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Abstract

In this thesis, we establish necessary and sufficient conditions for the existence of the (P,Q)

generalized reflexive (anti-reflexive) solutions and the common (P,Q) generalized reflexive (anti-

reflexive) solutions to linear matrix equations AX = B and the system AX = B, XC = D

respectively, with respect to the generalized reflection matrix dual (P,Q).

Moreover, for all these solutions, we derive the explicit expression of the best solution estimator

to a given matrix in the Frobenius norm.

Keywords: (P ;Q) generalized reflexive solution, (P ;Q) generalized anti-reflexive solution,

Matrix equation, Moore-penrose generalized inverse, Frobenius norm, generalized reflection

matrix.

Résumé

Dans ce mémoire, nous établissons les conditions nécessaires et suffisantes pour l’existence

des solutions réflexives (P,Q) généralisées (anti-réflexives) et des solutions communes réflexives

(P,Q) généralisées (anti-réflexives) aux équations matricielles linéaires AX = B et au système

AX = B, XC = D respectivement, par rapport au couple des matrices de réflexion généralisée

(P,Q). De plus, pour toutes ces solutions, on donne l’expression explicite de la meilleure solu-

tion estimateure à une matrice donnée avec la norme de Frobenius .

Mots clés: (P ;Q) generalized réflixive solution, (P ;Q) generalized anti-réflixive solution, Ma-

trix equation ,Inverse généralisé de Moore-Penrose, Norme de Frobenius, Matrice de reflection.
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INTRODUCTION

In 1920, E. H Moore introduced the notion of the generalized inverse of a matrix. This notion

of generalized inverse reformulated by M. Penrose in 1955, where he gave a powerful tool for

solving a system of linear equations.

The theory of generalized inverses has its genetic roots mainly in the context of linear

problems interpreted by an equation of the type Ax = b, Where A is a linear transformation.

For the proposed equation to have a solution for x, it is necessary that A has an inverse, and as

this is not always the case, it may be desirable to looking for a matrix with explicit properties

to this inverse, This was stated by. Penrose by intoducing a matrix A verifying the following

four equations:

AXA = A, (1)

XAX = X, (2)

(AX)∗ = AX, (3)

(XA)∗ = XA. (4)

Thus the systems of linear equations know the appearance of the approached solution as

"the solution with least squares", "the solution with minimum norm" , "the solution with least

squares and minimum norm", "the solution with least rank". Generalized inverses and Moore-

Penrose inverse have been the subject of many researches. See for examples: [1], [21], [15],

Thus, a generalized inverse of the matrix A is a matrix having some properties of the inverse

matrix of A (when A is invertible). The purpose of the construction of the generalized inverse

is to obtain a matrix that can serve as the inverse in some way for a class of matrices wider than

those of the invertible matrices. In other words, the generalized inverse exists for any arbitrary

matrix, and when a matrix is invertible, then its inverse coincides with its generalized inverse.

1



2 INTRODUCTION

The most known matrix equations in matrix theory are the equations :

AX = C

AXB = C

AXA∗ = B

AX = C, XB = D

Where A, B, C and D are known matrices and X is unknown, so that the third equation

is a special case of the second equation. It is well known that solving linear matrix equations

is a subject of many research in computational mathematic and has been applied in various

areas such as control theory, vibration theory, biologie ans so on. In literature, the notion

of generalized inverses of matrices was used when Penrose considered general solutions of the

matrix equations AX = B and AXB = C see [21], Mitra in [16], [17] gave the conditions to

the paire of matrix equations A1XB1 = C1, A2XB2 = C2 to have a common solution and a

representation of this common solution is given.

Moreover, many problems can be transformed into some linear matrix equations. For example,

if the matrix equation is not consistent, researchers often try to find approximate solutions

that meet certain optimal criteria. One of the most widely used approach solutions is the least

square solution, which is defined as a matrix X which minimises the norm of the difference

AXB−C for the first equation AXB = C, see [5], [6]. Another kind among the approximated

solutions is the generalized reflexive (anti reflexive) solution which is defined as a matrix X

satisfies these two equalities : X = PXQ (or X = −PXQ). with respect to the matrix dual

(P ;Q) where P and Q are two generalized reflection matrices, see [4].

The (P,Q) generalized reflexive and anti-reflexive matrices have applications in system

and control theory, in engineering, in scientific computations and various other fields. The

reflexive and anti-reflexive solutions of a linear matrix equation or system of matrix equations

have been studied by many authers. For instance, Liu and Yuan [15] gave some conditions

for the existence and the representations for the (P,Q) generalized reflexive and anti-reflexive

solutions to matrix equation AX = B with respect to the generalized reflection matrix dual, In

[13], Liu establish some conditions for the existence and representations for the common (P,Q)

generalized reflexive and anti-reflexive solutions of matrix equations AX = B and XC = D. In

[7] the author studied the existence of a reflexive solution of the matrix equation AXB = C,

with respect to the generalized reflection matrix P . In [24], the authors derived the extremal

ranks of the matrix expression A−BXC, also Liu in [14] discussed the extremal ranks of this

expression where X is (anti-reflexive) matrix.
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3 INTRODUCTION

The thesis consists of three chapters, in the first chapter we gave some preliminary notions,

and since the inverse of Moore-Penrose is the most important tool throughout this work, It was

necessary to recall its algebraic properties and its role in the resolution of linear equations.

In the second chapter we give some conditions for the existence and the representations for

the common (P,Q) generalized reflexive (anti-reflexive) solutions of matrix equations AX = B,

where P and Q are two generalized reflection matrices. In addition, among all the solutions of

this linear system, we derive the explicit expression of the best estimator solution to a given

matrix in the Frobenius norm.

In the third chapter, we are interested by the same purpose of the last chapter but here

about the common (P,Q) generalized reflexive (anti-reflexive) solutions of matrix equations

AX = B and XC = D, where P and Q are two generalized reflection matrices. Also, we

establish the explicit formula of the best estimator solution among all solutions of this system

in the Frobenius norm.

3



RATING

Rating Definition

K the field of real or complex numbers.

Mm×n(C) the space of matrices of type m× n over C.

Cm×n the space matrices of type m× n on C.

Cm×n
r the space matrices of type m× n on C, of rank r.

A−1 the ordinary inverse of A.

A(1) the generalized inverse of A .

A+ the Moore-Penrose inverse of A.

AT the transpose matrix of A.

A∗ the adjoint matrix of A.

r(A) rank of matrix A.

R(A) the image of the matrix A.

N(A) the cor of the matrix A.

tr(A) the trace of the matrix A.

‖A‖F the Frobenius norm .

EA = I − AA+ and FA = I − A+A the orthogonal projectors induced by A.
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CHAPTER 1

PRELIMINARIES

In this chapter, we introduced definitions, theorems and propositions that will be used in the

sequal of this thesis.

1.1 Basic concepts

1.1.1 Linear transformations

In this section, F denotes the field of real or complex numbers.

Definition 1.1.1 Let V and W be two vector spaces over the field F and

let f : V −→ W an application.

Then F is called lineary if it satisfies the two conditions:

• for all vectors v1, v2 ∈ V ; f(v1 + v2) = f(v1) + f(v2).

• for any vector v ∈ V and scalar t ∈ F f(tv) = tf(v).

We denote L (V,W ), the set of lineary transformations of V in W on F .

Definition 1.1.2 Let f : V −→ W be a linear transformation

1. The Kernel (or null space) of f is the subset of V noted N(f) ⊂ V

N(f) = {v ∈ V, f(v) = 0}

2. The image of f is the subset of W noted R(f) ⊂ W

R(f) = {w ∈ W,∃v ∈ V, f(v) = w}

5



6 Chapter 1. Preliminaries

1.1.2 Matrices associated to linear applications between finite dimen-

sional vector spaces

Let V and W be two finite dimensional vector spaces n and m respectively over the field F

f : V −→ W a linear application,

and let {e1, e2, ..., en}, {u1, u2, ..., um} two bases of V and W respectively.

Definition 1.1.3 [10] The matrix of the application f

in the bases {ei}i=1,n and {uj}j=1,m the matrix noted M (f)ei,uj , belonging to Fm×n, whose

columns are the components of the vectors f (e1), f (e2) ,..., f (en) in the basis {u1, u2, ..., um} .

In particular, Cm×n (Rm×n) denote the set of m× n complex (real) matrices.

the matrix A ∈ Fm×n is square if m = n, rectangular otherwise.

Proposition 1.1.1 The application

M : L (V,W ) −→ Fm×n

f 7−→M (f)ei,uj

is an isomorphism of vector spaces So for all lineaire applications f and g of V in W, and for

all λ ∈ F :

M (f + g) = M (f) +M (g) .

M (λf) = λM (f) .

and M is bijective.

Definition 1.1.4 let matrixe A ∈ Cm×n,

• the transpose of A is the matrix At ∈ Cn×m with At [i, j] = A [j, i], for all i, j.

• the adjoint of A is the matrix A∗ ∈ Cn×m with A∗ [i, j] = A [j, i], for all i, j.

Definition 1.1.5 (1) The square matrix A ∈ Rn×n is said to be

• symmetric if At = A.

• anti-symmetrical if At = −A.

• orthogonal if At = A−1.

2) A square matrix A ∈ Cn×n is said to be

• Hermitian (self-adjoint) if A∗ = A.

• anti-hermitian if A∗ = −A.

• unitary if A∗ = A−1.

Proposition 1.1.2 1. For all matrices A ∈ F l×m and B ∈ Fm×n, (AB)t = BtAt.

6



7 Chapter 1. Preliminaries

2. For all matrices P ∈ Cl×m and Q ∈ Cm×n, (PQ)∗ = Q∗P ∗.

1.1.3 Partitioned matrices

A notation often used to write a matrix A(n, p) as a jutaposition of sub-matrices or blocks. We

then say that A is partitioned. It is of course necessary that the dimensions of the blocks are

compatible.

Exemple 1.1.1 The matrixe P =



1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4


, can be divided into :

P11 =


1 1 2

1 1 2

3 3 4

, P12 =


2

2

4

, P21 =

[
3 3 4

]
, P22 =

[
4

]

the partitioned matrix can be written as

P =

 P11 P12

P21 P22

 .

1.2 Complex matrices

1.2.1 Conjugate matrix

Definition 1.2.1 Let A be a complex matrix, the conjugate matrix of a matrix A with complex

coefficients is the matrix Ā made up of the conjugate elements of A.

More precisely, if we note aij and bij the respective coecients of A and Ā

then bij =āij

for exemple:

if A =

 2 + i 1− i

4 4 + 3i

, then Ā =

 2− i 1 + i

4 4− 3i


7



8 Chapter 1. Preliminaries

Proposition 1.2.1 Let A and B be any two matrices of Mm×n(C) and α ∈ C it is scalar

1. A+B = A+B.

2. AB = A ·B.

3. αA = αA.

4. A = A.

5. If A is an invertible square matrix (A−1) = (A)−1.

1.2.2 adjoint matrix

Definition 1.2.2 An adjoint matrix (also called a transconjugate matrix) of a matrix

A ∈Mm×n(C) is the transpose matrix of the conjugate matrix of A, and is denoted by A∗

In the special case where A ∈ Mm×n(R), its adjoint matrix is therefore simply its transpose

matrix. Thus we have :

A∗ = (A)T = (A)T

Exemple 1.2.1 A =


1− i 2

5 + i 4 + i

i 3 + i



A∗ =


1− i 2

5 + i 4 + i

i 3 + i



∗

=

 1 + i 5− i −i

2 4− i 3− i



Proposition 1.2.2 Let A,B ∈Mm×n(C), and C ∈Mm×n(R).

Then :

1. (A∗)∗ = A.

2. (AB)∗ = B∗A∗.

3. detA∗ = detA.

4. if A = A∗,the matrix A is said to be Hermitian or self-adjoint.

5. if C = CT , the matrix C is said to be symmetric .

