 3.90 4.212 36.9 Avril 218.7 42.9 21.2 4.70 4.130 32.6 Varil 243.1 59.3 26.5 4.40 5.831 28.3 Varil 244.1 56.4 31.1 3.60 4.698 24.5 Vitese du vent	8.9 20.0 10.6 3.39 2.971 54.5 2.3 25.3 13.1 3.51 3.308 44.0 1.8 34.3 17.9 3.90 4.212 36.9 8.7 42.9 21.2 4.70 4.130 32.6 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 5 18.4 12.0 3.59 3.244 54.4		kWh/m².ms	kWh/m².ms	°C	m/s	[-]	%		
Février 132.3 25.3 13.1 3.51 3.308 44.0 First addition globale ho Mars 191.8 34.3 17.9 3.90 4.212 36.9 First addition globale ho Mars 191.8 34.3 17.9 3.90 4.212 36.9 First addition globale ho Mar 218.7 42.9 21.2 4.70 4.130 32.6 Données supplémentaires Mai 243.1 59.3 26.5 4.40 5.831 28.3 First addition diffuse ho Nuin 244.1 56.4 31.1 3.60 4.698 24.5 Vitesse du vent Mullet 253.6 53.4 35.4 3.50 5.750 21.2 Linke Turbidity	2.3 25.3 13.1 3.51 3.308 44.0 1.8 34.3 17.9 3.90 4.212 36.9 8.7 42.9 21.2 4.70 4.130 32.6 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 Unités d'irradiation C kWh/m².ms C kWh/m².ms	lanvier	118.9	20.0	10.6	3.39	2.971	54.5	Données requises	
Mars 191.8 34.3 17.9 3.90 4.212 36.9 Avril 218.7 42.9 21.2 4.70 4.130 32.6 Mai 243.1 59.3 26.5 4.40 5.831 28.3 Juin 244.1 56.4 31.1 3.60 4.698 24.5 Juilet 25.6 53.4 35.4 3.50 5.750 21.2	1.8 34.3 17.9 3.90 4.212 36.9 8.7 42.9 21.2 4.70 4.130 32.6 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 8.5 18.4 12.0 3.59 3.244 54.4	évrier	132.3	25.3	13.1	3.51	3.308	44.0	E Invariation dobale horizonta	
Avril 218.7 42.9 21.2 4.70 4.130 32.6 Mai 243.1 59.3 26.5 4.40 5.831 28.3 Données supplémentaires Juin 244.1 56.4 31.1 3.60 4.698 24.5 Vitesse du vent Juillet 253.6 53.4 35.4 3.50 5.750 21.2 Vitesse du vent	8.7 42.9 21.2 4.70 4,130 32.6 3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 8.5 18.4 12.0 3.59 3.244 54.4	Mars	191.8	34.3	17.9	3.90	4.212	36.9	F Température ext. Movenne	
Atal 243.1 59.3 26.5 4.40 5.831 28.3 Donnees supplementative Juin 244.1 56.4 31.1 3.60 4.698 24.5 Ivin Vitese du vent Juilet 253.6 53.4 35.4 3.50 5.750 21.2 Ivit tenke Turbidity	3.1 59.3 26.5 4.40 5.831 28.3 4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 8.5 18.4 12.0 3.59 3.244 54.4	Avril	218.7	42.9	21.2	4.70	4.130	32.6	Descás o polímentaires	
luin 244.1 56.4 31.1 3.60 4.698 24.5 ↓ullet 253.6 53.4 35.4 3.50 5.750 21.2 ↓ the set of the s	4.1 56.4 31.1 3.60 4.698 24.5 3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 8.5 18.4 12.0 3.59 3.244 54.4	4ai	243.1	59.3	26.5	4.40	5.831	28.3	Virial ation diffuse horizontal	
ullet 253.6 53.4 35.4 3.50 5.750 21.2	3.6 53.4 35.4 3.50 5.750 21.2 7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 8.5 18.4 12.0 3.59 3.244 54.4	luin	244.1	56.4	31.1	3.60	4.698	24.5	Vitesse du vent	
	7.9 54.8 33.9 3.30 5.265 24.7 4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 4.4 19.7 15.8 2.99 3.041 49.3 C kWh/m²./ms 8.5 18.4 12.0 3.59 3.244 54.4 C kWh/m².ms	lullet	253.6	53.4	35.4	3.50	5.750	21.2	E Linke Turbidity	
Août 227.9 54.8 33.9 3.30 5.265 24.7 Relative Humidity	4.5 46.3 28.3 3.40 4.212 35.9 3.8 36.7 23.6 3.00 3.979 42.4 Unités d'irradiation 4.4 19.7 15.8 2.99 3.041 49.3 C kWh/m²./m 8.5 18.4 12.0 3.59 3.244 54.4 C kWh/m².ms	Noût	227.9	54.8	33.9	3.30	5.265	24.7	Relative Humidity	
Septembre 184.5 46.3 28.3 3.40 4.212 35.9	3.8 36.7 23.6 3.00 3.979 42.4 Unités d'irradiation 4.4 19.7 15.8 2.99 3.041 49.3 C kWh/m².jr 8.5 18.4 12.0 3.59 3.244 54.4 6 kWh/m².ms	Septembre	184.5	46.3	28.3	3.40	4.212	35.9		
Octobre 153.8 36.7 23.6 3.00 3.979 42.4 Unités d'irradiation	4.4 19.7 15.8 2.99 3.041 49.3 C kWh/m³.jr 8.5 18.4 12.0 3.59 3.244 54.4 C kWh/m³.ms	Octobre	153.8	36.7	23.6	3.00	3.979	42.4	Unités d'irradiation	
lovembre 124.4 19.7 15.8 2.99 3.041 49.3 C kWh/m³.jr	8.5 18.4 12.0 3.59 3.244 54.4 (* kWh/m².ms	lovembre	124.4	19.7	15.8	2.99	3.041	49.3	C kWh/m².jr	
Décembre 108.5 18.4 12.0 3.59 3.244 54.4 • KWh/m2.ms		Décembre	108.5	18.4	12.0	3.59	3.244	54.4	(kWh/m².ms	
(MJ/m².yr	201.6 467.6 22.4 3.6 4.220 37.4 C MJ/m ² .y	Année <u>?</u>	2201.6	467.6	22.4 Coller 1	3.6 Coller 1	4.220	37.4	C MJ/m².ms	

Figure III.22 Paramètres de site géographique météo mensuel

Figure III.23 Site de la station photovoltaïque Oued Nechou- Ghardaïa

	Irradiation globale horizontale	Irradiation diffuse horizontale	Température	Vitesse du vent	Humidité relative
	kWh/m²/mois	kWh/m²/mois	°C	m/s	%
Janvier	122.5	27.9	8.9	3.67	53.1
Février	133.0	37.1	10.6	3.58	45.2
Mars	182.6	54.0	14.9	4.49	36.0
Avril	202.1	61.3	21.1	5.18	31.5
Mai	240.4	70.9	23.0	4.67	33.6
Juin	247.2	69.9	28.2	4.41	25.7
Juillet	256.9	68.4	31.7	3.77	19.5
Août	227.1	65.8	30.5	3.99	27.2
Septembre	177.1	57.8	28.6	4.18	29.8
Octobre	150.1	46.4	23.5	4.60	39.3
Novembre	110.9	36.8	15.2	4.37	47.7
Décembre	110.1	30.6	9.1	3.93	63.7
Année 🕜	2160.0	627.1	20.4	4.2	37.7

Tableau III.1. Paramètres climatique de site d'Oued Nechou- Ghardaïa

L'orientation générale du système doit être aussi bien définie, il est possible d'utiliser un système avec suivi de soleil.

