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Abstract 

 

 I 

Abstract 

      The aim of this dissertation is to model the parameters of a monocrystalline photovoltaic 

(PV) panel in indoor conditions based on the effects of input parameters such as irradiance and 

surface temperature, using the factorial design. This research evaluates the main responses 

(maximum power, short circuit current, open circuit voltage) by creating accurate predictive 

models of the responses, to determine. Furthermore, this approach facilitates the graphical 

representation, using Minitab software, of response surfaces and contour curves for different 

responses so that these visualizations provide valuable insights into response behavior. 

Keywords: Design of experiments, factorial design, Mathematical predictive model, surface 

response.  

Résumé  

L'objectif de cette thèse est de modéliser les paramètres d'un panneau photovoltaïque 

monocristallin (PV) dans des conditions intérieures sur la base des effets de paramètres d'entrée 

tels que l'irradiance et la température de surface, en utilisant le plan factoriel. Cette recherche 

évalue les principales réponses (puissance maximale, courant de court-circuit, tension en circuit 

ouvert) en créant des modèles prédictifs précis des réponses, à déterminer. De plus, cette 

approche facilite la représentation graphique, à l'aide du logiciel Minitab, des surfaces de 

réponse et des courbes de contour pour différentes réponses, de sorte que ces visualisations 

fournissent des informations précieuses sur le comportement des réponses. 

Mots clé : Plan d'expériences, plan factoriel, Modèle mathématique prédictif, réponse de 

surface. 

 ملخص

( في الظروف الداخلية بناءً PVالهدف من هذه الأطروحة هو نمذجة معلمات الألواح الكهروضوئية أحادية البلورية )     

على تأثيرات معلمات المدخلات مثل الإشعاع ودرجة حرارة السطح، باستخدام التصميم العاملي. يقوم هذا البحث بتقييم 

ية دقيقة ئتيار الدائرة القصيرة، جهد الدائرة المفتوحة( من خلال إنشاء نماذج تنب الاستجابات الرئيسية )الطاقة القصوى،

، لأسطح الاستجابة Minitabللاستجابات، لتحديدها. علاوة على ذلك، يسهل هذا النهج التمثيل الرسومي، باستخدام برنامج 

 .قيمة حول سلوك الاستجابةوالمنحنيات الكنتورية للاستجابات المختلفة بحيث توفر هذه التصورات رؤى 

 .تصميم التجارب، التصميم العاملي، النموذج التنبؤي الرياضي، الاستجابة السطحية، المنحنيات الكنتورية كلمات مفتاحية:
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General Introduction 
     Today's world is experiencing economic growth and spectacular technological 

development, which requires an ever-increasing energy requirement. Following the increase in 

energy demand, the countries of the world now need a large use of energy resources, which is 

why the modern trend seeks to know how to achieve this objective through diversification of 

resources. Fissile and fossil resources (nuclear, oil and natural gas) provide a large part of global 

energy production. Consumption from these resources leads to the emission of greenhouse 

gases and thus increases pollution. Therefore, the solution to maintain the pace of economic 

and technological growth while preserving the environment is to resort to other sources, in 

particular renewable energy resources, which do not negatively affect the environment. By 

renewable energy, we mean energy derived from the sun, wind, geothermal heat, water or 

biomass. 

     The use of renewable energies, especially photovoltaic solar energy, has become a major 

concern for all the policies of countries around the world, because it is a clean energy (no gas 

tax), inexhaustible (sun available for free use) and which does not cause any pollution to the 

environment. There are even international conventions between several countries around the 

world for delocalized production to supply countries far from the origin of the photovoltaic 

solar power plant. One way to harness this solar energy is the use of large-scale photovoltaic 

panels that convert solar radiation into electricity. Electrical energy produced from the sun by 

the photoelectric effect. The main factor in solar power generation is the efficiency of the solar 

cell, which is mainly manufactured on a large scale based on crystalline silicon technology. The 

efficiency of the solar cell is still not cost-effective enough, but the solar power generation 

capacity of the cell is excellent. Many factors affect the efficiency of a photovoltaic system 

during installation, maintenance and after, such as extreme conditions (irradiation, temperature, 

wind, dust, tilt angle). 