8



9 Chapter 1. Preliminaries

6. if A = −A∗,the matrix A is said to be anti-Hermitian.

7. if C = −CT , the matrix C is said to be anti-symmetric.

8. if AA∗ = A∗A, the matrix A is said to be normal.

9. if AA∗ = A∗A = I, the matrix A is said to be unitary.

10. if CCT = CTC = I, the matrix C is said to be orthogonal.

1.2.3 Frobenius Norm

Definition 1.2.3 [1] (Trace of a square matrix) The trace of A = [aij] ∈ Cn×n

is denoted by the sum of the diagonal elements :

tr(A) =
∑n

i=1 aij

1. tr(A+B) = tr(A) + tr(B).

2. tr(cA) = c.tr(A).

Definition 1.2.4 Let A ∈ Cn×m, we define the Frobenius matrix norm denoted by ‖A‖F such

as :

‖A‖F =
√
traceA∗A =

(∑m
i=1

∑n
j=1 |aij|2

) 1
2

1.2.4 Rank of a matrix

Definition 1.2.5 1. Let {vi}i∈I be a family of vectors, We call the rank of the family {vi}

the dimension of the space generated by this family.

2. Let A ∈ Fm×n, We call the rank of A the rank of the family formed by the column vectors

of A, it is also the rank of the family formed by the vector rows.

Exemple 1.2.2 The rank of the matrix A =

1 2 −1
2

0

2 4 −1 0

 ∈ R2×4(K)

is by definition the rank of the family of vectors of

K2 :

v1 =

1

2

 , v2 =

2

4

 , v3 =

 −12
−1

 , v4 =

0

0




All these vectors are collinear to v1, so the rank of the family {v1, v2, v3, v4} is 1 and so r(A) = 1.

9



10 Chapter 1. Preliminaries

Full rank factorization

Proposition 1.2.3 Let A ∈ Cm×n of rank r, r 6= 0.

Then there exist matrices B ∈ Cm×r, C ∈ Cr×n such that r (B) = r (C) = r and A = BC.

This decomposition is called a full rank factorization of the matrix A.

Proof.

Let A ∈ Cm×n of rank r, let {b1, b2, ..., br} be a basis of R (A), let B ∈ Cm×r whose column

vectors are b1, b2, ..., br so r (B) = r.

For a matrix C ∈ Cr×n, each row vector of A is a linear combination of the row vectors of C.

of the row vectors of C from which we can write : A = BC for a matrix C ∈ Cr×n, so r (C) ≤ r,

from the property r (BC) ≤ min (r (B) , r (C)), we have r = r (A) ≤ r (C), consequently

r (C) = r.

Proposition 1.2.4 Let A, B ∈ Cm×n . Then:

i) r (AB) ≤ min (r (A) , r (B)).

ii) r (A+B) ≤ r (A) + r (B).

Proof.i) the vector of R(AB) is of the form ABx for a certain vector x,

and therefore it belongs to R(A), then R (AB) ⊂ R (A).

accordingly r (AB) = dimR (AB) ≤ dimR (A) = r (A).

Now, using this fact we have : r (AB) = r (B∗A∗) ≤ r (B∗) = r (B).

ii) Let A = XY , B = UV full rank factorizations of A and B respectively.

So, A+B = XY + UV = [X,U ]

 Y

V

 therefore and according to i) r (A+B) ≤ r [X,U ]

Let {x1, ..., xp} and {u1, ..., uq} be bases for R (X) and R (U) respectively.

Any vector in the image space of [X,U ] can be written as a linear combination of these p + q

vectors. so r [X,U ] ≤ r (X) + r (U) = r (A) + r (B) .

1.2.5 Idempotent

Proposition 1.2.5 1. Any idempotent matrix that different to the identity matrix is non-

invertible

10



11 Chapter 1. Preliminaries

2. Let E ∈ Cn×n, the following properties are quivalents :

(a) E∗ is an idempotent.

(b) I − E is an idempotent.

(c) N(E) = R(I − E).

(d) if x ∈ R(E), then Ex = x.

(e) rankE = traceE.

(f) E(I − E) = (I − E)E = 0.

1.2.6 Elementary block matrix operations (EBMO)

In order to conduct explicit formulas for the rank of block matrices, we use the three types of

elementary operations on block matrices (abbreviated as EBMO):

1. interchange two row ( column) blocks in a partitioned matrix.

2. multiply a row ( column) block by a non- singular matrix on the left ( on the right) in a

partitioned matrix.

3. Add to a row ( column) block multiplied by an appropriate matrix on the left ( right) to

another row ( column) block.

1.3 The generalized inverse of matrices

Definition 1.3.1 If A is a non-singular matrix, then there is a unique inverse noted A−1 as

AA−1 = A−1A = I

This inverse has the following properties :

1. (A−1)−1 = A.

2. (AT )−1 = (A−1)T .

3. (A∗)−1 = (A−1)∗.

4. (AB)−1 = B−1A−1.

11



12 Chapter 1. Preliminaries

AT and A∗ denote the transpose and conjugate transpose of A, respectively. We recall that

a real or complex number λ is called an eigenvalue of a square matrix A, and a non-zero vector

X is called an eigenvector of A corresponding to λ, if AX = λX

Consider the linear system

Ax = b (1.1)

Let A be a square matrix of order n, If A is nonsingular, so ker(A) = 0, then the solution

vector x of the linear equation Ax = b is only determined by x = A−1b.

Here, A−1 is the inverse matrix of A.

Definition 1.3.2 Let A ∈ Cm×n, the matrix X ∈ Cn×m if said to be the generalized inverse

or(g-inverse) of the matrix A if AXA = A.

If A is square and non singular, then A−1 is the unique generalized inverse of A, otherwise

A has several generalized inverses, we denote by A(1) for a generalized inverse of A.

Theorem 1.3.1 Let A ∈ Cm×n and X ∈ Cn×m, then the following two conditions are equivalent

i) X is a g-inverse of A.

ii) for any b ∈ R (A), x = Xb is a solution of Ax = b.

Proof.

i)=⇒ii) ∀b ∈ R (A) , b is of the form b = Ay, such as y, then A (Xb) = AXAy = Ay = b.

ii)=⇒i) when AXb = b for all b ∈ R (A), we have AXAy = Ay for all y, than AXA = A.

Definition 1.3.3 Let A ∈ Cm×n, a matrix X ∈ Cn×m is said to be the reflexive generalized in-

verse of the matrix A, if it satisfies the two conditions:


AXA = A

XAX = X


1.3.1 Properties of the generalized inverse

Let A ∈ Cm×n matrix we give some properties of A(1)

Theorem 1.3.2 1. r(A(1)) ≥ r(A) = r(A(1)A) = r(AA(1)).

2. if A is square and nonsingular, then A(1) = A−1 is unique.

3. AA(1) and A(1)A are idempotent.

12
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Proof.

1. For two matrices B and C, we have r(BC) ≤ minr(A), r(B), then

r(A) ≥ r(AA(1)) ≥ r(AA(1)A) = r(A) =⇒ r(A) = r(AA(1))

r(A) ≥ r(A(1)A) ≥ r(AA(1)A) = r(A) =⇒ r(A) = r(A(1)A)

Hence

r(A) = r(A(1)A) = r(AA(1))

On the other hand

r(A(1)) ≥ r(AA(1)) ≥ r(AA(1)A) = r(A)

.

2. We have AA(1)A = A

If A is non-singular, then multiplying by A−1 on both the left and the right would give

A1 = A−1

3.

(AA(1))2 = (AA(1)A)A(1) = AA(1)

(A(1)A)2 = (A(1)AA(1))A = A(1)A

Lemma 1.3.1 Let A ∈ Cm×n
r So we at :

1. A(1)A = In if and only if r = n.

2. AA(1) = Im if and only if r = m.

Exemple 1.3.1 Determine a generalized inverse of A =

 1 2

2 4


Let A(1) =

 a b

c d



13



14 Chapter 1. Preliminaries

for

 1 2

2 4


 a b

c d


 1 2

2 4

 =

 1 2

2 4


you must have a+ 2b+ 2c+ 4d = 1 then

A =

 1− 2b− 2c− 4d b

c d

 where a, b and c are arbitrary

for example if we choose d = −2, b = 2, c = 0, we will find

A(1) =

 5 2

0 −2


Theorem 1.3.3 Let H = AA−, F = A−A, then :

1) H2 = H and F 2 = F.

2) r (H) = r (F ) = r (A) .

3) r (A−) ≥ r (A) .

4) r (A−AA−) = r (A) .

Proof.

It is clear from the definition of the generalized inverse

2) r (A) ≥ r (AA−) = r (H), et r (A) = r (AA−A) = r (HA) ≤ r (H),

from which we conclude r (A) = r (H)

r (F ) = r (A) proven in a similar way.

3) r (A) = r (AA−A) ≤ r (AA−) ≤ r (A−).

4) r (A−AA) = r (A−A), then r (A−AA−) = r (A−A) = r (A) .

Exemple 1.3.2 Determine a generalized inverse of A =

 1 1

1 1

.

Let A− =

 a b

c d

, from
 1 1

1 1


 a b

c d


 1 1

1 1

 =

 1 1

1 1

,

you must have a+ b+ c+ d = 1, then A− =

 a b

c 1− a− b− c

,
or a, b and c are arbitrary.

14
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Exemple 1.3.3 In particular the second Method for computing the generalized inverse, con-

struction of 1-inverse for any matrix A ∈ Cm×n is simplified by transforming A to the Hermitian

normal form as shown in the following theorem :

Theorem 1.3.4 Let A ∈ Cm×n
r and let E ∈ Cm×m

m and P ∈ Cn×n
n as

EAP =

 Ir K

0 0

 , (1.1)

for all L ∈ C(n−r)×(m−r) matrices n×m

X = P

 Ir 0

0 L

E (1.2)

is a 1-inverse of A. Let A ∈ Cm×n, and let T0 = [A Im]. E tronsform A to the Hermitian

normal form note EA, we use Elimination of Gausses, which ET0 = [EA A] let

A =


0 2i i 0 4 + 2i 1

0 0 0 −3 −6 −3− 3i

0 2 1 1 4− 4i 1


with r(A) = 2 (1.3)

15
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then

[EA E] =


0 2i i 0 4 + 2i 1

... 1 0 0

0 0 0 −3 −6 −3− 3i
... 0 1 0

0 2 1 1 4− 4i 1
... 0 0 1


:


L1 7→ ( 1

2i
)L1

L3 7→ 2L1 − L3

=


0 1 1

2
0 1− 2i −1

2
i

... −1
2
i 0 0

0 0 0 −3 −6 −3− 3i
... 0 1 0

0 0 0 1 2 1 + i
... i 0 1


: L2 7→ (−1

3
)L2

=


0 1 1

2
0 1− 2i −1

2
i

... −1
2
i 0 0

0 0 0 1 2 1 + i
... 0 −1

3
0

0 0 0 0 0 0
... i 1

3
1


: L3 7→ L3 − L2

then

EA =



0 1 1
2

0 1− 2i −1
2
i

0 0 0 1 2 1 + i

· · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0


(1.4)

and

E =


−1

2
i 0 0

0 −1
3

0

i 1
3

1


for all L ∈ C(n−r)×(m−r) we choose the permutation matrix P as

16
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P =



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 1
... 0 1 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1


Then

EAP =



1 0
... 0 1

2
1− 2i −1

2
i

0 1
... 0 0 2 1 + i

· · · · · · ... · · · · · · · · · · · ·

0 0
... 0 0 0 0


We choose L =



α

β

γ

δ


∈ C4×1

Then

X = P

 Ir 0

0 L

E =



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 1
... 0 1 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1





1 0
... 0

0 1
... 0

· · · · · · ... · · ·

0 0
... α

0 0
... β

0 0
... γ

0 0
... δ




−1

2
i 0 0

0 −1
3

0

i 1
3

1



=



iα 1
3
α α

−1
2

0 0

iβ 1
3
β β

0 −1
3

0

iγ 1
3
γ γ

iδ 1
3
δ δ


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For example if we choose : α = −1, β = i, γ = 3i, δ = −6. we will find a generalized

invese verifying

X =



−i −1
3
−1

−1
2

0 0

−1 1
3
i i

0 −1
3

0

−3 3 3i

−6i −2 −6



1.3.2 The generalized inverse and linear equations:

In this section we represent solutions to linear equations involving the generalized inverses of

matrices.