La position des modules photovoltaïques par rapport au soleil influe directement sur leur production énergétique. IL est très important de bien les placer pour les utiliser au maximum de leur possibilité. On appelle orientation, le point cardinal vers lequel est tournée la face active du panneau (Sud, Nord, Sud-ouest...), L'inclinaison indique l'angle que fait le panneau avec le plan horizontal, elle se compte donc en degrés. L'orientation idéale d'un panneau photovoltaïque obéit à une règle qui consiste à l'orienter vers l'équateur. Ce qui donne l'orientation vers le sud dans l'hémisphère nord ou

vers le nord dans l'hémisphère sud. En ce qui concerne l'inclinaison, on tiendra compte de la période de l'année la moins ensoleillée pour optimiser la production de l'énergie. Les panneaux doivent donc récupérer l'énergie d'un soleil dont la hauteur est faible.

Nous avons choisi un plan incliné fixe d'une inclinaison 28° (par rapport à l'horizontale) comme l'illustre la figure 24, c'est l'inclinaison optimale donnée par le logiciel PVSys, avec l'orientation plein sud (inclinaison et azimut du panneau) et l'optimisation par rapport annuelle, avec tous les pertes ont négligentes. On définir Le facteur Transposition qu'il est le rapport de l'irradiation incidente (GlobInc) sur le plan, à l'irradiation horizontale (GlobHor). C'est à dire, Ce que vous gagnez (ou en vrac) lors de l'inclinaison du plan du capteur, pour notre système F_t =1,15.

Par la suite, nous passons au choix des composants électriques de notre système, à savoir, la technologie des panneaux photovoltaïque, les onduleurs, batteries etc.

Figure III.24 Angle d'orientation

Trajectoire du soleil à Ghardaïa, (Lat. 32.6005° N, long. 3.7009° E, alt. 569 m) Temps légal

Figure III.25 Horizon du Ghardaia

La définition d'un profil de l'horizon est une opération très simple avec l'outil graphique PVSYST. L'horizon est une ligne brisée superposée sur le diagramme de trajectoire du soleil, qui peut contenir un nombre quelconque de hauteur / points d'azimut.

L'angle de la hauteur du soleil c'est l'angle compris entre la direction du soleil et le plan horizontal varie de «0° à 90°» vers le zénith et de «0° vers - 90°» vers le nadir.

III.3.3. Simulation du système photovoltaïque couplé au réseau d'Oued Nechou- Ghardaïa

La station SKTM d'Oud Nechou contient quatre technologies des panneaux photovoltaïques avec un total de 70 panneaux solaires PV répartis sur huit sous-champs comme suit :

- Sous champ motorise monocristallin 105 kW_{c} ;
- Sous champ motorise poly-cristallin 98.7 kWc;
- Sous champ fixe cdte 100.8 kWc;
- Sous champ fixe a-si 100.116 kWc;
- Sous champ fixe monocristallin 105 kW_{c} ;

- Sous champ fixe polycristallin 98.7 kW_c;
- Sous champ fixe monocristallin 255 kW_{c} ;
- Sous champ fixe polycristallin 258.5 kWc.

Les caractéristiques de ces cellules sont déjà citer auparavant dans les deux premiers chapitres.

Contrairement au logiciel Matlab, le PVSys ne nous permet pas d'introduire tous les types de cellules au même temps. Donc, nous devrons simuler chaque sous champs seule, on introduisant la puissance de sortie de chacun d'eux, et le type d'onduleur qui le convient. La bibliothèque du logiciel est très riche par les modèles de différentes marques de cellules et onduleurs existant dans l'industrie depuis des années, il suffit juste de choisir les mêmes caractéristiques des éléments exploités dans la centrale d'Oued Nechou.

Type se sous- champ	N° de panneaux par chaine	N° de chaines dans le sous champ	Tension de la chaine (V)	N° de boites de jonction	Rendement %
Monocristallin fixe 255 kWc	20	51	590.6	07	13 à 17
Polycristallin fixe 258.5 kWc	20	55	580.8	07	12 à 14
Amorphe 100.11 kWc	18	54	547.2	07	5 à 8
Couche mince cd-te 100.8 kWc	12	105	582	14	11.1
Monocristallin fixe 105 kWc	20	21	590.6	03	13 à 17
Polycristallin fixe 98.7 kWc	20	21	580.8	03	12 à 14
Monocristallin motorise 105 kWc	20	21	590.6	03	13 à 17

Polycristallin	20	21	580.8	03	12 à 14
motorise 98.7 kWc					

Tableau III.2. Les composantes de chaque sous-champ PV

Les résultats de simulation de tous les sous champs sont présentés dans ce qui suit.

III.3.3.1. Panneaux photovoltaïques monocristallins fixe 255 kWc

Dans cette partie, nous avons commencé par la simulation du premier sous champ, qui contient des cellules monocristallin fixes. Le logiciel nous a choisis 1020 modules, 20 modules connectés en série avec 51 chaines en parallèles. De plus, le système est connecté à un seul onduleur avec une tension de fonctionnement de l'ordre de 430-760 V.

Champ PV	
Nom et orientation du sous-champ	Nide au dimensionnement
Nom Champ PV	Pas de prédim. Entrez Pnom désirée 💿 255.0 kWc
Orient. Plan incliné fixe Indinaison 28° Azimut 0°	Redimens. bu surface disponible(modules) 1661 m²
Sélection du module PV	
Tous les modules 💌 Filter All PV modules 💌	Modules nécessaires approx. 1020
Atersa 💽 250 Wp 26V Si-mono A-250 M	Until 2015 Photon Mag. 2022 💌 💾 Ouvrir
Dimens. des tensions :p (60°C)	26.7 V 11.6 V
Sélection de l'onduleur	
Tous les onduleurs Output voltage 270 V Tri 50Hz 	I♥ 50 H2 I♥ 60 Hz
Nidec ASI S.p.A. 💌 239 kw 430 - 760 V TL 50 Hz S	olaroate PV8M291NN Until 2015 💽 🗎 Ouvrir
Nbre d'onduleurs	130-760 V Puissance globale ond. 239 kWac
i ension entree maximale:	88U V
Dimensionnement du champ	
Nombre de modules et chaînes Conditi	ons de fonctionnemen
? ? Vmpp (60°C) 534 V
	20°C) 629 V
Mod. en série 20 📩 🔽 entre 17 et 21 Voc (-	10°C) 832 V
Nh. chaînea 51 - W entre 49 et 51	
ND. chaines 151 . IV entre 48 et 51 Irradian	ce plan 1000 W/m² 🔅 Max. données 📀 STC
Perte sur-puissance 0.0 % III III IIII IIII IIIII IIIIIIIIII	TC) 409 A Puiss. max. en fonctionnement 228 kW
Rapport Pnom 1.07 Voir conditions 7 Isc (STO	C) 448 A à 1000 W/m² et 50°C)
Nbre modules 1020 Surface 1661 m ² Isc (aux	STC) 448 A Puiss. nom. champ (STC) 255 kWp
	A 250 M
Paramètres définis par l'utilisateur Fabricant	Atersa
Nombre de modules PV En série	20 modules En parallèle 51 chaînes
Nombre total de modules PV Nbre modules	1020 Puissance unitaire 250 Wc
Puissance globale du champ Nominale (STC)	255 kWc Aux cond. de fonct. 228 kWc (50°C)
Caractéristiques de fonct. du champ (50°C) U mpp	558 V I mpp 409 A
Surface totale Surface modules	1661 m²
Onduleur Modèle	Solargate PV8M291NN
Paramètres définis par l'utilisateur Fabricant	Nidec ASI S.p.A.
Caractéristiques Tension de fonctionnement	430-760 V Puissance unitaire 239 kWac
Batterie d'onduleurs Nbre d'onduleurs	1 unités Puissance totale 239 kWac Rapport Pnom 1.07