     Experimental designs are one of the most important tools in modern scientific research, as 

they play a major role in various fields of applied science. The DoE method has become a very 

effective tool for the design and even feasibility study of several technological systems. it is 

based on a few experimental trials and an operator expert with knowledge of the system to be 

studied and makes it possible to make well-defined scientific conclusions on the behavior of an 

output variables with the influence of the proper and especially interactive effects of the input 

variables. 
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     For any system studied considered as a black box, the DoE method consists of modeling, 

characterization, optimization and even statistical calculation to minimize the errors induced in 

the considered response variable. It, the DoE technique, also includes different designs, the 

method of their implementation and the analysis of their data in order to obtain practical 

decisions in the simplest, most economical, and easiest to analyze and interpret and with a 

sufficient degree of precision. 

     This master thesis work aims to model several outputs of a monocrystalline photovoltaic 

panel using a full factorial design and to discover its performance and the state that affects it 

the most. To accomplish this, experimental trials are to be carried out on a monocrystalline PV 

module, and measurements satisfying the objectives will be collected. 

     This Master dissertation, describing our work, will be organized into three chapters: 

     In the first chapter, mainly interested in giving an overview of experimental design, its 

definition, a brief history of it, its most important terms, and types. The second chapter was 

devoted to an applied example of experimental design, named Goupy’s Car, in how the 

technique of DoE is attempted to be understood, and manual calculations are performed, 

confronting them to simulations under Minitab software. The practical aspect, which will be 

displayed in the third chapter, is implementing the modeling of a single-crystalline photovoltaic 

panel using the MINITAB program and identifying the various interactions between these 

factors that affect the response. Starting from fifteen experimental trials carried out on the 

chosen PV module, measurements for the considered outputs: maximum power available on 

the PV panel, the short-circuit panel, and its open circuit voltage recorded. 

     Finally, the dissertation completed with a general conclusion 
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1.1. Introduction  

     Design of Experiments (DoE) technique is widely used in several scientific fields such as 

chemical process, pharmaceutic process, agriculture studies and so on… it really concerns 

scientists who run experiments and without deeply having knowledge on the system.  

     In order to study the influence of several input parameters on the output parameter, the 

classical experimental approach is to study the influence of each experimental variable 

separately. This one-variable-at-a-time strategy is easy to handle and widely employed. 

However, is it the most efficient way to approach an experimental problem? Since in the case 

that there are a large number of variables and each experiment lasts a long time. As the 

experimenter could not run large numbers of trials, he is obliged to choose another best research 

strategy.  

     For us, we have thinking about using DoE in electrical engineering studies. So it, DoE, can 

be used in modeling and optimizing process based on few experiments performed on the 

targeted output response of the studied system. 

     This first chapter outlines the areas in which experimental designs can be applied, defines 

objectives and raises the general problem of how to study a phenomenon. 

      However, this chapter provides a bibliographic summary of the necessary knowledge about 

DoE method. First, it is clearly necessary to recall concepts such as the definition of 

experimental plans, the principle, as well as the basic vocabulary (factor, response, 

experimental domain, etc.) related to the targeted theory. 

1.2. Historical perspective  

     In the 1920s and 1930s, Ronald A. Fisher conducted research in agriculture in the UK with 

the goal of increasing crop yields. He pioneered the design of experiments (DoE) by 

advocating for simultaneous testing of multiple variables. Fisher's work marked the official 

beginning of DoE. In 1935, he authored a book on DoE. [1] 

     The credit for developing the Response Surface Method (RSM) goes to George Box, also 

from the UK. He focused on experimental design procedures for process optimization. 