Theorem 1.3.5 [1] Let A ∈ Cm×n, B ∈ Cp×q, D ∈ Cm×q.

Then the matrix equation

AXB = D (1.5)

is consistent if and only if, for some A(1), B(1),

AA(1)DB(1)B = D, (1.6)

in which case the general solution is

X = A(1)DB(1) + Y − A(1)AY BB(1) (1.7)

for arbitrary Y ∈ Cn×p.

Proof.If (1.6) holds, then X = A(1)DB(1) is a solution of (1.5).

Conversely, if X is any solution of (1.5), then

D = AXB = AA(1)AXBB(1)B = AA(1)DB(1)B.

Moreover, it follows from (1.6) and the definition of A(1) and B(1) that every matrix X of the

18
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form (1.7) satisfies (1.5). On the other hand, let X be any solution of (1.5). Then, clearly

X = A(1)DB(1) +X − A(1)AXBB(1),

which is of the form (1.7).

The following characterization of the set A {1}, in terms of an arbitrary element element A(1)

of this set.[6]

Corollary 1.3.1 [1] Let A ∈ Cm×n, A(1) ∈ A {1}. then

A {1} =
{
A(1) + Z − A(1)AZAA(1), Z ∈ Cn×m} (1.4)

Proof.The set A {1} is obtained by writing Y = A(1) + Z in the set of solutions of AXA = A

as given by Theorem 1.3.5.

Specializing Theorem 1.3.5 to ordinary systems of linear equations gives:

Corollary 1.3.2 let A ∈ Cm×n, B ∈ Cm Then the equation Ax = b is consistent if and only if

AA(1)b = b in this case the general solution is given by

x = A(1)b+ (I − A(1)A)y (1.8)

or y ∈ Cn is arbitrary

Proof.The sufficient condition, it is obvious

The necessary condition can be demonstrated by the substitution of Ax = b in AA(1)Ax = Ax

1.4 The generalized Moore-Penrose inverse:

In this section, we will present the well known generelezd inverse of matrices which is the

Moore-Penrose inverse and its properties and applications.

Definition 1.4.1 [1] E. H Moore introduced the notion of a generalized inverse of a matrix

in 1920, the application of this notion to the solution of systems of linear equations led to a

great interest in this subject. In 1955 Penrose demonstrated that, for any matrix A (square or

rectangular) with real or complex elements, there exists a unique matrix X satisfying the four

equations :

AXA = A. (1.9)

19
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XAX = X. (1.10)

(AX)∗ = AX. (1.11)

(XA)∗ = XA. (1.12)

This unique generalized inverse is commonly known as the Moore-Penrose generalized inverse

and is often referred to as A+.

If A is nonsingular, the matrix X = A−1 satisfied the four equations trivially, then the Moore-

Penrose inverse of a nonsingular matrix is the same as the ordinary inverse.

From equations (1.11) and (1.12) above, we have (AA+)
∗

(In − AA+) = 0

and (A+A)
∗

(Im − A+A) = 0 so PA = AA+ and PA+ = A+A are orthogonal projectors on R (A)

and R (A∗) respectively.

These are the orthogonal projectors on R(A) and R(A∗) respectively.

1.4.1 Uniqueness and existence

Existence:

Theorem 1.4.1 if A = BC or A ∈ Cn×m, B ∈ Cm×r, C ∈ Cr×n, and r = r(A) = r(B) =

r(C), then :

A+ = C∗(CC∗)−1(B∗B)−1B∗

.

Proof.We conclude that B∗B and CC∗ are matrices of rank r, because according to the prop-

erties of rank we have

r(B) = r(B∗B) = r(CC∗) = r(C) = r

We take

X = C∗(CC∗)−1(B∗B)B∗

Then we have :

AX = BCC∗(CC∗)−1(B∗B)B∗ = B(B∗B)B∗ then (AX)∗ = AX

also XA = C∗(CC∗)−1(B∗B)B∗BC = C∗(CC∗)−1 then

(XA)∗ = XA To verify (1.9) an (1.10) We use XA = C∗(CC∗)−1 we obtain

20



21 Chapter 1. Preliminaries

A(AX) = BC(C∗(CC∗)−1) = BC = A and (XA)X = C∗(CC∗)−1C∗(CC∗)−1(B∗B)−1B∗ =

(CC∗)−1(B∗B)−1B∗ = X

We notice that the matrix X satisfies the four Moore-Penrose equations . Thus X = A+

by denition.

Uniqueness :

We assume thatX1 andX2 are two Moore-Penrose inverses of A, then according to the definition

of A+ we have

X1 = X1 (AX1) = X1X
∗
1 (A∗) = X1X

∗
1A
∗ (X∗2A

∗)

= X1 (X∗1A
∗)AX2 = X1 (AX1A)X2 = X1 (A)X2

= X1 (AX2A)X2 = (X1A)A∗X∗2X2 = (A∗X∗1A
∗)X∗2X2

= (A∗X∗2 )X2 = X2AX2

= X2

Exemple 1.4.1 Let A =

 1 1 2

2 2 4

, r(A) = 1 et A = BC or B ∈ C2×1 and C ∈ C1×3.

We can take : A =

 1

2

[ 1 1 2

]
then,

B∗B = [5], C∗C = [6] Thus, A+ = 1
30


1

2

1


[

1 2

]
= 1

30


1 2

1 2

2 4

 Special case,

if A ∈ Cm×n et r(A) = 1 .

then A+ = ( 1
α

)A∗ or α = trace(A∗A) =
∑m

i=1

∑n
=1 |aij|2

1.4.2 Main properties of the generalized Moore-Penrose inverse

Theorem 1.4.2 Let A ∈ Cm×n. then,

1) (A+)
+

= A.

2) (A+)
∗

= (A∗)+.

3) if λ ∈ C, (λA)+ = λ+A+ or λ+ =
1

λ
if λ 6= 0, and λ+ = 0 if λ = 0.
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4) A∗ = A∗AA+ = A+AA∗.

5) (A∗A)+ = A+ (A∗)+.

6) A+ = (A∗A)+A∗ = A∗ (AA∗)+.

7) (UAV )+ = V ∗A+U∗, où U , V are arbitrary matrices.

Theorem 1.4.3 If A ∈ Cm×n, then

1) R (A) = R (AA+) = R (AA∗) .

2) R (A+) = R (A∗) = R (A+A) = R (A∗A) .

3) R (I − AA+) = N (AA+) = N (A∗) = N (A+) = R (A)⊥ .

4) R (I − A+A) = N (A+A) = N (A) = R (A∗)⊥ .

We need a convenient notation for a generalized inverse satisfying certain specified equations

.

Definition 1.4.2 For any A ∈ Cm×n, A {i,j,...,k} denotes the set of matrices X ∈ Cn×m,

which satisfy equations (i), (j),..., (k) among equations (1.9)-(1.12).

the matrix X ∈ A {i, j,...,k} is called {i, j,...,k} -inverse of A and also noted by A(i, j,...,k).

In particular, a matrix X ∈ Cn×m of the set A {1} is called a g-inverse of A and denoted by

A(1). Thus, in the following we will note A(1) for a generalized inverse of A instead of A−

The following properties of the conjugate transpose will be used :

A∗∗ = A,

(A+B)∗ = A∗ +B∗,

(λA)∗ = λA∗,

(BA)∗ = A∗B∗,

AA∗ = 0 implies A = 0,

The last of these follows from the fact that the trace of AA∗ is the sum of the squares of

the moduli of the elements of A. From the last two we obtain the rule

BAA∗ = CAA∗ implies BA = GA. (1.13)

since

(BAA∗ − CAA∗)(B − C)∗ = (BA− CA)(BA−GA)∗.

22
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Similarly

BA∗A = CA∗A implies BA∗ = GA∗. (1.14)

Theorem 1.4.4 [21] The four equations

AXA = A.

XAX = X.

(AX)∗ = AX.

(XA)∗ = XA.

have a unique solution for any A

Proof.I first show that equations (1.10) and (1.11) are equivalent to the single equation

XX∗A∗ = X. (1.15)

Equation (1.15) follows from (1.10) and (1.11), since it is merely (1.11) substituted in (1.10).

Conversely, (1.15) implies AXX∗A∗ = AX, the left-hand side of which is hermitian. Thus

(1.11) follows, and substituting (1.11) in (1.15) we get (1.10).

Similarly, (1.9) and (1.12) can be replaced by the equation

XAA∗ = A∗. (1.16)

Thus it is sufficient to find an X satisfying (1.15) and (1.16). Such an X will exist if a B can

be found satisfying

BA∗AA∗ = A∗

For then X = BA∗ satisfies (1.16). Also, we have seen that (1.14) implies A∗X∗A∗ = A∗ and

therefore BA∗X∗A∗ = BA∗. Thus X also satisfies (1.15).

Now the expressions A∗A, (A∗A)2, (A∗A)3, ... cannot all be linearly independent, i.e. there exists

a relation

λ1A
∗A+ λ2(A

∗A)2 + ...+ λk(A
∗A)k = 0. (1.17)

where λ1, ..., λk are not all zero.

Let λr, be the first non-zero λ and put

B = −λ−1r
{
λr+1I + λr+2A

∗A+ ...+ λk(A
∗A)k−r−1

}
23
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Thus (1.17) gives B(A∗A)r+1 = (A∗A)r, and applying (1.13) and (1.14) repeatedly we obtain

BA∗AA∗ = A∗, as required

To show that X is unique, we suppose that X satisfies (1.15) and (1.16) and that Y satisfies

Y = A∗Y ∗Y and A∗ = A∗AY . These last relations are obtained by respectively substituting

(1.14) in (1.12) and (1.13) in (1.11). (They are (1.14) and (1.15) with Y in place of X and

the reverse order of multiplication and must, by symmetry, also be equivalent to (1.11), (1.12),

(1.13) and (1.14).) Now

X = XX∗A∗ = XX∗A∗AY = XAY = XAA∗Y ∗Y = A∗Y ∗Y = Y

The unique solution of (1.9), (1.10), (1.11) and (1.12) will be called the generalized inverse of

A (abbreviated g.i.) and written X = A+. (Note that A need not be a square matrix and may

even be zero. ) I shall also use the notation λ+ for scalars, where λ+ means λ−1 if λ 6= 0 and

if A = 0

In the calculation of A+ it is only necessary to solve the two unilateral linear equations

XAA∗ = A∗ and A∗AY = A∗. By putting A∗ = XAY and using the fact that XA and

AY are hermitian and satisfy AXA = A = AY A we observe that the four relations AA+A =

A,A+AA+ = A+, (AA+)∗ = AA∗ and (A+A)∗ = A+A are satisfied. Relations satisfied by A+

include

and


A+A+∗A∗ = A+ = A∗A+∗A+

A+AA∗ = A∗ = A∗AA+


(1.18)

these being (1.15), (1.16) and their reverses.

1.4.3 Characterization of A {1, 3} and A {1, 4}

Recall that X is an element of the set A {1, 3} if X verifies the equations (1.9) and (1.11) among

the four Penrose equations so,


AXA = A

(AX)∗ = AX


Also, X is an element of the set A {1, 4} if X verifies equations (1.9) and (1.12) among the four

Penrose equations, i.e.