Figure III.26 Caractéristiques des cellules monocristallines fixes et de l'onduleur

Le rapport obtenu après la simulation du modèle, contient quatre éléments essentiels, dont le premier est un histogramme de taux de production annuel, et un autre sur l'indice de performance de sous-champ dans chaque mois, de plus, un diagramme des pertes au système dans toute l'année, vers la fin un tableau résume plus de donnée, à savoir :

1. Indice de performance (PR)

D'après les résultats obtenus, nous constatons que le taux de performance atteint sa valeur max dans les mois de janvier et décembre qui est de l'ordre de 0,84 %, par contre, il est moins faible en moins de juillet, il est de l'ordre de 0,72 % cela peut être expliqué par l'élévation de la température dans cette période, ce qui implique la diminution de la performance des panneaux solaire.

2. Productions normalisées (par kWp installé)

Concernant le taux de l'énergie produite à la sortie de l'onduleur est un peu élevé en mois de mars et avril, il est de l'ordre de 6 kWh, et faible en mois d'octobre. Cette production est généralement accompagnée par des pertes soit au niveau de l'onduleur ou bien au niveau des champs photovoltaïques, pour les premiers pertes, ils gardent presque le même niveau durant toute l'année, il y a juste une petite augmentation remarqué. Cela est peut-être dû à son adaptation à la plage de tension des modules PV, qui est relié à la température atteinte par ceux-ci.

Pour les pertes du champ PV, ils sont les plus élevées dans les trois mois de l'été (Juin, Juillet et Aout). Il est à signaler que la température et l'irradiation ont un effet négatif sur la performance des modules. Une dégradation de puissance est constatée lorsque le taux de ces deux grandeurs est augmenté.

3. Le tableau des caractéristiques d'un module PV

GlobHor = 2213 kWh/m^2 (radiation de soleil);

DiffHor = 455.39 kWh/m² (radiation En miroir) ;

 $T_Amb = 22.48 \ ^{\circ}C$;

 $GlobInc = 2556.4 \text{ kWh/m}^2$;

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages) ;

EArray = 526.19 MWh (Énergie qui sort du sous-champ) ;

E_Grid = 514.08 MWh (Énergie qui entre dans le réseau) ;

PR = 0.789 % (Indice de performance);

CHAPITRE .III

4. Diagramme des pertes sur l'année entière :

Il est à constater d'après le diagramme des pertes, qu'il existe plusieurs sources des pertes à savoir, les pertes dû aux conditions climatiques comme l'irradiation et la température, l'effet de cette dernière sur l'énergie du champ est le plus grand, et pertes de câblage et mismatch des modules. Sans oublie les différentes pertes au niveau de l'onduleur.

Figure III.27 Rapport des résultats de simulation des cellules monocristallines fixes 255 kWc

III.3.3.2. Panneaux photovoltaïques monocristallins fixe 105 kWc et motorisé 105 kWc

Le sous champ simulé dans cette partie délivre une puissance de l'ordre de 105 kW_c, d'après l'étude réalisée. Selon l'analyse, on a besoin de 420 modules subdivisés en 20 modules en série et 21 chaines en parallèles. Un seul onduleur est connecté à ce système avec une tension de 430-760V.

Dans les figures 28 et 30 sont mentionnées tous les caractéristiques des éléments électriques utilisés dans ces sous-champs.

Configuration globale du système 1 Nombre de types de sous-champs ? Schéma simplifié	Résumé système global Puissance PV nominale 105 kWp Nombre de modules 420 Puissance PV nominale 105 kWp Surface modules 684 m² Puissance PV maximale 103 kWdc Nbre d'onduleurs 1 Puissance AC nominale 98.0 kWac
Champ PV Nom et orientation du sous-champ Nom Champ PV Orient. Plan incliné fixe Azimut	Aide au dimensionnement Pas de prédim. Entrez Pnom désirée (• 105.0 Redimens. pu surface disponible(modules) 684 m²
Sélection du module PV Tous les modules Filter Atersa Filter Atersa 250 Wp 26V Si-mono A Dimens. des tensions :p (6) Use Optimizer Voc (-1)	Modules nécessaires approx. 420 250 M Until 2015 Photon Maq. 2022
Sélection de l'onduleur Tous les onduleurs Image: Construction of the second	✓ 50 Hz ✓ 60 Hz
Dimensionnement du champ Nombre de modules et chaînes ? ? Mod. en série 20	Conditions de fonctionnemen Vmpp (60°C) 534 V Vmpp (20°C) 629 V Voc (-10°C) 832 V
Nb. chaînes 21 ✓ entre 20 et 21 Perte sur-puissance 0.0 % Yoir conditions Rapport Pnom 1.07 Yoir conditions Nbre modules 420 Surface 684 m²	Irradiance plan 1000 W/m² Max. données STC Impp (STC) 168 A Puiss. max. en fonctionnement 94.0 kW Isc (STC) 185 A à 1000 W/m² et 50°C) 94.0 kW Isc (aux STC) 185 A Puiss. nom. champ (STC) 105 kWp

Module PV Paramètres définis par l'utilisater Nombre de modules PV Nombre total de modules PV Puissance globale du champ	Si-mono Modè ur Fabrica En séri Nbre module Nominale (STC	A-250 M nt Atersa ie 20 modules es 420 C) 105 kWc	En parallèle Puissance unitaire Aux cond. de fonct.	21 chaînes 250 Wc 94.0 kWc (50°C)
Surface totale	Surface module	es 684 m²	ттрр	100 A
Onduleur Paramètres définis par l'utilisate Caractéristiques Te	Modè ur Fabrica nsion de fonctionneme	le Solargate P nt Nidec ASI S nt 430-760 V	vV8L121NN .p.A. Puissance unitaire	98 kWac
Batterie d'onduleurs	Nbre d'onduleu	rs 1 unités	Puissance totale	98 kWac 1.07

Figure III.28 Caractéristiques des cellules monocristallines fixes et de l'onduleur

1. Indice de performance (PR)

Il est à constater la diminution de la performance des modules monocristallins dans le mois de juillet (0. 72 %). Cependant, en deux premier et dernier mois de l'année elle atteint 0.82 %, donc une différence de 10% est remarquée.

2. Productions normalisées (par kWp installé)

La production est plus grande en printemps ou il y a un équilibre dans le taux de température et l'éclairement, ce qui implique un bon fonctionnement des panneaux photovoltaïques. Une réduction de l'ordre de 1.5 kWh est obtenue en mois d'octobre, décembre et janvier. Cela peut être expliqué par la faiblesse du taux d'irradiation globale horizontale qui est entre 108 -119 kWh/m² et celle diffuse horizontale entre 18 et 19.78 kWh/m². Concernant les pertes enregistrées au niveau du sous-champ, ils sont de l'ordre de 1.35 kWh/jr au niveau des panneaux et de 0.24 kWh/jr au niveau de l'onduleur.