Additionally, in the 1950s, W. Edwards Deming, along with his contributions to statistical 

methods, was also concerned with the design of experiments. Another notable figure, Genichi 

Taguchi, a Japanese statistician, particularly focused on methods for improving quality. [2] 
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1.3. Definition  

     Design of Experiments (DoE) is a structured approach employed to plan, execute, and 

analyze experiments systematically. It serves as a cornerstone in applied statistics, facilitating 

the scientific investigation of systems, processes, or products by systematically manipulating 

input variables to observe their impact on measured response variables. [2] 

1.4. Principle 

     As depicted in (figure 1.1), this method views a physical system or process as a black box, 

(meaning there is no need to understand neither the internal structure of the studied object nor 

the mathematical model). Inputs and outputs of the considered system are termed factors and 

responses, respectively, and are modeled using statistical tools. Experimental design techniques 

allow us effectively address our needs. Essentially, the principle involves simultaneously 

varying the levels of one or more factors (which may be discrete or continuous variables) in 

each trial on the performed experimental process. This approach serves two main purposes: 

significantly reducing the number of required experiments while expanding the range of factors 

studied, and identifying interactions between factors while determining the optimal setting for 

these factors relative to a given response. The key aspect in utilizing experimental designs is to 

minimize the number of experiments conducted without compromising result precision. 

Currently, there exists a diverse range of designs, each tailored to solve specific problems based 

on their properties. [3, 4] 

 

Figure1. 1: Representative diagram of the DoE method. [5] 

1.5. The process of knowledge acquisition  

     The DoE method imposes to the investigator to ask a number of questions according to 

(Figure 1.2). 
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Figure1. 2: Steps for areas of experimentation definition. [1] 

     These questions, which should be the right one, define the problem and determine the work 

to be carried out to solve it. This is the more difficult task in the questioning process since 

questions are not already known in advance. The experimenter should first prepare an inventory 

of the available information, by compiling a bibliography, consulting experts, theoretical 

calculations, or any other method, which provides him with answers to the questions, asked 

without actually carrying out any experiments. It will then be necessary to carry out experiments 

to obtain all the answers required. 

     The best strategy should cover the steps in which the experimenter thinks about what 

experiments to perform, and our problem is how to select which experiments should be done 

and which should not be done. Such an ideal strategy should: [1]  

 Deliver the desired results as quickly as possible. 

 Avoid carrying out unnecessary experiments. 

 Ensure that the results are as accurate as possible. 

 Allow experiments to progress without failure. 

 Provide modeling and optimization of the phenomena studied. 

     There is such an ideal strategy, and it is effective because it simultaneously takes into 

account three essential aspects of knowledge acquisition: 

 Gradual acquisition of results. 

 Selection of the best experimental strategy 

 Interpretation of results. 
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1.6. Progressive acquisition of results 

     The results at the beginning of the study are unknown by the experimenter. He must work 

gradually in order to be able to reorient the study in the right side of the first results of the trials. 

A preliminary trial can be carried out to decide on any change in research orientation and thus 

better identify the most important experimental points of the study and rule out non-fruitful 

avenues for the study wasting time. 

     Therefore, it is recommended to work gradually. A first series of experimental trials can 

provide provisional conclusions. These first provisional conclusions initiate the carrying out of 

a new series of experimental tests. The results from these two series should then be used to get 

a better image of the results. Then, a third series of tests can be carried out if necessary. With 

this approach, the experimenter accumulates only the results he needs and the study stops when 

the initial questions have been answered. [1] 

1.7. Selection of the best experimental strategy 

     The study strategy to be adopted should facilitate the organization of a progressive 

acquisition of results. It should also minimize the number of tests without degrading the quality 

of the experiment. In fact, the experimenter must ensure that the results are as precise as 

possible. Experimental designs, response surface methodology, fit our needs perfectly: [1] 

 Gradual acquisition of knowledge. 

 Only the required number of experiments 

 The most accurate results. 

1.8. Results interpretation 

     The initial choice of experiments should facilitate the interpretation of the results. The results 

must be easily interpreted and understood by everyone specialists or not. The above-

recommended methods can help us achieve both goals. 

     The availability of microcomputers and specialized software has made everything that used 

to be a long process of painful calculations to obtain results quite easy. Currently we realize 

that not only are the calculations carried out quickly and accurately, but also having the results 

graphically constitutes a spectacular way of conducting studies. [1] 
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1.9. Study of a phenomenon 

     The study of a phenomenon can be summarized as follows: the scientist may want to know 

a response variable depending on numerous input variables. These latter variables influence the 

response either with their own effects or with combined effects. 