AXA = A

(XA)∗ = XA


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1.4.4 The least squares solutions of a linear system not consistent

For the matrix A ∈ Cm×n, and the vector b ∈ Cm, the linear system

Ax = b (1.19)

is consistent, i.e. has a solution for x, if and only if b ∈ R (A). In other words, the residual

vector,

r = b− Ax

is nonzero for all x ∈ Cn, and it may be desirable to find an approximate solution of Ax = b, i.e.,

find a vector x such that such that the residual vector r is minimized. Often used in particular

in statistical applications is the least square solution least squares solution of Ax = b, which is

defined by:

Definition 1.4.3 Suppose that A ∈ Cm×n and b ∈ Cm then the vector u ∈ Cn is called the

least squares solution of Ax = b, if and only if ‖Au− b‖ ≤ ‖Av − b‖ for all v ∈ Cn.

Definition 1.4.4 A vector u is called a least square and minimum norm solution of Ax = b if

u is a least square solution of Ax = b and ‖u‖ ≤ ‖w‖, for all other least-squares solutions w.

if b ∈ R(A), then the notions of "solution" and "least square solution" obviously coincide.

The following theorem shows that ‖Ax− b‖ is minimized by choosing x = Xb, where X ∈

A {1, 3}. Thus we establish a relation between the {1, 3} inverses and the least squares solutions

of Ax = b.

Theorem 1.4.5 [1] Let A ∈ Cm×n, b ∈ Cm.

Then ‖Ax− b‖ is smallest when x = A(1,3)b, where A(1,3) ∈ A {1, 3}.

Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax − b‖ is smallest when x = Xb,

then X ∈ A {1, 3} .

Proof.From

b = (PR(A) + PR(A)⊥)b. (1.20)

b− Ax = (PR(A)b− Ax) + PN(A∗)b.

‖Ax− b‖2 = ‖Ax− PR(A)b‖2 + ‖PN(A∗)b‖2, (1.21)

Evidently, (1.19) assumes its minimum value if and only if

Ax = PR(A)b, (1.22)
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which holds if x = A(1,3)b for any A(1,3) ∈ A {1, 3}, since

AA(1,3) = PR(A). (1.23)

Conversely, if X is such that for all b, ‖Ax − b‖ is smallest when x = Xb, (1.22) gives AXb =

PR(A)b for all b, and therefore

AX = PR(A)

When the system Ax = b has a multiplicity of solutions for x, there is a unique solution of

minimum-norm.

The following theorem relates minimum-norm solutions of Ax = b and {1, 4}-inverses of A,

characterizing each of these two concepts in terms of the other.

Theorem 1.4.6 [1] Let A ∈ Cm×n, b ∈ Cm. If Ax = b has a solution for x, the unique solution

for which ‖x‖ is smallest is given by

x = A(1,4)b,

where A(1,4) ∈ A {1, 4}. Conversely, if X ∈ Cn×m is such that, whenever Ax = b has a solution,

x = Xb is the solution of minimum-norm, then X ∈ A {1, 4}.

Proof.If Ax = b is consistent, then for any A(1,4) ∈ A {1, 4}, x = A(1,4)b is a solution, lies in

R(A∗) and thus, is the unique solution in R(A∗), and thus the unique minimum-norm solution.

Conversely, let X be such that, for all b ∈ R(A), x = Xb is the solution of Ax = b of minimum-

norm.

Setting b equal to each column of A, in turn, we conclude that

XA = A(1,4)A

and X ∈ A {1, 4}

1.5 Research and results on some matrix equation involv-

ing generalized inverses

In this section we will derive some research and results obtained recently about some well known

matrix equations.

Theorem 1.5.1 [24] Let A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q be given. Then,
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(a) There exists an X ∈ Cn×q such that

AX = C (1.24)

if and only if R(C) ⊆ R(A), or equivalently, AA+C = C .

In this case, the general solution of (1.10) can be written in the following parametric form

X = A+C + FAV (1.25)

where V ∈ Cn×q is arbitrary

(a) There exists an X ∈ Cn×p such that

AXB = C (1.26)

if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗), or equivalently, AA+CB+B = C.

In this case, the general solution of (1.12) can be written as

X = A+CB+ + FAV1 + V2EB, (1.27)

where V1, V2 ∈ Cn×p are arbitrary.

Theorem 1.5.2 [24] Let Aj ∈ Cmj×n, Bj ∈ Cp×qj and Cj ∈ Cmj×qj be given, j = 1, 2. Then

(a)[18] There exists an X ∈ Cn×p such that

A1XB1 = C1 and A2XB2 = C2 (1.28)

if and only if

R(Cj) ⊆ R(Aj), R(C∗j ) ⊆ R(B∗j ), r =


C1 0 A1

0 −C2 A2

B1 B2 0

 = r

A1

A2

+ r[B1, B2], j = 1, 2. (1.29)
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(b) [22]Under (1.29), the general common solution of (1.28) can be written as

X = X0 + FAV1 + V2EB + FA1V3EB2 + FA2V4EB1 , (1.30)

where X0 is a special solution of (1.28) ,

A =

A1

A2

 , B = [B1 B2] and the four matrices V1, ..., V4 ∈ Cn×p are arbitrary.

Theorem 1.5.3 [24] Let A ∈ Cm×n and B ∈ Cm
H be given. Then

(a)[9] There exists an X ∈ Cn
H such that

AXA∗ = B (1.31)

if and only if R(B) ⊆ R(A), or equivalently, AA+B = B

(b) [23] Under R(B) ⊆ R(A), the general Hermitian solution of (1.31) can be written as

X = A+B(A+)∗ + FAV + V ∗FA (1.32)

where V ∈ Cn×n is arbitrary.

(c) [1] There exists an X ∈ Cn×n such that

AXX∗A∗ = B ≥ 0 (1.33)

if and only if R(B) ⊆ R(A).

In this case, the general solution of(1.33) can be written in the following parametric form

XX∗ =
(
A+B

1
2 + FAW

)(
A+B

1
2 + FAW

)∗
(1.34)

where W ∈ Cn×m is arbitrary

Theorem 1.5.4 [9] Let A and B be given matrices in Cm×n such that the equation

AX = B (1.35)
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is consistent. The equation (1.35) has a Hermitian solution if and only if

BA∗ is Hermitian (1.36)

in which case a general Hermitian solution is

X = A−B +B∗(A−)∗ − AAB∗(A)∗ + (I − A−A)U(I − A−A)∗, (1.37)

where A− is an arbitrary g-inverse of A and U an arbitrary Hermitian matrix in Cn×n

Proof.Let X be an Hermitian solution of (1.35). Then BA∗ = AXA∗ is clearly Hermitian.

This shows the necessity of (1.36).

For sufficiency, check that when BA∗ is Hermitian so are AB∗ and X0 = AB + B∗(A)∗ −

A−AB∗(A)∗ and that X0 satisfies (1.35).

A general Hermitian solution is obtained by adding to X0 a general Hermitian solution of the

homogeneou equation AX = 0.

Theorem 1.5.5 [9] The equation (1.35) has a nonnegative definite solution if and only if

BA∗ is nonnegative definite , rankBA∗ = rankB, (1.38)

in which case the nonnegative definite solution is given by :

X = B∗(BA∗)−B + (I − A−A)U(I − A−A)∗ (1.39)

where (BA∗)−1 and A− are arbitrary g-inverses of BA∗ and A respectively and U is an arbitrary

nonnegative definite matrix in Cn×n.

Proof.Let X be a nonnegative definite solution of (1.35) . Then BA∗ = AXA∗ is clearly

nonnegative definite and rank BA∗ = rankAXA∗ = rankAX = rankB This shows the necessity

of (1.36).

For sufficiency, check that when (1.36) is true, B∗(BA∗)−B is invariant under the choice of a

g-inverse of BA∗.

Since a nonnegative definite matrix such as BA∗ has a nonnegative definite g-inverse, it is seen

that X0 = B∗(BA∗)B is nonnegative definite. Also, AX0 = AB∗(BA∗)B = BA∗(BA∗)B = B.

Sufficiency of (1.36) is thus established.

Theorem 1.5.6 [1] If A,B,C, and D are given, then AX = B, XC = D has a solution in
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Cn×m if and only if

BC = AD,B = AA+B, and D = DC+C (1.40)

Moreover, its general solution can be expressed as

X = A+B + (In − A+A)DC+ + (In − A+A)F (Im − CC+),∀F ∈ Cn×m. (1.41)

Proof.The condition is obviously necessary. To show that it is sufficient, put

X = A+C +DB+ − A+ADB+

which is a solution if the required conditions AA+C = C,DB+B = D,AD = CB are satisfied.

Theorem 1.5.7 [11]Let A and C be given matrices in ∈ Cm×n and B, D be given matrices in

∈ Cn×p such that the equation

AX = B,XC = D (1.42)

are consistent:

a) These equations have a common Hermitian solution if and only if

M =

BA∗ BC

D∗A∗ D∗C

 (1.43)

is Hermitian, in which case a general Hermitian solution is(
A
C∗

)−( B
D∗

)
+

(
B∗

...D
)[(

A
C∗

)−]∗ − ( A
C∗

)−
M
[(

A
C∗

)−]∗
+
[
I −

(
A
C∗

)−( A
C∗

)]
U
[
I −

(
A
C∗

)−( A
C∗

)]∗
where U is an arbitrary Hermitian matrix in Cn×n.

b) These equations have a common nonnegative definite solution if and only if

M is nonnegative definite and rankM = rank(B∗
...D), (1.44)

in which case a general nonnegative definite solution is

(B∗
...D)M

(
B

D∗

)[
I −

(
A

C∗

)−(
A

C∗

)]
U

[
I −

(
A

C∗

)−(
A

C∗

)]∗
(1.45)

where U is an arbitrary nonnegative definite matrix in Cn×n.

Proof.Observe that for AX = B, XC = D to have a common Hermitian (nonnegative definite)

solution it is necessary and sufficient that the equation
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(
A

C∗

)
X

(
B

D∗

)
has a Hermitian ( nonnegative definite) solution

1.6 Generalized reflexive and anti-reflexive matrices:

Definition 1.6.1 Reflection matrix : is a matrix that is used to reflect an object over a line

or plane.

Properties:

A reflection across an axis followed by a reflection in a second axis not parallel to the first one

results in a total motion that is a rotation around the point of intersection of the axes, by an

angle twice the angle between the axes.

The matrix for a reflection is orthogonal with determinant -1 and eigenvalues −1, 1, 1, ..., 1. The

product of two such matrices is a special orthogonal matrix that represents a rotation. Every

rotation is the result of reflecting in an even number of reflections in hyperplanes through the

origin, and every improper rotation is the result of reflecting in an odd number. Thus reflections

generate the orthogonal group, and this result is known as the Cartan–Dieudonne theorem.

Similarly the Euclidean group, which consists of all isometries of Euclidean space, is generated

by reflections in affine hyperplanes.

Definition 1.6.2 [2] Let P be some generalized reflection matrix of dimension n.

• Reflexive matrices : A matrix A ∈ Cn×n is said to be reflexive with respect to P if A = PAP .

• anti-reflexive matrices : A matrix A ∈ Cn×n is said to be anti-reflexive with respect to P if

A = −APA.

Definition 1.6.3 [2] Let P and Q be two generalized reflection matrices of dimension n and

m, respectively.

•Generalized reflexive matrices : A matrix A ∈ Cn×m is said to be generalized reflexive with

respect to the matrix pair (P,Q) if A = PAQ.

•Generalized anti-reflexive matrices : A matrix A ∈ Cn×m is said to be generalized anti-reflexive

with respect to the matrix pair (P,Q) if A = −PAQ.

the matrix A, real or complex, is a generalized reflexive matrix with respect to (P,Q) since

A = PAQ
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Definition 1.6.4 [2] Let Cn×m
r (P,Q) and Cn×m

a (P,Q), where the order of P and Q in the

matrix pair is important, be two subsets of the space Cn×m defined by

Cn×m
r (P,Q) =

{
A | A ∈ Cn×m and A = PAQ

}
(1.46)

Cn×m
a (P,Q) =

{
A | A ∈ Cn×m and A = −PAQ

}
(1.47)

where P and Q are two generalized reflection matrices of dimension n and m, respectively.