3. Le tableau des caractéristiques d'un module PV

Les valeurs suivantes sont les valeurs moyennes par année

GlobHor = 2213 kWh/m^2 (radiation de soleil);

DiffHor = 455.39 kWh/m² (radiation En miroir);

 $T_Amb = 22.48 \ ^{\circ}C$;

 $GlobInc = 2556.4 \text{ kWh/m}^2$;

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages) ;

EArray = 216.67 MWh (Énergie qui sort du sous-champ) ;

E_Grid = 207.59 MWh (Énergie qui entre dans le réseau) ;

PR = 0.773 % (Indice de performance).

4. Diagramme des pertes de l'année entière

Il est à souligner que les valeurs des pertes obtenues dans ce cas sont les mêmes que celles déclarées dans le sous champs monocristallin qui délivre une puissance de 255 kW_c . Puisque le même type de cellules est introduit dans les deux sous-champs la seule différence réside au niveau de la valeur de la puissance du champ.

Figure III.29 Rapport des résultats de simulation des cellules monocristallines fixes 105 kWc

CHAPITRE .III

Champ PV	
Nom et orientation du sous-champ	Aide au dimensionnement
Nom Champ PV	Pas de prédim. Entrez Pnom désirée 🕥 105.0 kWc
Orient. Plan incliné fixe Azimut 0°	? Redimens. pu surface disponible(modules) C 684 m ²
Sélection du module PV	
Tous les modules Filter All PV modules	Modules nécessaires approx. 420
Atersa 💌 250 Wp 26V Si-mono A-250 M	Until 2015 Photon Mag. 2022 💌 🐴 Ouvrir
Dimens. des tensions :p (60°C)	26.7 ∀
Use Optimizer Voc (-10°C)	41.6 V
Sélection de l'onduleur	
Tous les onduleurs Output voltage 400 V Tri 50Hz	v 50 H2 √ 60 Hz
Nidec ASI S.p.A. 💌 98 kW 430 - 760 V Trnsfo 50 Hz	olargate PV8L 121NN Until 2015 🖃 🛅 Ouvrir
Nbre d'onduleurs	430-760 v Puissance globale ond. 98.0 kWac
, Tension entrée maximale:	880 V
-Dimensionnement du champ	
Nombre de modules et chaînes Condi	ions de fonctionnemen
? ? Vmm	(60°C) 534 V
	(20°C) 629 V
	10°C) 832 V
Nb. chaînes 21 🔆 🔽 entre 20 et 21 Irradia	ce plan 1000 W/m² O Max. données O STC
Perte sur-puissance 0.0 % The Voir conditions 2 Impp ()	TC) 168 A Puiss. max. en fonctionnement 94.0 kW
Rapport Pnom 1.07	
Nbre modules 420 Surface 684 m ² Isc (au	STC) 185 A Puiss. nom. champ (STC) 105 kWp
Module PV Si-mono Mod	èle A-250 M
Paramètres définis par l'utilisateur Fabric	ant Atersa
Nombre de modules PV En se	rie 20 modules En parallele 21 chaines
Nombre total de modules PV Nore modu	es 420 Puissance unitaire 250 Wc
Puissance giobale du champ Nominale (S	C) 105 KVVC Aux cond. de fonct. 94.0 KVVC (50°C)
Caracteristiques de lonci, du champ (50 C) Un	pp 558 V Impp 168 A
Surface totale Surface modu	es 664 m ²
Onduleur Mod	èle Solargate PV8L121NN
Paramètres définis par l'utilisateur Fabric	ant Nidec ASI S.p.A.
Caractéristiques Tension de fonctionnem	ent 430-760 V Puissance unitaire 98 kWac
Batterie d'onduleurs Nbre d'ondule	urs 1 unités Puissance totale 98 kWac Rapport Pnom 1.07

Figure III.30 Caractéristiques des cellules monocristallines motorisées et de l'onduleur

D'après les figures 29 et 31 nous remarquons que quoique ce soit l'installation fixe ou bien motorisé, nous avons obtenu les mêmes résultats de production et performance annuelle. De plus, il nous a affiché les mêmes types de pertes dans l'onduleur et champ photovoltaïque.

III.3.3.3. Panneaux photovoltaïques polycristallines fixe 258.5 kWc

Les figures 32 et 33 donnent les résultats de simulation d'un sous champ polycristallin qui délivre une puissance de 258.5 kW_c, afin d'obtenir cette valeur nous avons besoin de 1124 modules dont 20 sont connectés en série avec 56 chaines en parallèle. Il est à noter y'il y a une différence d'une seule chaine en plus dans la centrale par rapport au logiciel. De plus le sous-champ est connecté à un seul onduleur dont les caractéristiques sont les mêmes que celui utilisé en réalité.

Sous-champ	Liste des sous-champs	?
Nom et orientation du sous-champ Aide au dimensionnement		
Nom Champ PV O Pas de prédim. Entrez Pnom désirée @ 258.5 kwc 😨		
Orient. Plan incliné fixe Indinaison 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28° 28°	Nom	#Mod #Chaîne #Ond. #MPPT
	Champ PV	
Selection du module PV	Atersa - A-230 P	20 56
Tous les modules V Filtre Tous les modules PV Modules nécessaires approx. 1124	Nidec ASI S.p.A Solargate P	1 1
Atersa V 230 Wo 25V Si-poly A-230 P lusou'à 2015 Maguifacturer 2009 O Quyrir		
Utiliser optimiseur		
Dimens, des tensions : Vmon (60°C) 26.1 V		
Vco (-10°C) 41.4 V		
Sélection de l'onduleur		
Tous les onduleurs Tension de sortie 270 V Tri 50Hz		
Nidec ASI S.p.A. 239 kW 430 - 760 V TL 50 Hz Solargate PV8M291NN Jusqu'à 2015 Q Ouvrir		
Nbre d'onduleurs 1 Tension de fonctionnement: 430-760 V Puissance globale ond, 239 kWac		
Tension entrée maximale: 880 V		
Dimensionnement du champ		
Nombre de modules et chaînes Cond. de fonctionnement	Resume systeme global	
Vmpp (60°C) 522 V	Nombre de modules 1120	
Vmpp (20°C) 617 V	Surface modules 1824 m ²	
Mod. en serie 20 Ventre 17 et 21 Vco (-10°C) 828 V	Nbre d'onduleurs 1	
Nb. chaînes 56 û 🖉 entre 52 et 56	Puissance PV nominale 258 kWc	
Instructure plan 1000 w/m ² O Max. connect 33 kW	Puissance PV maximale 253 kWD	с
Perte surpuissance 0.0 % Voir conditions ? Info (STC) 425 A (a 1000 W/m² et 50°C)	Puissance AC nominale 239 kWA	c
Rapport Phom 1.08	Rapport Pnom 1.078	-
Nbre modules 1120 Surface 1824 m² Isc (aux STC) 455 A Puiss. nom. champ (STC) 258 kWc		
Q Résumé du système	a simplifié 🛛 🗙 Annuler	🧹 ок
		•

Module PV	Si-poly	Modèle	A-230 P		
Base de données PVsyst originale		Fabricant	Atersa		
Nombre de modules PV		En série	20 modules	En parallèle	56 chaînes
Nombre total de modules PV	Nbre modules		1120	Puissance unitaire	230 Wc
Puissance globale du champ	Nomin	Nominale (STC) 258 kWc		Aux cond. de fonct.	233 kWc (50°C)
Caractéristiques de fonct. du champ (50°C)		U mpp	545 V	l mpp	427 A
Surface totale	Surface	modules	1824 m²	Surface cellule	1635 m²
Onduleur		Modèle	Solargate P	V8M291NN	
Paramètres définis par l'utilisateur		Fabricant	Nidec ASI S.	p.A.	
Caractéristiques Tensi	ion de foncti	onnement	430-760 V	Puissance unitaire	239 kWac
Batterie d'onduleurs	Nbre d	onduleurs	1 unités	Puissance totale	239 kWac
				Rapport Pnom	1.08

Figure III.32 Caractéristiques des cellules polycristallines fixes et de l'onduleur

1. Indice de performance (PR)

Il est à déclarer que la performance de ce type de cellule est plus faible durant le mois de juillet. Per contre, elle est de 10 % de plus dans la fin et le début de l'année.