     The response can be evaluated as, y, which is a function of several independent variables, 

xi, called factors. The mathematical function, which makes it, possible to link the response y to 

the factors, xi, is: 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖, … , 𝑥𝑛, … )                                            (1.1) 

     The study of a phenomenon requires carrying out experiments that measure the response 

for different sets of factor values. However, how this mathematical function is established by 

the “classical” method. [1] 

1.10. Establishment of the response function by the classical method 

     The classic method of experimentation adopts to maintain all the factors at constant levels 

except one unfixed variable, which is used to carry out the trials. The response y is then 

measured as a function of several values of this non-fixed variable x1. At the end of the 

experiment on this first variable, we draw a curve of y = f (x1) as mentioned in (figure 1.3). 

 

Figure1. 3: y = f (x1), function of several values of this non-fixed variable x1. [1] 

     If the experimenter wishes to study the influence of all the variables on the same response 

y, all the trials of the experiment must be repeated for each unfixed variable and in the same 

way, that is to say fix all the other variables at constant levels. 

     Using this method, if we want to study only seven factors, with only five trials per factor, 

we would have to carry out 57 = 78 125 experiments or trials.  
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     This is enormous experimental work and is unlikely to be feasible. The experimenter must 

overcome this obstacle in two possible ways: either reduce the number of experimental trials 

per variable or reduce the number of variables. [1] 

1.10.1.  Reduce the number of experimental points 

     If the experimenter chooses to examine only three points per variable instead of five, he will 

have to perform 37 = 2 178 trials. 

     Two measurement points per variable would require27 = 128. It is always an enormous 

work and it often requires too much budget or available time. As there must be at least two 

experimental points per variable, the experimenter has no choice but to: [1] 

1.10.2. Reduce the number of variables 

     However, even if a system with four variables, testing each of them at three values requires 

34 = 81  trials. This way of operating is both tedious and un satisfactory. If certain variables 

are ignored, people may doubt the results and the investigator will be forced to apologize for 

presenting incomplete conclusions. The downside of this approach is particularly obvious when 

it comes to security or large sums of money. This is precisely why we will now look at the 

experimental design method. [1] 

1.10.3. Experimental design methodology 

     The main difference between the classic method of variation of one variable at a time and 

the experimental design is that the DoE allows the variation of the values of all the factors in 

each experiment and this is performed in a programmed and rational manner. The DoE 

approach of simultaneously varying several variable settings, far from posing difficulties, offers 

several advantages: [1] 

 Fewer experimental trials. 

 A large number of factors studied. 

 Detection of interaction between factors 

 Detection of optimal values. 

 Better accuracy of results. 

 Optimization of results. 

 Construction of a model from the results. 
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     The major interest in the application of the DoE is the search for influencing factors from 

the moment that the number of the studied factors (continuous and discrete variables) is no 

longer limited, the experimenter initially reduces the number of experimental points per factor. 

The search for influencing factors consists of: 

 Choosing only two values (high and low) for each factor, these values are called 

levels. 

 Studying as many factors as possible, even those that may seem at first sight to 

have little influence. 

     Many of the factors considered will likely have no influence on the selected response. The 

results can be reused to choose new experimental points to define one or more specific aspects 

of the study. In this way, all the influencing factors on the response will have been detected and 

studied, while minimizing the number of experimental trials. The study can therefore be carried 

out without waste of either time or money. [1] 

1.11. Terminology related to the DoE method 

1.11.1. Response  

     The quantities measured in each trial, which are of interest to the experimenter, called 

responses. These are the studied quantities or the produced quantities. Selecting appropriate 

responses is a challenging task and lies outside the realm of experimental design theory. It is 

only after thorough analysis of the phenomena, considerations of objectives, limitations, and 

study issues that the correct response(s) can be determined. [6-7] 

1.11.2. Factors 

     A factor is any variable, necessarily controllable, likely to influence the observed response. 

The fundamental difference between the classic notion of variable and that of factor therefore 

lies in the fact that any factor must be able to modify without difficulty. This hypothesis is 

mandatory for experimental designs. [8] 

     Design of Experiments (DOE) serves as a tool for establishing mathematical relationships 

solely between responses and factors. 