Here we use the subscript r(a) to reflect the generalized reflexive (antireflexive) nature of

the subsets . Note that if m = n and Q = P , then Cn×m
r (P,Q) and Cn×m

a (P,Q) reduce to

Cn×m
r (P ) and Cn×m

a (P ), respectively.

In the case where m = 1 and Q = 1, Cn×m
r (P,Q) and Cn×m

a (P,Q) become Cn
r (P ) and Cn

a(p),

respectively.

1.6.1 Some research on reflexive and anti reflexive matrices

Theorem 1.6.1 [4] Let P and Q be two generalized reflection matrices of dimensions n and

m, respectively, and α, β ∈ C .

1. If A and B are both in Cn×m
r (P,Q), then

(αA+ + βB+) ∈ Cm×n
r (Q,P ).

(αA∗ + βB∗) ∈ Cm×n
r (Q,P ).

A∗B ∈ Cm×m
r (Q), and AB∗ ∈ Cn×n

r (P ).

2. If A and B are both in Cn×m
a (P,Q), then

(αA+ + βB+) ∈ Cm×n
a (Q,P ).

(αA∗ + βB∗) ∈ Cm×n
a (Q,P ).

A∗B ∈ Cm×m
r (Q), and AB∗ ∈ Cn×n

r (P ).

3. If A is in Cn×m
r (P,Q) and B is in Cn×m

a (P,Q), or vice versa, then

(αA∗A+ βB∗B) ∈ Cm×m
r (Q,P ).

(αAA∗ + βBB∗) ∈ Cn×n
a (Q,P ).

A∗B ∈ Cm×m
r (Q), and AB∗ ∈ Cn×n

a (P ).
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Proof.The generalized inverse of a matrix A ∈ Cn×m is typically defined to be the unique

matrix X that satisfies the following four Moore-Penrose conditions [21]

(a)AXA = A, (b)XAX = X, (c)(AX)∗ = AX, and (d)(XA)∗ = XA.

To prove part 1, we shall first prove that both A+ and B+ are in Cm×n
r (Q,P ).

Sub-stitution of A = PAQ into the condition (a) with A+ replacing X yields

PAQA+PAQ = PAQ (1.48)

since A+ is the generalized inverse of A .

Premultiplying and postmultiplying both sides of (3) by P−1 and Q−1, respectively, we have

AY A = A,

where Y = QA+P . Observe that Y satisfies the first Moore-Penrose condition. By using

the fact that both P and Q are unitary Hermitian matrices, it can easily be shown that Y also

satisfies the other three Moore-Penrose conditions. Therefore, Y is a generalized inverse of A.

Since the Moore-Penrose inverse is known to be unique, we conclude that A+ = Y and, there-

fore,

A+ = QA+P ∈ Cm×n
r (Q,P ).

Likewise,

B+ = QB+P ∈ Cm×n
r (Q,P ).

Accordingly, (αA+ +βB+) ∈ Cm×n
a (Q,P ), The proof for the rest requires no further knowledge

and is, therefore, omitted. Analogous proof can also be obtained for parts 2 and 3.

Theorem 1.6.2 [4] Given two generalized reflection matrices P of dimension n and Q of

dimension m, any matrix A ∈ Cn×m can be decomposed into two parts U and V ,

U + V = A, such that U ∈ Cn×m
r (P,Q) and V ∈ Cn×m

a (P,Q).

Proof.Take

U =
1

2
(A+ PAQ) and V =

1

2
(A− PAQ) (1.49)

and employ the involutory property P 2 = I and Q2 = I. The proof is trivial and, thus,

omitted.

Two special instances of this theorem can be found in [5] ,[3], where one is obtained by setting

m = 1 and Q = 1 for vectors and the other is the special case when m = n and Q = P for

square matrices.
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Theorem 1.6.3 [4] Given a linear least-squares problem

min
x
‖Ax− b‖, A ∈ Cn×m, x ∈ Cm , b ∈ Cn, m ≤ n,.

where A is assumed to have full column rank , i.e., rank(A) = m , let x̃ be the unique

solution to the problem and r̃ = b− Ax̃ , the residual .

1. If A ∈ Cn×m
r (P,Q), then

x̃ ∈ Cm
r (Q) and r̃ ∈ Cn

r (P )ifb ∈ Cn
r (P ), (1.50)

x̃ ∈ Cm
a (Q) and r̃ ∈ Cn

a(P )ifb ∈ Cn
a(P ), (1.51)

2. If A ∈ Cn×m
a (P,Q), then

x̃ ∈ Cm
r (Q) and r̃ ∈ Cn

a(P )ifb ∈ Cn
a(P ), (1.52)

x̃ ∈ Cm
a (Q) and r̃ ∈ Cn

r (P )ifb ∈ Cn
r (P ), (1.53)

Proof.The proof for part 2 is analogous to that for part 1. Therefore, we need only prove part

1. From the assumption that A ∈ Cn×m
r (P,Q), we have A = PAQ, where P and Q are, by

definition, generalized reflection matrices and thus

P = P ∗ = P−1 and Q = Q∗ = Q−1.

Since rank(A) = m, A+ can be expressed as

A+ = (A∗A)−1A∗ = (QA∗PPAQ)−1QA∗P

= (QA∗AQ)−1QA∗P = Q (A∗A)−1QQA∗P

= QA+P.

It follows that if b = Pb, we have

x̃ = A+b = QA+Pb = QA+b = Qx̃

and

r̃ = b− Ax̃ = Pb− PAQQx̃ = P (b− Ax̃) = P r̃.
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Analogously, if b = −Pb, then

x̃ = A+b = QA+Pb = −QA+b = −Qx̃

and

r̃ = b− Ax̃ = −Pb− PAQ(−Qx̃) = −P (b− Ax̃) = −P r̃

. This completes our proof.

Exemple 1.6.1 Consider the linear least-squares solution to the following over determined

linear system:

Ax = b, where A =



4 2

1 3

2 4

3 1


, x =

 x1

x2

 and b =



16

15

16

15


(1.54)

Let P =

 0 I2

I2 0

 and Q =

 0 1

1 0


where I2 is the identity matrix of dimension 2. It is easy to see that A = PAQ and b = Pb.

we know that x = Qx, i.e., x1 = x2 Solving (1.54) is therefore, equivalent to solving

 6

4

 [x1] =

 16

15

 (1.55)

The least-squares solution to (1.55) is x1 = 3.

Accordingly, the solution to the original problem is x1 = x2 = 3 , which can be verified

by solving the normal equation ATAx = AT b .

The residual r,r = b−Ax = [−2, 3,−2, 3]T , is obviously reflexive with respect to P , as expected,

since r = Pr It deserves mentioning that the generalized reflexivity property of the matrix A

usually comes from physical models with some sort of reflexive symmetry.

The vector b, nevertheless, could be arbitrary and will not have any special form in general .

This, however, should not impose any difficulty since given P, any vector can be decomposed
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into a reflexive and an antireflexive part.

Once the decomposition is performed. Theorem 1.8.1 can be employed to take advantage of the

reflexivity and antireflexivity present in the problem, as shown in the next example where we

choose b to be neither reflexive nor antireflexive.

Remark 1.6.1 Note that the converse of (1.50), (1.51), (1.52), and (1.53) does not hold in

general.

For example, let b be some vector that is neither reflexive nor antireflexive with respect to P,

i.e., b /∈ Cn
r (P ) and b /∈ Cn

a(P ).
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CHAPTER 2

THE (P,Q) GENERALIZED REFLEXIVE AND

ANTI-REFLEXIVE SOLUTION OF AX=B

In this chapter, we establish some new conditions for the existence and the representations for

the (P,Q) generalized reflexive and anti-reflexive solutions to matrix equation AX = B with

respect to the generalized reflection matrix dual (P,Q). Moreover, in corresponding solution

sets of the equation, the explicit expressions of the nearest matrix to a given matrix in the

Frobenius norm have been provided.

Let Cm×n denote the set of all m × n matrices. For A ∈ Cn×n, its trace will be denoted by

tr(A). For A ∈ Cm×n, its conjugate transpose, Frobenius norm and Moore-Penrose inverse will

be denoted by A∗, ‖A‖F =
√
tr(AA∗) =

√
tr(A∗A) and A+ respectively.

In represents the identity matrix of size n. For convenience, we denote EA = I − AA+ and

FA = I − A+A.

A matrix P ∈ Cn×n is called a generalized reflection matrix if P ∗ = P and P 2 = I. Chen [4]

and Chen and Sameh [2] defined two subspaces of matrix:

Cn×m
r (P,Q) = {A | A ∈ Cn×m and A = PAQ}

Cn×m
a (P,Q) = {A | A ∈ Cn×m and A = −PAQ}

where P,Q are generalize reflection matrices. The matricesA ∈ Cm×n
r (P,Q), B ∈ Cm×n

a (P,Q)

are said to be a (P,Q) generalized reflexive and (P,Q) generalized antireflexive matrices re-

spectively with respect to the generalized reflection matrix dual (P,Q).

The (P,Q) generalized reflexive and anti-reflexive matrices have applications in system and

control theory, in engineering, in scientific computations and various other fields (see for exam-

ple [4],[2]) .

Let A ∈ Cm×n, B ∈ Cm×k be known, and X ∈ Cn×k be variable, consider the following equation
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

AX = B (2.1)

It is well known that (2.1) is consistent if and only if AA+B = B, in this case, a general

solution can be given by X = A†B + FAV where V ∈ Cn×n is arbitrary. Khatri and Mitra

[11] investigated the Hermitian solution and nonnegative definite solution to (2.1). The Re-

nonnegative definite (Re-nnd) and Re-positive definite (Re-pd) solutions were also investigated

in [12] and [25]. For the (P,Q) generalized reflexive and anti-reflexive solutions to (2.1) when

n = k, Zhang et al. [26] considered the following two problems by using the structure properties

of matrices : the first problem is to consider the (P,Q) generalized reflexive and anti-reflexive

solutions with respect to the generalized reflection matrix dual (P,Q), the other is to consider

the matrix nearness problem

min
X∈SX

‖X − C‖F (2.2)

where C ∈ Cn×k is a given matrix, and SX is the solution set of Eq. (2.1). Specially, when

P = Q, Peng and Hu [20] studied these two problems. Using the same method, Cvetkovic-Ilic

[7] and Peng et al. [19] considered the reflexive and anti-reflexive solutions to AXB = C,

Zhou and Yang [27] studied the Hermitian reflexive solutions and the anti-Hermitian reflexive

solutions to matrix equations (AX = B,XC = D) .

Motivated by the above work, in this paper, we restudy these two problem investigated by

Zhang et al.[19]. By using the Moore-Penrose inverse, we present sufficient and necessary

conditions for the existence and the expressions of the (P,Q) generalized reflexive and anti-

reflexive solutions to AX = B. The matrix nearness problem (2.2) is also considered.

Before giving the main results, we first introduce several lemmas as follows. The following two

results can be easy to verify by the definitions.

Lemma 2.0.1 [15]

Let A ∈ Cm×n, B ∈ Ck×n. If BA∗ = 0, then

A
B


+

=
(
A+B+

)
.

Lemma 2.0.2 [15] Let A,B ∈ Cm×n. If BA∗ = 0(orB∗A = 0), then

‖ A+B ‖2F=‖ A ‖2F + ‖ B ‖2F
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Lemma 2.0.3 [15] Let P ∈ Cm×m and Q ∈ Cn×n be two generalized reflection matrices, and

A ∈ Cm×n be variable. Then every m × n(P,Q) generalized reflexive matrix can be written as

A+PAQ, and every m×n(P,Q) generalized anti-reflexive matrix can be written as A = −PAQ.