2. Productions normalisées (par kWp installé)

Le taux de production de ce sous champ est de l'ordre de 5.66 kWh/jr, avec des pertes de collection au niveau du champ PV environ 1.21kWh/jr et celles au niveau de l'onduleur de l'ordre de 0.13kWh/jr, celles-ci sont toujours plus faibles par rapport aux pertes de collection.

Concernant, les pertes dues à la température sont égales à 12.20 %.

3. Les caractéristiques du champ

GlobHor = 2213 kWh/m² (radiation de soleil)

DiffHor = 455.39 kWh/m² (radiation En miroir)

T_Amb = 22.48 °C

CHAPITRE .III

 $GlobInc = 2556.4 \text{ kWh/m}^2$

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages)

EArray = 544.32MWh (Énergie qui sort du sous-champ)

E_Grid = 531.94MWh (Énergie qui entre dans le réseau)

PR = 0.808 % (Indice de performance)

Figure III.33 Rapport des résultats de simulation des cellules polycristallines fixes 258.5 kWc

III.3.3.4. Panneaux photovoltaïques polycristallines fixe et motorisé de 98.7 kWc

D'après les deux figures 34 et 36 des deux sous-champs fixe et motorisé de cellules polycristallines, qui délivrent 98.7 kW_c chacun, nous obtenons les mêmes nombre des modules qui sont de l'ordre de 429 modules dont 20 associés en série et 24 chaines en parallèles. Il est à noter que dans la centrale, il y a que 21 chaines en parallèles.

Sous-champ	0	Liste des sous-champs	?
Nom et orientation du sous-champ	Aide au dimensionnement		
Nom Champ PV	○ Pas de prédim. Entrez Pnom désirée		
Orient. Plan incliné fixe Indinaison 28° Azimut 0°	✓ Redimens ou surface disponible(modules) ○ 699 m ²	Nom	#Mod #Chaîne #Ond. #MPPT
Sélection du module PV		····· Champ PV	
Tous les modules V Filtre Tous les modules PV V	Modules nécessaires approx. 429	Atersa - A-230 P	20 24
		Nidec ASI S.p.A Solargate P	1 1
Atersa V 230 Wp 25V Si-poly A-230 P	Jusqu'à 2015 Manufacturer 2009 V		
Utiliser optimiseur			
Dimens, des tensions : Vmpp (60°C)	26.1 V		
Vco (-109)	41 A V		
VC0 (-10 C)	41.4 /		
Sélection de l'onduleur	✓ 50 Hz		
Tous les onduleurs 🛛 Tension de sortie 400 V Tri 50Hz	🔽 60 Hz		
Nidec ASI S.p.A. V 98 kW 430 - 760 V Trnsfo 50 Hz	Solargate PV8L121NN Jusqu'à 2015 💟 Q Ouvrir		
	430-760 V Duissance globale and 98.0 kWac		
Tension entrée maximale:	880 V		
	000 1		
Dimensionnement du champ	I for the second state of	Résumé système alchal	
Nombre de modules et chaines Cond	a puissance nom, du champ est superieure a la puissance d'entrée PV max, autorisées pour		
Vmpp	(60°C) 522 V cet onduleur, soit 109 kW.	Nombre de modules 480	
Mod. en série 20 🔶 🗹 entre 17 et 21 👔 Vice (-	-10°C) 828 V	Surface modules 782 m ²	
Nh chaînes 24 ^ 🔽 seule possibilité 21		Nbre d'onduleurs 1	
Irradia	nce plan 1000 W/m ² O Max. données O STC	Puissance PV nominale 110 kWc	
Perte surpuissance 0.0 % Voir conditions	STC) 183 A Puiss, max, en fonctionnement 99.9 kW (à 1000 W/m² et 50°C)	Puissance AC nominale 98.0 kWAC	
Rapport Pnom 1.13		Rapport Pnom 1.127	
Nbre modules 480 Surface 782 m ² Isc (au	IX STC) 195 A Puiss. nom. champ (STC) 110 kWc		
🔍 Résumé du système	🚠 Schéma s	implifié 🗙 Annuler	🗸 ок

Module PV Base de données PVsyst originale	Si-poly Modèle Fabricant	A-230 P Atersa		
Nombre de modules PV	En série	20 modules	En parallèle	24 chaînes
Nombre total de modules PV	Nbre modules	480	Puissance unitaire	230 Wc
Puissance globale du champ	Nominale (STC)	110 kWc	Aux cond. de fonct.	99.9 kWc (50°C)
Caractéristiques de fonct. du champ (50°C) U mpp	545 V	l mpp	183 A
Surface totale	Surface modules	782 m²	Surface cellule	701 m²
Onduleur	Modèle	Solargate P	/8L121NN	
Paramètres définis par l'utilisateur	Fabricant	Nidec ASI S.	p.A.	
Caractéristiques Tensi	on de fonctionnement	430-760 V	Puissance unitaire	98 kWac
Batterie d'onduleurs	Nbre d'onduleurs	1 unités	Puissance totale Rapport Pnom	98 kWac 1.13

Figure III.34 Caractéristiques des cellules polycristallines fixes et de l'onduleur

Figure III.35 Rapport des résultats de simulation des cellules polycristallines fixes 98.5 kWc

1. Indice de performance (PR)

Les figures 35 et 37 Illustrent les rapports de deux sous champs de la technologie polycristallines fixe et motorisé pour une puissance de 98.7kWc. Il est à signaler que le mode d'installation n'affecte pas le rendement des panneaux PV de même nature et dans les mêmes conditions. Nous notons que le taux de performance en janvier et décembre est d'environ 0,84 % plus que celui enregistré en mois de juillet 0,74 %.

2. Productions normalisées (par kWp installé)

L'énergie produite par les deux sous champs est de l'ordre de pour chacun 233.28 MWh par année, elle est plus grande en mois de Mars, Avril et Mai, elle est environ 21 MWh.

CHAPITRE .III

En ce qui concerne les pertes, il est à remarquer qu'ils sont les mêmes dans les deux sous champs.