1.11.3. Factor types 

a) Continuous Factors (quantitative): therefore represents values taken by continuous 

factors (Wavelength, concentration, temperature), any value in the interval can be 

chosen [ nlow nup].  
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b) Discrete Factors (qualitative): These factors can take on values like names, letters, or 

numerical labels, but these numbers do not represent quantities; they are simply 

identifiers.[8] 

c) Boolean Factors: These factors can only have two levels, like high/low, open/closed, 

or black/white, -1 and 1 and so on. [9] 

1.11.4. Factor domain  

     The factor can represented by a graduated and oriented axis. The value given to a factor to 

carry out a test called “level”. When we study the influence of a factor, in general, we limit its 

variations between two limits. The lower limit is the low level. The upper limit is the high level. 

The set of all values that the factor can take between the low level and the high level called the 

domain of variation of the factor or more simply the domain of the factor. We usually note the 

low level by –1 and the high level by +1. [10] 

 

Figure1. 4: Domain of a factor. [11] 

1.11.5. Experimental Space 

     When there is a second factor, it also represented by a graduated and oriented axis. We 

define, like the first factor, its high level, its low level and its range of variation. This second 

axis arranged orthogonally to the first. We thus obtain a Cartesian reference frame, which 

defines a two-dimensional Euclidean space. This space called the experimental space. [10] 

 

Figure1. 5: Experimental space. 
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1.11.6. Study Domain 

     The study domain defined as the collective union of the domains from various factors. 

 

Figure1. 6: Representation of a two-factor experimental design. [5] 

1.11.7.  Nuisance variables: randomization and blocking 

     Nuisance variables are factors that affect experiment outcomes but are not directly 

controllable or of primary interest. If the influence of a nuisance variable is known, it is treated 

as a regular design factor, known as blocking. However, if the influence is unclear or 

unpredictable, experiment conditions assigned randomly to different values of the nuisance 

variable, a method called randomization. [12] 

1.11.8.  Response Surface  

     We assign an axis to the response. This axis is perpendicular to the experimental space. The 

geometric representation of an experimental plan and its associated response requires a space 

with one more dimension than the experimental space. For example, representing the results of 

a two-factor plan requires a three-dimensional space: one dimension for the response, and two 

for the factors. 

     Each point in the study domain corresponds to a response. The set of all points in the study 

domain corresponds to a set of responses that define a surface called the response surface. [7]  
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Figure1. 7: The collection of responses that correspond to all the points in the study domain forms the 

response surface. [10] 

1.12. Advantages of experimental designs 

     The main advantages of this method are: 

 Reduction in the number of attempts. 

 Possibility of studying a large number of factors. 

 Detection of interactions between factors. 

 Modeling of the responses studied. 

 Optimum precision of results. 

     The design of experiments method allows rapid and unequivocal interpretation by providing 

a precise experimental model of the system studied. [13] 

1.13.  Steps in DOE 

 Define the purpose of the experiment. 

 Identify the response. 

 Consider potential models and select design factors. 

 Choose an appropriate experimental design. 

 Validate the chosen design. 

 Data analysis (ANOVA, Regression, Graphical analysis). 

 Result and conclusion. 

     The effectiveness of the design hinges on the experiment's objectives. These must clearly 

defined initially. 
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     Next, it is important to identify and classify variables as independent, dependent, nuisance, 

or intermediate. Independent variables are further categorized into those to be varied (design 

factors) and those to be kept constant.  Tentative models of system response considered to 

determine which variables should be included as design factors in step 3. The suitability of 

designs in step 4 relies on the assumed response model. [12] 

1.14.  Centered and Scaled Variables 

     Most often, reduced centered variables are used rather than variables measured in original 

units. The interest of this transformation lies in the fact that the geometric and matrix 

representations are more general and that the modeling is simpler. 

     Let A be the natural or real variable, where the low level of A corresponds to the standardized 

variable -1 and the high level A+ corresponds to +1. 

 

Figure1. 8: Original and reduced variables. 