2.1 The solution of the matrix Equation AX = B

In this section, our purpose is to establish some new conditions for the existence and represen-

tations for the (P,Q) generalized reflexive and anti-reflexive solutions to AX = B.

For convenience, the following notations will be used in this paper. For A ∈ Cm×n, P ∈ Cn×n

is a generalized reflection matrix, we set

A1(P ) =

A(I + P )

A(I − P )

 , A2(P ) =

A(I − P )

A(I + P )

 (2.3)

and denote [Ai(P )]∗ and [Ai(P )]+ by A∗i (P ) and A+
i (P )(i = 1, 2) for short respectively.

Next, we will give some properties on A1(P ) and A2(P ) defined by (2.3).

Lemma 2.1.1 [15] Let P ∈ Cn×n be a generalized reflection matrix, and A ∈ Cm×n. Then

1. FA1(P ) ∈ Cn×n
r (P, P ), and AFA1(P ) = 0 .

2. FA2(P ) ∈ Cn×n
r (P, P ), and AFA2(P ) = 0 .

3. FA1(P ) = FA2(P ).

Proof.In view of Lemma 2.0.1, we have

A+
1 (P ) = ([A(I + P )]+[A(I − P )]+)

FA1(P ) = In − [A(I + P )]+A(I + P )− [A(I − P )]+A(I − P )

Hence,

PFA1(P )P = In − P [A(I + P )]+A(I + P )P − P [A(I − P )]+A(I − P )P

= In − [A(I + P )]+A(I + P )− [A(P − I)]+A(P − I)

= In − [A(I + P )]+A(I + P )− [A(I − P )]+A(I − P )

= FA1(P )

means that FA1(P ) is a (P, P ) generalized reflexive matrix with respect to the generalized re-

flection matrix P.

Moreover
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AFA1(P ) = A− A[A(I + P )]+A(I + P )− A[A(I − P )]+A(I − P )

= A− 1
2
[A(I + P ) + A(I − P )][A(I + P )]+A(I + P )

− 1
2
[A(I + P ) + A(I − P )][A(I − P )]+A(I − P )

= 0

Similarly, the statements (2) and (3) can be deduced.

In order to discuss the (P,Q) generalized reflexive and anti-reflexive solutions to AX = B,

we first consider a special case B = 0.

Theorem 2.1.1 [15] Let A ∈ Cm×n be given. Then

1. The general solution X ∈ Cn×k
r (P,Q) to matrix equation AX = 0 can be expressed as

X = FA1(P )V (2.4)

where V ∈ Cn×k
r (P,Q) is arbitrary.

2. The general solution X ∈ Cn×k
a (P,Q) to matrix equation AX = 0 can be expressed as

X = FA1(P )W

where W ∈ Cn×k
a (P,Q) is arbitrary.

Proof.It follows from Lemma 2.1.1 that X = FA1(P )V is a (P,Q) generalized reflexive solution

to AX = 0 with V ∈ Cn×k
r (P,Q).

On the other hand, suppose Y is an arbitrary (P,Q) generalized reflexive solution to AX = 0,

i.e., AY = 0 and PY Q = Y , which implies A1(P )Y = 0. Therefore, Y = FA1(P )Y , which is of

the form (2.4) . That is to say, each (P,Q) generalized reflexive solution to AX = 0 can be

formed by (2.4).

Similarly, statement (2) can be verified.

Theorem 2.1.2 [15] Let A ∈ Cm×n and B ∈ Cm×k be given. Then

1. AX = B has a solution X ∈ Cn×k
r (P,Q) if and only if A1(P )A+

1 (P )B1(Q) = B1(Q). In

this case, a general solution X can be written as

X = A+
1 (P )B1(Q) + FA1(P )V, (2.5)
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where V ∈ Cn×k
r (P,Q) is arbitrary.

2. AX = B has a solution X ∈ Cn×k
a (P,Q) if and only if A1(P )A+

1 (P )B2(Q) = B2(Q). In

this case, a general solution X can be written as

X = A+
1 (P )B2(Q) + FA1(P )W,

where W ∈ Cn×k
a (P,Q) is arbitrary.

Proof.(1) IF: If A1(P )A+
1 (P )B1(Q) = B1(Q), then

A(I + P )A1(P )A+
1 (P )B1(Q)

A(I − p)A1(P )A+
1 (P )B1(Q)

 =

AA+
1 (P )B1(Q) + APA+

1 (P )B1(Q)

AA+
1 (P )B1(Q)− APA+

1 (P )B1(Q)


=

B(I +Q)

B(I −Q)

 =

B +BQ

B −BQ


(2.6)

gives that AA+
1 (P )B1(Q) = B, i.e., A+

1 (P )B1(Q) is a solution to AX = B . By computation,

we have

PA+
1 (P )B1(Q)Q = P ([A(I + P )]+[A(I − P )]+)

B(I +Q)

B(I −Q)

Q

= P [A(I + P )]+B(I +Q)Q+ P [A(I − P )]+B(I −Q)Q

= [A(I + P )]+B(I +Q) + [A(I − P )]+B(I −Q)

= A+
1 (P )B1(Q).

So, A+
1 (P )B1(Q) is a (P,Q) generalized reflexive solution to AX = B.

For any (P,Q) generalized reflexive solution X to AX = B,

we have A
[
X − A+

1 (P )B1(Q)
]

= 0. Then, (2.5) is followed by Theorem 2.1.1.

ONLY IF: (2.5) is a (P,Q) generalized reflexive solution to AX = B, then AA+
1 (P )B1(Q) = B,

and APA+
1 (P )B1(Q) = BQ .

According to (2.6), A1(P )A+
1 (P )B1(Q) = B1(Q) is evident.

The proof of statement (2) is similar to (1), hence, the details are omitted.
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2.2 The best solution estimator to a given matrix

In this section, we deduce the explicit expressions of the nearness solution to a given matrix,

where we will find the solution X of the problem

min
X∈SX

‖X − C‖F (2.7)

where C is given.

First, we verify the following results.

Lemma 2.2.1 [15] Let C ∈ Cn×k, FA1(P ) ∈ Cn×n
r (P, P ), V ∈ Cn×n

r (P,Q) and W ∈ Cn×k
a (P,Q).

Then

‖FA1(P )V − FA1(P )C‖2F = ‖FA1(P )V − FA1(P )PCQ‖2F (2.8)

= ‖FA1(P )V −
1

2
FA1(P )(C + PCQ)‖2F +

1

2
tr
[
FA1(P )(CC

∗ − CQC∗P )FA1(P )

]
(2.9)

Similarly ,

‖FA1(P )W − FA1(P )C‖2F = ‖FA1(P )W − FA1(P )PCQ‖2F (2.10)

= ‖FA1(P )W −
1

2
FA1(P )(C + PCQ)‖2F +

1

2
tr
[
FA1(P )(CC

∗ − CQC∗P )FA1(P )

]
(2.11)

Proof.Since ‖.‖F is an unitarily invariant norm, according to the assumptions, (2.8) is obvious.

Moreover, we have

tr
(
FA1(P )V QC∗PFA1(P )

)
= tr

(
PFA1(P )V QC

∗PFA1(P )P
)

= tr
(
FA1(P )V C

∗FA1(P )

)
tr
(
FA1(P )PCQV

∗FA1(P )

)
= tr

(
PFA1(P )PCQV

∗FA1(P )P
)

= tr
(
FA1(P )CV

∗FA1(P )

)
tr
(
FA1(P )CQC

∗PFA1(P )

)
= tr

(
PFA1(P )CQC

∗PFA1(P )P
)

= tr
(
FA1(P )PCQC

∗FA1(P )

)
tr
(
FA1(P )PCC

∗PFA1(P )

)
= tr

(
FA1(P )CC

∗FA1(P )

)
Therefore

‖FA1(P )V − 1
2
FA1(P )(C + PCQ)‖2F

= tr
{[
FA1(P )V − 1

2
FA1(P )(C + PCQ)

] [
FA1(P )V − 1

2
FA1(P )(C + PCQ)

]∗}
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= tr{FA1(P )V V
∗FA1(P ) − 1

2
FA1(P )V C

∗FA1(P ) − 1
2
FA1(P )V QC

∗PFA1(P ) − 1
2
FA1(P )CV

∗FA1(P )

− 1
2
FA1(P )PCQV

∗FA1(P ) + 1
4
FA1(P )CC

∗FA1(P ) + 1
4
FA1(P )CQC

∗PFA1(P )

+ 1
4
FA1(P )PCQC

∗FA1(P ) + 1
4
FA1(P )PCC

∗FA1(P )}

= tr{FA1(P )V V
∗FA1(P ) − FA1(P )V C

∗FA1(P ) − FA1(P )CV
∗FA1(P )

+ 1
2
FA1(P )CC

∗FA1(P ) + 1
2
FA1(P )CPC

∗PFA1(P )}

= ‖FA1(P )V − FA1(P )C‖2F − 1
2
tr[FA1(P )(CC

∗ − CQC∗P )FA1(P )]

Hence, (2.9) is evident. Equation (2.10) and (2.11) can be verified similarly

The following theorem give the explicit expressions of the solutions of the matrix nearness

problem (2.2)

Theorem 2.2.1 [15] Given a matrix C ∈ Cn×k.

1. Assume the solution set SX ⊆ Cn×k
r (P,Q) of Equation. AX = B is nonempty, then the

matrix nearness problem (2.4) has an unique solution X̂ in SX , which can be written as

X̂ = A+
1 (P )B1(Q) +

1

2
FA1(P )(C + PCQ) (2.12)

2. Assume the solution set SX ⊆ Cn×k
a (P,Q) of Eq . (1.19) is nonempty , then the matrix

nearness problem (2.4) has an unique solution X̂ in SX , which can be written as

X̂ = A+
1 (P )B2(Q) +

1

2
FA1(P )(C + PCQ)

Proof.(1) Let X ∈ SX it follows from Lemma 2.0.2 and (2.5) that

‖X − C‖2F = ‖A+
1 (P )B1(Q) + FA1(P )V − C‖2F

= ‖A+
1 (P )B1(Q)− A+

1 (P )A1(P )C‖2F + ‖FA1(P )V − FA1(P )C‖2F

= ‖A+
1 (P )B1(Q)− A+

1 (P )A1(P )‖2F

+1
2
tr
[
FA1(P )(CC

∗ − CQC∗P )FA1(P )

]
+‖FA1(P )V − 1

2
FA1(P )(C + PCQ)‖2F

Therefore, there exists X̂ ∈ SX such that the matrix nearness problem (2.2) holds if and

only if there exists V ∈ Cn×k
r (P,Q) such that

min
V ∈Cn×k

r (P,Q)
‖FA1(P )V −

1

2
FA1(P )(C + PCQ)‖F
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Obviously , matrix equation FA1(P )V = 1
2
FA1(P )(C + PCQ) is consistent for V ∈ Cn×k

r (P,Q),

for example, take V = 1
2
(C + PCQ). Hence,

min
V ∈Cn×k

r (P,Q)
‖FA1(P )V −

1

2
FA1(P )(C + PCQ)‖F = 0

Therefore, (2.12) is evident.

Similarly, statement (2) can be obtained.

Exemple 2.2.1 Consider the linear matrix equation AX = 0

Where A =



1 1 −1

1 1 −1

1 1 −1

−1 −1 1


∈ C4×3, and Let P =


1 0 0

0 −1 0

0 0 1

 ∈ C3×3, Q =

 0 1

1 0

 ∈

C2×2 be two generalized reflection matrices.

In this example we want to give the reflexive solution of the matrix equation AX = 0, by theorem

2.1.1, the general reflexive solution of AX = 0 is given by X = FA1(P )V where V is arbitrary

reflexive matrix with appropriate size.