Sous-champ		0	Liste des sous	s-champs		?
Nom et orientation du sous-champ	Aide au dimensionnement	-	I A A	A 1		
Nom Champ PV	O Pas de prédim. Entrez Pr	om désirée 🖲 98.7 🛛 kWc 💔 📗	· · · · · · ·	∧ Ш		
Indinaison 28°			Nom		#Mod	#Chaîne
Orient. Plan incline fixe Azimut 0°	✓ Redimens.				#Ond.	#MPPT
Sélection du module DV			····· Champ PV			
		170	Atersa - A-2	30 P	20	24
Tous les modules	Modules necessaire	s approx. 429	Nidec ASI S.	p.A Solargate P	1	1
Atersa V 230 Wp 25V Si-poly A-230 F	Jusou'à 2015 Mar	ufacturer 2009 🗸 🛛 Ö Ouvrir				
Utiliser optimiseur						
Dimens, des tensions : Vmnn (60°C	26.1 V					
bindibi des deisions i misp (os e						
Vco (-10°C)	41.4 V					
Sélection de l'onduleur						
		🗹 50 Hz				
Tension de sorde 400 V Tri SUHZ		00 Hz				
Nidec ASI S.p.A. V 98 kW 430 - 760 V Trnsfo 50 Hz	Solargate PV8L121NN Jusc	u'à 2015 🗹 🔾 Ouvrir				
	420 ZCO V Duissance alabala and OR	A latter				
	430-760 V Puissance globale ond. 98.	J KWdL				
Tension entree maximale	:: 880 V					
- Dimensionnement du champ						
Nombre de modules et chaînes	nd de fonctionnement	nom, du champ est supérieure à	Résumé systè	eme global		
	la puissance	l'entrée PV max, autorisées pour		J		
Vr	npp (60°C) 522 V cet	onduleur, soit 109 kW.	Nombre de module	s 480		
Mod. en série 20 ^ Vrentre 17 et 21 0	pp (20°C) 617 V (Info, non important)	Surface modules	782 m²		
	0 (-10°C) 020 V		Nbre d'onduleurs	1		
Nb. chaînes 24 🔶 🔽 seule possibilité 21 Irra	diance plan 1000 W/m² O Ma	ix, données 🔘 STC	Puissance PV nomir	nale 110 kWc		
	p (STC) 183 A Puiss, max, en f	onctionnement 99.9 kW	Puissance PV maxir	male 108 kWDC		
Perte surpuissance 0.0 %	(STC) 195 A (à 1000 W/m ²	et 50°C)	Puissance AC nomi	nale 98.0 kWAC		
			Rapport Pnom	1.127		
Nbre modules 480 Surface 782 m ² Isc	(aux STC) 195 A Puiss. nom. ch	amp (STC) 110 kWc				
Module PV	Si-poly Modèle A-23	0 P				
Base de données PVsyst originale	Fabricant Ater	sa				
Nombre de modules PV	En série 20 m	odules En	parallèle	24 chaînes		
Nombre total de modules PV	Nore modules 480	Puissance	unitaire	230 Wc	-0°C)	
Caractéristiques de fonct, du champ (f	50°C) Llmpp 545	V Aux cond. C	l mnn	183 A	50 C)	
Surface totale	Surface modules 782	m² Surfac	e cellule	701 m ²		
				-		
Onduleur	Modèle Sola	rgate PV8L121NN				
Onduleur Paramètres définis par l'utilisateur	Modèle Sola Fabricant Nide	c ASI S.p.A.				
Onduleur Paramètres définis par l'utilisateur Caractéristiques Tensio	Modèle Sola Fabricant Nide on de fonctionnement 430-	c ASI S.p.A. 760 V Puissance	e unitaire	98 kWac		
Onduleur Paramètres définis par l'utilisateur Caractéristiques Tensio Batterie d'onduleurs	Modèle Sola Fabricant Nide on de fonctionnement 430- Nbre d'onduleurs 1 un	rrgate PV8L121NN c ASI S.p.A. 760 V Puissance ités Puissance	e unitaire ce totale	98 kWac 98 kWac		

Figure III.36 Caractéristiques des cellules polycristallines motorisées et de l'onduleur

1. Les caractéristiques du champ

GlobHor = 2213 kWh/m² (radiation de soleil)

DiffHor = 455.39 kWh/m^2 (radiation En miroir)

T_Amb = 22.48 °C

 $GlobInc = 2556.4 \ kWh/m^2$

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages)

EArray = 233.28 MWh (Énergie qui sort du sous-champ)

E_Grid = 223.62 MWh (Énergie qui entre dans le réseau)

PR = 0.792 % (Indice de performance)

III.3.3.5. Panneaux photovoltaïques couche mince CdTte fixe 100.8 kWc

Dans la figure 38 sont représentées les résultats de simulation d'un sous champ de type couche mince qui produit une puissance de 100.8 kWc, le champ est subdivisé en 1260 modules dont 12

modules associé en série et 126 chaines en parallèles. Nous remarquons que le nombre des chaines et de 21 chaines en plus par rapport à la centrale. Le champ est connecté à un seul onduleur.

Sous-champ (2	Liste des sous-champs	0
Nom et orientation du sous-champ Aide au dimensionnement		
Nom Champ PV O Pas de prédim. Entrez Pnom désirée		#Mod #Chaîne
Orient. Plan incliné fixe Azimut O ✓ Redimens. ou surface disponible(modules) 0 907 m²	Nom	#Ond. #MPPT
Sélection du module PV	Champ PV First Solar - ES-380	12 126
Tous les modules V Filtre Tous les modules PV Modules nécessaires approx. 1260	Nidec ASI S.p.A Solargate	e P 1 1
First solar V 80 Wp 41V CdTe FS-380 Jusqu'à 2014 Manufacturer Q1 2(Q Ouvrir		
Utiliser optimiseur		
Dimens. des tensions : Vmpp (60°C) 43.2 V		
Vco (-10°C) 64.9 V		
Sélection de l'onduleur		
Tous les onduleurs V Tension de sortie 400 V Tri 50Hz		
Nidec ASI S.p.A. V 98 kW 430 - 760 V Trnsfo 50 Hz Solargate PV8L121NN Jusqu'à 2015 Q Ouvrir		
Nbre d'onduleurs 1 Constitution de fonctionnement: 430-760 V Puissance globale ond. 98.0 kWac		
Dimensionnement du champ		
Nombre de modules et chaînes Cond. de fonctionnement La puissance nom. du champ est supérieure à	Résumé système global	
Vmpp (60°C) 518 V cet ondueur, soit 109 kW.	Nombre de modules 1512	2
Mod. en série 12 0 € Sentre 10 et 12 0 Vinpo (20°C) 577 V (unito, non important)	Surface modules 1089 Nore d'onduleurs 1) m²
Nb. chaînes 126 Centre 102 et 105 Irradiance plan 1000 W/m ² O Max. données O STC	Puissance PV nominale 121	L kWc
Perte surpuissance 0.5 % Imp (STC) 213 A Puiss. max. en fonctionnement 114 kW	Puissance PV maximale 123	kWDC
Rapport Pnom 1.23 Isc (STC) 237 A (à 1000 W/m ² et 50°C)	Puissance AC nominale 98.0 Rapport Pnom 1.234) kWAC 1
Nbre modules 1512 Surface 1089 m² Isc (aux STC) 237 A Puiss. nom. champ (STC) 121 kWc		
Module PV CdTe Modèle FS-380		
Base de données PVsyst originale Eabricant Eirst Solar		
Nombre de modules PV En série 12 modules	En parallèle 12	26 chaînes
Nombre de modules IV Nhre medules 1512 Dui	conpos unitairo 90	0 Mo
Nombre total de modules PV Nore modules 1512 Pui	ssance unitaire of	
Puissance globale du champ Nominale (STC) 121 KWC Aux	cond. de fonct. 11	14 KVVC (50°C)
Caracteristiques de fonct. du champ (50°C) U mpp 532 V	Tmpp 21	13 A
Surface totale Surface modules 1089 m ²	Surface cellule 88	89 m²
Onduleur Modèle Solargate PV8L12	1NN	
Paramètres définis par l'utilisateur Fabricant Nidec ASI S.p.A.		
Caractéristiques Tension de fonctionnement 430-760 V Pui	ssance unitaire 98	8 kWac
Deltada diandularun Austria D	ulasana tatala Di	
Datterie d'oriquieurs 1 Unites P	uissance totale 98	o kwac
	Rapport Phom 1.	.23

Figure III.38 Caractéristiques des cellules couches minces CdTte et de l'onduleur

1. Indice de performance (PR)

D'après la figure 39, nous observant que le taux de performance en mois de janvier et décembre est d'environ 0,85 %, celui-ci est inférieur en mois de juillet 0,78 %. Il est à signaler que ce résultat est un peu différent par comparaison avec ceux trouvés dans les autres technologies. La différence entre les deux mois est de l'ordre de 7 % par contre pour les autres types est de l'ordre de 10%.