     The central or middle value of the domain is: 

𝐴0 =
𝐴++𝐴−

2
                                                                                     (1.2) 

     The notion of step: 

𝑆𝑡𝑒𝑝 =
𝐴+−𝐴−

2
                                                                                (1.3) 

The transition from the original variables A to the coded variables denoted X given by: [14-15] 

𝑋 =
𝐴−𝐴0

𝑆𝑡𝑒𝑝
                                                                                       (1.4) 

1.15. The difference between the classic method and the DOE 

     The method of experimental designs can briefly compared to the traditional methodology 

known as "factor by factor variation". To study the influence of two factors on a response, two 

experimental strategies can adopted for the design of the tests.     
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Figure1. 9: On the right, the DOE method, on the left the classic method. 

     According to the traditional method, we block factor 1 at the center of the variation domain 

and we vary factor 2 at the two ends of its domain: we obtain the measurements M1 and M2. 

With factor 1 we carry out the same operation to obtain points M3 and M4. In this method, the 

effect of 2 will measured from measurements M1, M2, and that of A from measurements M3 

and M4. So for each factor only half of the measurements used to account for an effect. The 

experimental design method will consist of carrying out 4 tests at the ends of the experimental 

domain. The effect of 1 appears as the difference between the mean 
(𝑌2+𝑌4)

2
 and the 

mean
(𝑌1+𝑌3)

2
. The same reasoning applies for the effect of 2. In this second strategy, all 

measurements used to calculate an effect. We therefore understand that the precision obtained 

will be higher with the design of experiments method. Another advantage of the design method 

lies in a much lower number of experiments to carried out than in the traditional method when 

the number of factors increases. [16] 

1.16. Mathematical Model of the Response 

     Most often, the study of a phenomenon can formalized in the following way. The answer 

which depends on a large number of variables "factors", 𝑥1, 𝑥2, … . . 𝑥𝑘. Mathematical modeling 

consists of finding a function 𝑓 such that𝑦 = 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑘). 

      The classic study method consists of measuring y for several values of x while leaving the 

(𝑘 − 1) other variables fixed, and then iterating this method for the other variables. As we have 

already said above, this method quickly leads to a prohibitive number of experiments.  
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     The design of experiments method proposes a factorial experiment that is to say that all the 

factors vary simultaneously. The results processed using multiple linear regression and analysis 

of variance. [17-18] 

     In the design of experiments method, the key approach involves developing and employing 

models of the objective function (response). Consequently, it is logical thoroughly analyze this 

essential aspect. Where there is experimental data linking the response 𝑦 to the factors 𝑥𝑖. [6, 

9, 19] 

𝒚 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝑎𝑖𝑖𝑥𝑖
2 + ⋯ 𝑘

𝑖=1
𝑘
𝑖,𝑗=1
𝑖<𝑗

𝑘
𝑖=1                       (1.5) 

Where: 

𝑦: It is the response or measurement of interest to the experimenter. 

𝑥𝑖: Represents a level of factor i. 

𝑥𝑗: Represents a level of factor j. 

𝑎0, 𝑎𝑖, 𝑎𝑖𝑗 , 𝑎𝑖𝑖: The coefficients of the polynomial. 

1.17.  Design of Experiments software 

     DoE software plays a crucial role in the experimental design process, offering features for 

planning, executing, and analyzing experiments. It simplifies the complex task of organizing 

experimental data. With the help of DoE software, researchers can quickly uncover valuable 

insights, aiding them in improving products and methodologies. Here are five popular DoE 

software used by professionals in both industry and academia: Quantum Boost, JMP, Design 

Expert, Minitab and Modde. [20] 

1.18. Experimental Design Types 

     The two main possible uses of the Design of Experiments Method are: 

1.18.1. Screening Technique 

     Among the factors identified by the experimenter, this tool allows determining those that 

have a statistically significant influence on variations in the response. This implicitly simplifies 

the problem. The aim is to understand why the response varies (in terms of which factors). 

a) Factorial Designs: This experimental method involves creating runs that are combinations 

of factor levels. 
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-Full factorial designs: It cover all possible combinations of factors at designated levels. Given 

by the equation:  

𝑛 =  𝑚𝑘                                                                                         (1.6) 

Where: 

𝑛 : represents the total number of samples,  

𝑘 : is the number of factors, 

𝑚 : is the number of levels for each factor. 

     Two-level full factorial designs are highly effective screening tools as they enable the 

estimation of main effects and interactions of input factors on output responses. it commonly 

used as a screening stage, However, their main drawback lies in the significant number of 

experiments needed compared to fractional factorial and Placket-Burman designs. 