So firstly we compute A+
1 (P ), we have

A1 (P ) =

 A (I + P )

A (I − P )

 .
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A1 (P ) =

 A (I + P )

A (I − P )

 =

 A+ AP

A− AP

 =





1 1 −1

1 1 −1

1 1 −1

−1 −1 1


+



1 1 −1

1 1 −1

1 1 −1

−1 −1 1




1 0 0

0 −1 0

0 0 1





1 1 −1

1 1 −1

1 1 −1

−1 −1 1


−



1 1 −1

1 1 −1

1 1 −1

−1 −1 1




1 0 0

0 −1 0

0 0 1





A1 (P ) =





2 0 −2

2 0 −2

2 0 −2

−2 0 2




0 2 0

0 2 0

0 2 0

0 −2 0





A+
1 (P ) =

[
(A (I + P ))+ (A (I − P ))+

]
=





2 0 −2

2 0 −2

2 0 −2

−2 0 2



+ 

0 2 0

0 2 0

0 2 0

0 −2 0



+
=

(A (I + P ))+ =



2 0 −2

2 0 −2

2 0 −2

−2 0 2



+

=?
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(A (I + P )) =



2 0 −2

2 0 −2

2 0 −2

−2 0 2


=



2

2

2

−2


[

1 0 −1

]
= DC is the full rank factorization

(see proposition 1.2.3) such that D =



2

2

2

−2


and

C =

[
1 0 −1

]
So

(A (I + P ))+ = C∗(CC∗)−1(D∗D)−1D∗.

(CC∗)−1 =


[

1 0 −1

]


1

0

−1





−1

=
1

2

(D∗D)−1 =


[

2 2 2 −2

]


2

2

2

−2





−1

=
1

16

(A (I + P ))+ = C∗(CC∗)−1(D∗D)−1D∗.

=


1

0

−1

×
[

1

2

]
×
[

1

16

]
×
[

2 2 2 −2

]

=


1
16

1
16

1
16

− 1
16

0 0 0 0

− 1
16
− 1

16
− 1

16
1
16


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Now (A (I − P ))+ =



0 2 0

0 2 0

0 2 0

0 −2 0



+

=?



0 2 0

0 2 0

0 2 0

0 −2 0


=



2

2

2

−2


[

0 1 0

]
= DC

is the full rank factorization of (A (I − P )) = C∗(CC∗)−1(D∗D)−1D∗.

So

(A (I − P ))+ = C∗(CC∗)−1(D∗D)−1D∗.

=


0

1

0

×
1

16
×
[

2 2 2 −2

]

=


0 0 0 0

1
8

1
8

1
8
−1

8

0 0 0 0


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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

So,

A+
1 (P ) =

[
(A (I + P ))+ (A (I − P ))+

]
=





2 0 −2

2 0 −2

2 0 −2

−2 0 2



+ 

0 2 0

0 2 0

0 2 0

0 −2 0



+

=


1
16

1
16

1
16

− 1
16

0 0 0 0

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0

1
8

1
8

1
8
−1

8

0 0 0 0



FA1(P ) = I3 − A+
1 (P )A1 (P ) = I3 −


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





2 0 −2

2 0 −2

2 0 −2

−2 0 2

0 2 0

0 2 0

0 2 0

0 −2 0



=


1
2

0 1
2

0 0 0

1
2

0 1
2


So the reflexive solution of the matrix equation AX = 0 is X = FA1(P )V
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

Where V =


−1 −3 −1

1 0 2

1 −1 2

 ∈ C3×3
r (P,Q) is arbitrary.

X = FA1(P )V

=


1
2

0 1
2

0 0 0

1
2

0 1
2




−1 −3 −1

1 0 2

1 −1 2



=


0 −2 1

2

0 0 0

0 −2 1
2


Exemple 2.2.2 Consider the linear matrix equation AX = B

Where A =



1 1 −1

1 1 −1

1 1 −1

−1 −1 1


∈ C4×3, B =



2 2

2 2

2 2

−2 −2


∈ C4×2 and Let P =


1 0 0

0 −1 0

0 0 1

 ∈

C3×3 , Q =

 1 0

0 −1

 ∈ C2×2 two generalized reflection matrices

In this example we want to compute a reflexive solution of the matrix equation AX = B.

By theorem 2.1.2, AX = B has a solution X ∈ Cn×k
r (P,Q) if and only if

A1(P )A+
1 (P )B1(Q) = B1(Q)

. In this case, a general solution X can be written as

X = A+
1 (P )B1(Q) + FA1(P )V

where V is arbitrary reflexive matrix with appropriate size.
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

So from the previous example we have

A+
1 (P ) =


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0



A1 (P ) =



2 0 −2

2 0 −2

2 0 −2

−2 0 2

0 2 0

0 2 0

0 2 0

0 −2 0


and

FA1(P ) =


1
2

0 1
2

0 0 0

1
2

0 1
2



Now we calculate B1(Q)

B1(Q) =

 B (I +Q)

B (I −Q)

 =





2 2

2 2

2 2

−2 −2


+



2 2

2 2

2 2

−2 −2



 1 0

0 −1




2 2

2 2

2 2

−2 −2


−



2 2

2 2

2 2

−2 −2



 1 0

0 −1





=



4 0

4 0

4 0

−4 0

0 4

0 4

0 4

0 −4


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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

we have

A1(P )A+
1 (P )B1(Q) =



2 0 −2

2 0 −2

2 0 −2

−2 0 2

0 2 0

0 2 0

0 2 0

0 −2 0




1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





4 0

4 0

4 0

−4 0

0 4

0 4

0 4

0 −4



=



4 0

4 0

4 0

−4 0

0 4

0 4

0 4

0 −4



= B1(Q) (2.13)

So from the condition (2.13) the equation AX = B have a reflexive solution X ∈ C3×2
r (P,Q)
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

defined by

X = A+
1 (P )B1(Q) + FA1(P )V

=


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





4 0

4 0

4 0

−4 0

0 4

0 4

0 4

0 −4



+


1
2

0 1
2

0 0 0

1
2

0 1
2




1 0

0 2

−1 0



=


1 0

0 2

−1 0



Where V =


1 0

0 2

−1 0

 ∈ C3×2
r (P,Q) is chosen.

Here we are looking that X is a reflexive solution for AX = B because

PXQ =


1 0 0

0 −1 0

0 0 1




1 0

0 2

−1 0


 1 0

0 −1

 =


1 0

0 2

−1 0

 = X

2. Now we will compute the anti-reflexive solution of AX = B .

By theorem 2.1.2, AX = B has a solution X ∈ Cn×k
a (P,Q) if and only if

A1(P )A+
1 (P )B2(Q) = B2(Q)
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

. In this case, a general solution X can be written as

X = A+
1 (P )B2(Q) + FA1(P )W

where W is arbitrary anti-reflexive matrix with appropriate size.

B2 (Q) =

 B (I −Q)

B (I +Q)

 =





2 2

2 2

2 2

−2 −2


−



2 2

2 2

2 2

−2 −2



 1 0

0 −1




2 2

2 2

2 2

−2 −2


+



2 2

2 2

2 2

−2 −2



 1 0

0 −1





=



0 4

0 4

0 4

0 −4

4 0

4 0

4 0

−4 0


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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

We have

A1(P )A+
1 (P )B2(Q) =



2 0 −2

2 0 −2

2 0 −2

−2 0 2

0 2 0

0 2 0

0 2 0

0 −2 0




1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





0 4

0 4

0 4

0 −4

4 0

4 0

4 0

−4 0



=



0 4

0 4

0 4

0 −4

4 0

4 0

4 0

−4 0



= B2 (Q) (2.14)
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Chapter 2. The (P,Q) Generalized reflexive and anti-reflexive solution of

AX=B

So from the condition (2.14) AX = B have an anti-reflexive soltion X ∈ C3×2
a (P,Q) defined by

X = A+
1 (P )B2(Q) + FA1(P )W

=


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





0 4

0 4

0 4

0 −4

4 0

4 0

4 0

−4 0



+


1
2

0 1
2

0 0 0

1
2

0 1
2




0 −4

−1 0

0 −1



=


0 −3

2

2 0

0 −7
2



Where W =


0 −4

−1 0

0 −1

 ∈ C3×2
a (P,Q) is chosen

Here we are looking that X is an anti reflexif solution because

PXQ =


1 0 0

0 −1 0

0 0 1




0 −3

2

2 0

0 −7
2


 1 0

0 −1

 =


0 3

2

−2 0

0 7
2

 = −X

Assume that C =


1 −2

1 3

5 0

 ∈ C3×2 is a given matrix

1. Now, we want to give the best matrix estimator to the matrix C, by theorem 2.2.1, in the set
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AX=B

of the reflexive solutions, the best matrix estimator to the matix C is given by

X̂ = A+
1 (P )B1(Q) +

1

2
FA1(P )(C + PCQ)

=


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





4 0

4 0

4 0

−4 0

0 4

0 4

0 4

0 −4



+
1

2


1
2

0 1
2

0 0 0

1
2

0 1
2






1 −2

1 3

5 0

+


1 2

−1 3

5 0





=


1 0

0 2

−1 0

+
1

2


1
2

0 1
2

0 0 0

1
2

0 1
2




2 0

0 6

10 0



=


4 0

0 2

2 0


2. Also in the set of the anti-reflexive solutions, the best matrix estimator to the matix

C is given by
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AX=B

X̂ = A+
1 (P )B2(Q) +

1

2
FA1(P )(C + PCQ)

=


1
16

1
16

1
16

− 1
16

0 0 0 0

0 0 0 0 1
8

1
8

1
8
−1

8

− 1
16
− 1

16
− 1

16
1
16

0 0 0 0





0 4

0 4

0 4

0 −4

4 0

4 0

4 0

−4 0



+
1

2


1
2

0 1
2

0 0 0

1
2

0 1
2






1 −2

1 3

5 0

+


1 2

−1 3

5 0





=


0 1

2 0

0 −1

+


3 0

0 0

3 0



=


3 1

2 0

3 −1


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CHAPTER 3

THE COMMON (P,Q) GENERALIZED REFLEXIVE AND

ANTI-REFLEXIVE SOLUTIONS TO AX = B AND XC = D

In this chapter we establish some conditions for the existence and the representations for the

common (P,Q) generalized reflexive and anti-reflexive solutions of matrix equations AX = B

and XC = D, where P and Q are two generalized reflection matrices.

Moreover, in the set of solutions of the equations, the explicit expression of the best matrix

estimator to a given matrix in the Frobenius norm has been presented

Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Ck×l and D ∈ Cn×l be known, and X ∈ Cn×k be variable

matrix, consider the following equations

AX = B,XC = D (3.1)

It is well known that (1.1) has a common solution if and only if

AA+B = B, DC+C = D, BC = AD, and X = A+B + FADC
+ + FAV EC , (3.2)

where V is variable. For the constrained common solutions of (1.1), such as common Hermitian

solution, common Re-nnd solution, common Hermitian reflexive solution and anti-Hermitian

reflexive solution, were studied by Khatri and Mitra [11], Liu [12], Zhou and Yang [27] respec-

tively. In[8], the authors investigated the common (P,Q) generalized reflexive solution to (1.1).

For the generalized reflexive and anti-reflexive solutions of AX = B, they were discussed in

[15, 20, 26]. And for the generalized reflexive and anti-reflexive solutions of AXB = C, they

were considered in [7, 19].

Another problem is the so called matrix nearness problem. Suppose the solution set composed
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Chapter 3. The common (P,Q) Generalized reflexive and anti-reflexive

solutions to AX = B and XC = D

by the common (P,Q) generalized reflexive or anti-reflexive solution of (3.1) is nonempty, and

denoted by SE.

Consider the matrix nearness problem

min
X∈SE

‖X −X0‖F (3.3)

where X0 ∈ Cn×k is a given matrix, this problem was also studied in [8]. Motivated by the

above work, in this paper, we restudy the common (P,Q) generalized reflexive and anti-reflexive

solutions of matrix equations AX = B and XC = D, present some new conditions for the

existence and the representations for the common solutions. Then discuss the matrix nearness

problem (3.3) .