2. Productions normalisées (par kWp installé)

Dans les photos 39 sont présentés les histogrammes de la performance du sous champ, il est à remarquer que pour cette technologie, le taux de production est presque le même pour plus de trois mois par année, à savoir, le mois Mars, Avril, Mai, Juillet et Aout. Ce qui n'est pas le cas pour les

CHAPITRE .III

autres technologies.

Egalement, à travers le diagramme nous constatons que les pertes enregistrées au cours de l'année, sont un peu différent, comme par exemple dans le cas des pertes dues à la température sont un peu moins dans ce type par rapport aux autres.

Figure III.39 Rapport des résultats de simulation des cellules couche mince CdTte 100.8kWc

3. Les caractéristiques du champ

GlobHor = 2213 kWh/m^2 (radiation de soleil)

DiffHor = 455.39 kWh/m² (radiation En miroir)

T_Amb = 22.48 °C

CHAPITRE .III

 $GlobInc = 2556.4 \text{ kWh/m}^2$

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages)

EArray = 261.87 MWh (Énergie qui sort du sous-champ)

E_Grid = 251.11MWh (Énergie qui entre dans le réseau)

PR = 0.812 % (Indice de performance)

III.3.3.6. Panneaux photovoltaïques amorphe a-si fixe 100.116 kWc

Dans cette partie, nous avons simulé le comportement d'un sous champ contient des cellules photovoltaïque de type amorphe, La puissance résultante de ce sous champ et de l'ordre de 100.116kWc, cette-dernière est déclarée dans la plateforme du logiciel, il nous proposé un champ de 972 modules dont 18 modules connectés en série et 54 chaines en parallèles. Ces choix de raccordement sont exactement les mêmes réalisés au niveau du SKTM à Oued Nechou.

Sous-champ 🕜	Liste des sous-champs	?		
Nom et orientation du sous-champ Aide au dimensionnement	1 → AB × A =			
Orient. Plan incliné fixe Indinaison 28° Azimut 0° ✓ Redimens. ou surface disponible(modules) O [1409] m ²	Nom #Mod #Ond	#Chaîne . #MPPT		
Crient. Plan incline rixe Azimut 0° ✓ Redimens. … ou sublicited uspondule(modules) [H09] Iff #Ond. #MPPT Schection du module PV Tous les modules Filtre Tous les modules PV Modules nécessaires approx. 972 Schott Solar AG 103 Wp 26V a-Si:H tandem PROTECT ASI 103 Depuis 2011 Manufacturer 2011 © Duvrir Utiliser optimiseur Dimens. des tensions : Vmpp (60°C) 28.6 V Vico (-10°C) 42.1 V Selection de l'onduleur Vico (-10°C) 42.1 V Solar 36 or 50 Hz 50 Hz Node ASI S.p.A. 98 kW 430 - 760 V Trisfo 50 Hz Solargate PV8L121NN Jusqu'à 2015 © Ouvrir Nbre d'onduleurs 1 Solargate PV8L121NN Jusqu'à 2015 © Ouvrir Ouvrir Nbre d'onduleurs 1 Solargate PV8L121NN Jusqu'à 2015 © Ouvrir Ouvrir Nbre d'onduleurs 1 Solargate PV8L121NN Jusqu'à 2015 © Ouvrir Ouvrir				
Nombre de modules et chaînes Cond. de fonctionnement	Résumé système global			
Dégrad. initiale 10 % ≤ doit être Q Vmpp (60°C) 514 V Mod. en série 18 ≤ entre 16 et 19 Q Vmpp (20°C) 578 V Nb. chaines 54 entre 53 et 54	Nombre de modules 972 Surface modules 1409 m ² Nore d'onduleurs 1			
Investment Investment Investment Perte surpuissance 0.0 % Rapport Pnom 1.02 Voir conditions Imp (STC) 182 A Puiss. max. en fonctionnement 96.6 kW Isc (STC) 216 A (à 1000 W/m ² et 50°C)	Puissance PV nominale 100 KWC Puissance PV maximale 105 KWDC Puissance AC nominale 98.0 KWAC Rapport Pnom 1.022			

Module PV	a-Si:H tandem Mode	èle PROTECT	ASI 103		
Base de données PVsyst o	riginale Fabrica	ant Schott Sol	ar AG		
Nombre de modules PV	En sé	rie 18 module:	s En parallèle	54 chaînes	
Nombre total de modules PV	Nbre modul	es 972	Puissance unitaire	103 Wc	
Puissance globale du champ	Nominale (ST	C) 100 kWc	Aux cond. de fonct.	96.6 kWc (50°C)	
Caractéristiques de fonct. du o	champ (50°C) Ú m	pp 530 V	I mpp	182 A	
Surface totale	Surface modul	es 1409 m ²			
Onduleur Modèle		èle Solargate	Solargate PV8L121NN		
Paramètres définis par l'util	lisateur Fabrica	ant Nidec ASI	S.p.A.		
Caractéristiques	Tension de fonctionneme	ent 430-760 V	Puissance unitaire	98 kWac	
Batterie d'onduleurs	Nbre d'ondule	urs 1 unités	Puissance totale	98 kWac	
			Rapport Pnom	1.02	

Figure III.40 Caractéristiques des cellules photovoltaïques amorphes a-si et de l'onduleur

1. Indice de performance (PR)

Il est à remarquer une légère réduction dans la performance des modules PV dans les trois mois d'été (Juin, juillet et Aout), cette diminution est de l'ordre de 5%. Par contre, elle atteint son maximum 0,86 % durant le reste de l'année.

2. Productions normalisées (par kWp installé)

A propos du taux de la production d'énergie, il est à signaler que durant le mois de mars la production est dans son max, puis une diminution est constatée en hiver, cela peut être expliqué par l'affaiblissement de l'éclairement.

Concernant les pertes, celles au niveau du champ PV, sont moins faibles par rapport aux autres technologies. Cependant, celles au niveau de l'onduleur garde toujours la même valeur indépendamment de la technologie testée.

3. Les caractéristiques du champ

GlobHor = 2213 kWh/m^2 (radiation de soleil);

DiffHor = 455.39 kWh/m² (radiation En miroir);

 $T_Amb = 22.48 \ ^{\circ}C$;

 $GlobInc = 2556.4 \text{ kWh/m}^2;$

 $GlobEff = 2493.2 \text{ kWh/m}^2$ (En cas de nuages) ;

EArray = 226.48 MWh (Énergie qui sort du sous-champ) ;

E_Grid = 217.06 MWh (Énergie qui entre dans le réseau) ;

PR = 0.848 % (Indice de performance);

L'indice de performance qui est défini par le rapport de la production du système par l'énergie incidente de référence. Autrement dit, il représente l'efficacité globale du système par rapport à ce qu'on pourrait en attendre selon la puissance installée on voit bien que les panneaux photovoltaïques amorphe sont les plus performant par rapport aux autres technologies. En deuxième position, nous trouvons les panneaux PV en couche mince, puis les panneaux PV Polycristallin et en dernière position nous constatons que les panneaux monocristallins sont les moins performantes.