                                                  

Figure1. 10: in the right Two-level full factorial design for two factors, in the left Two-level full 

factorial design for three factors. [11] 

- Fractional factorial designs: extensively employed for screening purposes due to their ability 

to assess a large number of input factors while requiring fewer experiments. They are specific 

subsets of full designs, denoted by the equation: 

𝑛 =  𝑚𝑘−𝑝                                                                                       (1.7) 

 Where: 

 𝑝 : represents the number of times the design reduced. 

b) Placket–Burman designs:  are unique variants of two-level fractional factorial designs 

(specifically, resolution III). They facilitate the examination of up to N-1 input factors using N 

experiments (where N must be a multiple of 4). 
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c) Response Surface Methodology (RSM): Variations in the response calculated based on 

the previously identified influential factors. This study is quantitative, aiming to determine 

how the response varies. Logically it applied following the screening study, by using only the 

factors previously identified as influential. 

1.18.2. Optimization Designs 

     The Box-Behnken, D-optimal and central composite designs (CCDs) are examples of 

designs with three or more levels frequently used in response surface methodology (RSM) for 

function optimization.  

     There are other experimental designs include Taghuchi, Doehlert, G-optimal, and mixture 

designs. [6, 21-24] 

Table 1. 1: Summary of screening and optimization designs characteristics, number of experiments, 

levels, and factors. [19] 

Applications Experimental design Experiments Levels Factors 

Screening Placket–Burman 

Fractional factorial 

Two-level full factorial 

N 

2𝐾−𝑃 

2𝐾 

2 

2 

2 

<N-1 

K>4 

2<k<5 

Optimization Box-Behnken 

Central composite 

3-level factorial 

2k(k-1)+C 

2𝑘 +2k+C 

3𝑘 

3 

5 

3 

3 < k < 5 

2 k< 5 

2 < k < 3 
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Figure1. 11: Some Types of DOE (3levels, 3 factors). [25] 

1.19.  Statistical Analysis 

1.19.1. ANalyse Of VAriance (ANOVA) 

     Since the researchers wants to get as much information as possible from the experimental 

data, using the appropriate statistical techniques is important. ANOVA, or Analysis of 

Variance, is a statistical method used to analyze the differences among group means in a 

sample. It is particularly useful when comparing means of three or more groups to determine if 

there are statistically significant differences between them. ANOVA works by partitioning the 

total variance observed in a data set into different sources, such as variation between groups 

and variation within groups, and then assessing whether the variation between groups is 

significantly greater than the variation within groups. [26] 

     It goes with Hypothesis assumption: 

𝐻0: 𝜇1 =  𝜇2 = . . . = 0 

𝐻𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜇2 ≠ 0 

Where: 

𝜇 : The mean of sample. 
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     The null hypothesis typically states that there is no effect or no difference, while the 

alternative hypothesis suggests otherwise. 

Table 1. 2: ANOVA table. 

Source of 

variation 

Degrees of Freedom 

(𝒅𝒇) 

Sum  of 

Squares 

(SS) 

Mean 

Squares 

(MS) 

F-ratio 

A-Treatment ni-1 SSA MSA MSA/MSE 

B-Treatment nj-1 SSB MSB MSB/MSE 

Interaction (ni-1)(nj-1) SSAB MSAB MSAB/MSE 

Error nij -[dfa − dfb − dfint] SSE MSE  

Total nij-1 SST   

 

1.19.2. ANOVA Table Terms  

- SST: The total sum of squares represents the total variability observed in the dependent 

variable Y. It calculated as the actual total squares of the dependent Y variable minus a 

correction factor (CF). 

𝑆𝑆𝑇 =  ∑ 𝑌
2

−
(∑ 𝑦)²

𝑛
= ∑ 𝑌

2
− 𝐶𝐹                                                (1.8) 

- SSE: The error sum of squares, which is a total sum of unexplained variation. 

𝑆𝑆𝐸 =  ∑(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)
2
                                                                  (1.9) 

- SSTr: The treatment sum of squares, the sum of each treatment. 