Before giving the main results, we first introduce several lemmas as follows. The following two

results can be easy to verify by the definitions.

3.1 The solution of the matrix equations AX = B,XC = D

In this section, our purpose is to establish some new conditions for the existence and repre-

sentations for the common (P,Q) generalized reflexive and anti-reflexive solutions of matrix

equations AX = B and XC = D. For convenience, the following notations will be used in this

paper. For A ∈ Cm×n, generalized reflection matrices P ∈ Cn×n and Q ∈ Cm×m, we set

A1(P ) =

A(I + P )

A(I − P )

 , A2(P ) =

A(I + P )

A(I − P )


A3Q = ((I +Q)A(I −Q)A) , A4Q = ((I −Q)A(I +Q)A)

And denote (AiP )+(or(AiQ)+) by A+
iP (orA+

iQ)(i = 1, 2, 3, 4) for short respectively. Next, we

will give some properties on A1P , A2P , A3Q and A4Q defined by above.

Lemma 3.1.1 [13] Let P ∈ Cn×n and Q ∈ Cm×m e two generalized reflection matrices, A ∈

Cm×n. Then

(1)FA1P , FA2P ∈ Cn×n
r (P, P ), and AFA1P = AFA2P = 0.

(2)EA3Q, EA4Q ∈ Cm×m
r (Q,Q), and EA3QA = EA4QA = 0.

(3)FA1P = FA2P , EA3Q = EA4Q.

Proof.The results onA1P and A2P are provided by Lemma 2.1.1, and the results on A3Q and

A4Q can be proved similarly
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solutions to AX = B and XC = D

Recall that the next lemma was given in the second chapter, and we give it also here in order

to reduce the reflexive (anti-reflexive) solution of matrix equation XC = D

Lemma 3.1.2 [13] Let A ∈ Cm×n
a and B ∈ Cn×k be given. Then

1. AX = B has a solution X ∈ Cn×k
r (P,Q) if and only if A1PA

+
1PB1Q = B1Q. In this case,

a general solution X can be written as

X = A+
1PB1Q + FA1P

V, (3.4)

where V ∈ Cn×k
r (P,Q) is arbitrary.

2. AX = B has a solution X ∈ Cn×k
a (P,Q) if and only if A1PA

+
1PB2Q = B2Q. In this case,

a general solution X can be written as

X = A+
1PB2Q + FA1P

W,

where W ∈ Cn×k
a (P,Q) is arbitrary.

Remark 3.1.1 [13] According to the statement (1) in Lemma 3.1.2, a equivalent condition for

the existence for the (P,Q) generalized reflexive (anti-reflexive) solution to AX = B is

that A1PY = B1Q(A1PZ = B2Q) is consistent, and the reflexive solution is given by

1
2
(Y + PY Q), the anti-reflexive solution is 1

2
(Z − PZQ)

An alternative result can be obtained by a similar approach.

Corollary 3.1.1 [13] Let C ∈ Ck×l and D ∈ Cn×l be given. Then

1. XC = D has a solution X ∈ Cn×k
r (P,Q) if and only if D3PC

+
3QC3Q = D3P . In this case,

a general solution X can be written as

X = D3PC
+
3Q + V EC3Q

.

where V ∈ Cn×k
r (P,Q) is arbitrary.
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solutions to AX = B and XC = D

2. XC = D has a solution X ∈ Cn×k
a (P,Q) if and only if D4PC

+
3QC3Q = D4P . In this case,

a general solution X can be written as

X = D4PC
+
3Q + V EC3Q

,

where W ∈ Cn×k
a (P,Q) is arbitrary.

Next, we give the main results of this paper on the common (P,Q) generalized reflexive and

anti-reflexive solutions of matrix equations AX = B and XC = D.

Theorem 3.1.1 [13] Let P ∈ Cn×n and Q ∈ Ck×k be two generalized reflection matrices,

A ∈ Cm×n, B ∈ Cm×k, C ∈ Ck×l and D ∈ Cn×l be given . Then

(1)AX = B,XC = D has a common (P,Q) generalized reflexive solution if and only if

A1PA
+
1PB1Q = B1Q, D3PC

+
3QC3Q = D3P , BC = AD and BQC = APD (3.5)

In which case, a general common (P,Q) generalized reflexive solution is given by

X = A+
1PB1Q + FA1P

D3PC
+
3Q + FA1PWEC3Q

, (3.6)

where W ∈ Cn×k
r (P,Q) is arbitrary.

(2)AX = B,XC = D has a common (P,Q) generalized anti-reflexive solution if and only if

A1PA
+
1PB2Q = B2Q, D4PC

+
3QC3Q = D4P , BC = AD and BQC = −APD

In which case, a general common (P,Q) generalized reflexive solution is given by

X = A+
1PB2Q + FA1PD4PC

+
3Q + FA1P

ZEC3Q
,

where Z ∈ Cn×k
a (P,Q) is arbitrary.

Proof.In the above, we show that AX = B has a solution X ∈ Cn×k
r (P,Q) if and only if

A1PY = B1Q is solvable. In the same way, XC = D has a solution X ∈ Cn×k
r (P,Q) if and only

if Y C3Q = D3P is solvable.

Hence, it is obvious that AX = B,XC = D has a common (P,Q) generalized reflexive solution

if and only if A1PY = B1Q and Y C3Q = D3P has a common solution, and X = 1
2
(Y + PY Q).

Applying (3.2), (3.5) is evident.

Together with Lemma 3.1.1 and the fact that FA1PD3PC
+
3Q ∈ Cn×k

r (P,Q), (3.6) is achieved.

Similarly methods show the statement (2). The proof is complete
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3.2 The best solution estimator to a given matrix

In this section, we deduce the explicit expressions of the solution of the matrix nearness problem

(3.3).

First, we verify the following results.

Lemma 3.2.1 [13] Let X0 ∈ Cn×k, FA1P
∈ Cn×n

r (P, P ), EC3Q
∈ Ck×k

r (Q,Q),W ∈ Cn×k
r (P,Q)

and Z ∈ Cn×k
a (P,Q). Then

‖FA1P
WEC3Q

− FA1P
X0EC3Q

‖2F = ‖FA1P
WEC3Q

− FA1P
PX0QEC3Q

‖2F (3.7)

= ‖FA1P
WEC3Q

− 1

2
FA1P

(X0 + PX0Q)EC3Q
‖2F +

1

2
tr
[
FA1P

X0EC3Q
(X0 − PX0Q)∗FA1P

]
(3.8)

Similarly,

‖FA1P
ZEC3Q

− FA1P
X0EC3Q

‖2F = ‖FA1P
ZEC3Q

− FA1P
PX0QEC3Q

‖2F (3.9)

= ‖FA1P
ZEC3Q

− 1

2
FA1P

(X0 +PX0Q)EC3Q
‖2F +

1

2
tr
[
FA1P

X0EC3Q
(X0 − PX0Q)∗FA1P

]
(3.10)

Proof.Since ‖.‖F is an unitarily invariant norm, according to the assumptions, (3.7) is obvious.

Moreover, we have

tr
(
FA1P

WEC3Q
QX∗0PFA1P

)
= tr

(
PFA1P

PPWQQEC3Q
QX∗0PFA1P

P
)
,

= tr
(
PFA1PWEC3Q

X∗0FA1P

)
,

tr
(
FA1P

PX0QEC3Q
W ∗FA1P

)
= tr

(
FA1PX

∗
0EC3Q

W ∗FA1(P )

)
,

tr
(
FA1P

X0EC3Q
QX∗0PFA1P

)
= tr

(
FA1PPX0QEC3Q

X∗0FA1P ,
)
.

tr
(
FA1PPX0EC3Q

X∗0PFA1P

)
= tr

(
FA1PX0EC3Q

X∗0FA1P

)
,

Therefore,

‖FA1PWEC3Q
− 1

2
FA1P (X0 + PX0Q)EC3Q

‖2F

= tr
{[
FA1PWEC3Q

− 1
2
FA1P (X0 + PX0Q)EC3Q

FA1PWEC3Q
− 1

2
(X0 + PX0Q)EC3Q

]∗}
= tr{FA1PWEC3Q

W ∗FA1P − 1
2
FA1PWEC3Q

(X0 + PX0Q)∗FA1P − 1
2
FA1P (X0 + PX0Q)EC3Q

W ∗FA1P

+ 1
4
FA1PX0EC3Q

X∗0FA1P + 1
4
FA1PX0EC3Q

QX∗0PFA1P

+ 1
4
FA1PX0QEC3Q

X∗0FA1P + 1
4
FA1PPX0EC3Q

X∗0PFA1P}
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Hence, (3.8) is evident. (3.9) and (3.10) can be verified similarly

The following theorem gives the explicit expressions of the solutions of the matrix nearness

problem (3.3).

Theorem 3.2.1 [13] Give a matrix X0 ∈ Cn×k

(1)Assume the solution set SE ⊆ Cn×k
r (P,Q) of Eq. (3.1) is nonempty, then the matrix nearness

problem (3.3) has an unique solution X̂ in SE, which can be written as

X̂ = A+
1PB1Q + FA1P

D3PC
+
3Q +

1

2
FA1P

(X0 + PX0Q)EC3Q
. (3.11)

(2)Assume the solution set SE ⊆ Cn×k
a (P,Q) of Eq. (3.1) is nonempty, then the matrix nearness

problem (3.3) has an unique solution X̂ in SE, which can be written as

X̂ = A+
1PB2Q + FA1P

D4PC
+
3Q +

1

2
FA1P

(X0 + PX0Q)EC3Q

.

Proof.(1) Let X ∈ SE, it follows from Lemma 2.0.2, Lemma 3.2.1 and (3.5) that

‖X −X0‖2F = ‖A+
1PB1Q + FA1PW −D3PC

+
3Q + FA1PWEC3Q

−X0‖2F

= ‖A+
1PB1Q − A+

1PA1PX0‖2F + ‖FA1PD3PC
+
3Q + FA1PWEC3Q

X0 − FA1PX0‖2F

= ‖A+
1PB1Q − A+

1PA1PX0‖2F + ‖FA1PD3PC
+
3Q − FA1PX0C3QC

+
3Q‖2F

+‖FA1PWEC3Q
− FA1PX0EC3Q‖2F

+‖A+
1PB1Q − A+

1PA1PX0‖2F + ‖FA1PD3PC
+
3Q − FA1PX0C3QC

+
3Q‖2F

+1
2
tr
[
FA1PX0EC3Q

(X0 − PX0Q)∗FA1P

]
+‖FA1PWEC3Q

− 1
2
FA1P (X0 − PX0Q)EC3Q

Q‖2F

Therefore, there exists X̂ ∈ SE such that the matrix nearness problem (3.3) holds ifand only if

there exists W ∈ Cn×k
r (P,Q) such that

min
V ∈Cn×k

r (P,Q)
‖FA1PWEC3Q

− 1

2
FA1P (X0 + PX0Q)‖F

Obviously, we can take W = 1
2
(X0 + PX0Q) .

Hence,

min
V ∈Cn×k

r (P,Q)
‖FA1PWEC3Q

− 1

2
FA1P (X0 + PX0Q)‖F = 0

Therefore, (3.11) is evident .

Similarly, statement (2) can be obtained
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CONCLUSION

The equations AX = B, XC = D are of the most well-known matrix equations in matrix

theory and its applications. For this importance, In this work we considered the (P,Q) gen-

eralized reflexive (anti-reflexive) solutions for the matrix equation AX = B, and the system

AX = B, XC = D where we gave necessary and sufficient conditions for the existence of

the (P,Q) generalized reflexive (anti-reflexive) solutions and the common (P,Q) generalized

reflexive (anti-reflexive) solutions to these matrix equations respectively, with respect to the

generalized reflection matrix dual (P,Q). Also for all solutions exist, we derive the explicit

expression of the best solution estimator to a given matrix in the Frobenius norm.
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