Concernant la différence entre un sous champ fixe ou bien motorisé, d'après l'analyse de nos résultats nous ne observant aucune variation dans tous les valeurs des caractéristiques enregistrées.

A propos du rendement des sous champs de même type de cellules et installation fixe, la seule différence réside au niveau du taux de l'énergie effective sortie du champ et celle injectée dans le réseau, ce qui affecte bien sûr l'indice de performance, qui a enregistré 5 % de plus dans le cas d'un sous champ monocristallin de 255 kWc par rapport à celui de 105 kWc. Et de 1 % de plus dans le sous champ polycristallin de 258.5 kWc par rapport à celui de 98.7 kWc.

III.4. Conclusion

CHAPITRE .III

Ce chapitre est consacré à l'étude de la performance électrique d'un champ photovoltaïque, nous avons pris comme un exemple la station de SKTM d'Oued Nechou à Ghardaia. Deux interfaces ont été exploités, à savoir, le Simulink/ Mtaleb et le logiciel de dimensionnement PVsys. Dans la première étape de cette étude nous avons choisi l'application de la commande MPPT, Ce type de commande est très répandu car il est simple et il donne une très bonne précision. Nous avons testé le fonctionnement électrique de l'un des sous champ d'Oued Nehou (Monocristallin 255 kWc), adapté par un convertisseur élévateur d'énergie DC/DC, celui-ci est régulé par une commande MPPT dans les conditions STC. D'après nos résultats nous concluons que le convertisseur DC-DC et la commande MPPT assurent correctement leurs rôles, et confirme le fort appel à l'utilisation de cette commande pour assurer une amélioration importante du rendement d'un champ photovoltaïque.

Concernant le dimensionnement d'un champ photovoltaïque, il est à signaler que les résultats de simulation des sous champs d'Oued Nechou avec les quatre différentes technologies sont en très bon accord avec le modèle réel de référence. Ce qui preuve que le logiciel est très répandu aux exigences des chercheurs et il facilite le pré-dimensionnement de n'importe quel projet de réalisation d'un champ photovoltaïque.

CONCLUSION GENERALE ET PERSPECTIVES

L'énergie solaire photovoltaïque joue un rôle primordial dans le futur système énergétique durable mondial. Elle a démontré des développements impressionnants en termes d'échelle de déploiement, de réduction des coûts et d'amélioration des performances, surtout au cours de la dernière décennie. La conversion photovoltaïque peut être réalisée avec une large gamme de matériaux, d'architectures de dispositifs et de technologies, à des niveaux de maturité technique et économique très différents. Comme c'est le cas aujourd'hui. Le PV est bien accepté par la plupart des pays développés du monde. Plusieurs nations ont déjà fait des investissements substantiels dans la croissance de ce domaine spécifique à travers leurs programmes nationaux. L'Algérie est l'un des pays qui a installé plusieurs champs PVs ce qui fait l'objet de ce mémoire.

Dans ce travail, nous nous sommes intéressés au dimensionnement, commande et évaluation de fonctionnement d'un champs photovoltaïque.

En premier lieu, une présentation du secteur énergétique en Algérie en focalisant sur l'exploitation photovoltaïques. Nous sommes passés en revue les différentes technologies de cellules exploitées dans un champ PV, et les différents éléments utilisés avec celles-ci en décrivant leurs principes de fonctionnement et leurs types.

En deuxième étapes, nous avons présenté les modèles de la simulation réalisés sous MATLAB Simulink et PVsys. Dans le premiers logiciel, nous avons testé le bon rendement des panneaux PV sous l'influence de divers grandeurs, comme la température, l'irradiation et l'association série et parallèle des modules PV. De plus, nous avons appliqué dans notre étude la commande MPPT afin de maximiser la puissance et simuler le comportement réel des panneaux dans le champ photovoltaïque. L'objectif était d'appliquer cette commande performante pour contrôler le comportement d'un hacheur DC/DC utilisé pour améliorer le rendement d'un générateur photovoltaïque. Dans cette partie nous avons pris comme exemple l'un des sous champs de la centrale d'Oued Nechou. Les résultats de notre étude ont révélé que cette commande est très efficace et robuste.

Concernant la deuxième simulation du système, elle est conçue sous PVSys, dans ce cas, on s'est intéressés au dimensionnement et l'estimation de la production d'énergie d'un champ photovoltaïques. Nous avons choisi d'étudier le champ d'Oued Nechou, Nous avons trouvé que le logiciel est très utile, simple et donne des très bons résultats logiques pour ce type d'étude.

Comme perspective, et toujours dans le même axe de recherche, nous proposons de testé la commande MPPT et d'autres types de commande sur les autres parties de la station avec les autres technologies, en variant les différents scénarios des conditions climatiques.

REFERENCES BIBLIOGRAPHIQUES

[1] I. Benkouar, A. Bengaid, M. N. Berrighaid, "L'étude Des Générateurs Photovoltaïques De La Centrale Photovoltaïque D'oued Nechou- Ghardaïa (SKTM)", Mémoire de Licence, Université Ghardaia, 2020.

[2] E. Amy de la breteque, "Etude du comportement thermique de modules photovoltaïques en vue de la prédiction de leur production électrique sur site", Thèse de Doctorat, Université de Provence, 2006.

[3] M. R. Nebbali, "Etude et dimensionnement d'une installation photovoltaïque", Mémoire de Master, Université Mouloud Mammeri Tizi-Ouzou, 2017.

[4] S. Khechafi, S. Benlaachi, "Calcul et dimensionnement électrique d'une mini centrale photovoltaïque autonome", Mémoire de Master, Ecole superieure en sciences appliques tlemcen, 2019.

[5] Y. Ammour, M. Kenouche, "Conception et réalisation d'un régulateur de charge par panneaux photovoltaïques", Mémoire de Master, Université Mohammed Seddik Ben Yahia – Jijel, 2019.

[6] I. Benghedier, "Etude et commande d'un suiveure solaire par un système de contrôle distribuee DCS ABB AC 500", Mémoire de Master, Université Ghardaia, 2020.

[7] L. Galloul, L.Messahli, "Modélisation d'un panneau photovoltaïque", Mémoire de Master, Université A.Mira-Bejaia, 2020.

[8] L.N.Sayah, S.Koull, "Cactérisation et Modélisation Electrique d'un Module Photovoltaïque en Silicium", Mémoire de Master, Université, Kasdi Merbah ouargla, 2019.

[9] D.Amiri, M.Bouabdellah, "Modélisation et simulation d'un panneau solaire photovoltaïque", Mémoire de Master, Université Saad Dahlab de Blida 1 ,2020.

[10] A. Ballouti, F. Djahli, A. Bendjadou, N. Belhaouchet, A. Benhamadouche, "Mppt system for photovoltaic module connected to battery adapted for unstable atmospheric conditions using vhdl-ams", ArabJ Sci Eng 2014; 39:2021–31. https://doi.org/10.1007/s13369-013-0767-y.