𝑆𝑆𝑇𝑟 =  ∑
(∑ 𝑦𝑖)

𝑛𝑖

2

− 𝐶𝐹                                                                   (1.10) 

-  𝒅𝒇 : The number of degrees of freedom. In a treatment  𝑑𝑓𝑡 , (𝑛i) is the number of levels 

it takes in a design of experiment. 

𝑑𝑓 = 𝑛 − 1                                                                                     (1.11) 

- MS: The Mean square it is equal to:  

𝑀𝑆 =
𝑆𝑆

𝑑𝑓
                                                                                          (1.12) 

- F-value: Computed F-value calculated by dividing the mean square MS by the error 

MSE. The F-value compared to a critical value (derived from the F-distribution to 
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determine statistical significance). If the F-value is greater than the critical value, it 

suggests that there are significant differences between the group means.  

- P-value: The last term is were introduced to ANOVA analysis by Genichi Taguchi, a 

pioneer of DoE Taguchi method, and are intended as an alternative to the F-test. P % 

(considered as evidence of the hypothesis), it is the contribution percentage of each 

source of variation and is derived as a percentage of total SST. It is easier and more 

quantitative for engineers to appreciate a quantitative % contribution of a source of 

variation as opposed to a binary F-test that determines only whether the factor is 

significant or not. Taguchi recommends that if the modified source of variation is p % 

> 5%, then it should be considered not significant and pooled into the error by this we 

fail to reject the null hypothesis and vice versa. 

- Test of R² 

The coefficient of determination (R²) is an indicator, which makes it possible to judge 

the quality of a linear, simple or multiple regression. With a value between 0 and 1, it 

measures the adequacy between the model and the observed data. Sure, the R² has its 

imperfections, but its usefulness matched only by its simplicity. [27-30] 

1.20.  Graphical analysis 

     One of the main advantages of experimental designs is the presentation of results in 

graphical form. Various graphs are available for interpreting the equation of the empirical 

model (Pareto chart using in the screening step, Normal plot, Histogram of the residuals, 

Response optimizer plot, Surface plot, Contour plot). [31] 

1.21.  Conclusion 

     The design of experiment (DoE) is therefore a very powerful tool to phenomenon study 

and a set of complementary techniques helping its user in determining the experiments to be 

carried out as well as in understanding and exploiting the obtained results. This tool is 

essentially based on statistical and algebraic bases. This particularity induces the almost 

permanent possibility of knowing the errors conceded on the experimental data and on those, 

which are deduced from them. In the next chapter, we will present the application of the DoE 

method in the modeling of photovoltaic panels. 
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2.1. Introduction 

     Initially and with the aim of mastering the application of the DoE method and highlighting 

it, this chapter presents a comprehensive review of case study focusing on the application of 

Design of Experiments (DOE) in various fields. The case study discussed in this chapter offers 

valuable insights into the practical implementation of DOE methodology to address real-world 

challenges.  

     First, the calculations relating to the DoE technique were performed manually while 

rigorously respecting the steps of the method. Afterwards, and in the second step, the 

calculations were carried out by the Minitab software in order to learn how to implement data, 

to get results and their discussion. The famous example studied case is that of Goupy's car. 

2.2. The Goupy’s car case Study 

     In this study, Jacques Goupy, Lee Creighton, wanted to answer questions like, "What is 

the consumption of gas when we drive at 88,5 Km/h with a weight of 125 Kg?", so they defined 

the objective of the study which is "to know the gas consumption of a car when you drive with 

or without extra weight, while driving fast or slow". [9] 

     The experimental trials of the study were performed using one of the author’s cars. At this 

point "The Response", it has been determined and it's the consumption of gas in liter per  

kilometer (l/km), after that they researching the factors that may influence the response, there 

are two main factors "Speed" and "Additional weight", for the factors levels they choose 72.4 

as low speed, 113 as high speed and  0 Kg( the car and the driver) for low additional weight, 

250 kg  high additional weight. 

     The information summarized in the following table (Table 2.1). 

Table 2. 1: Factors and study domain. 

Factors Low Level High Level 

1- Speed 72.4 113 

2- Additional weight 0 250 

 

     There is no way to predict results out of this study domain. 
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     Examining the Constraints is about control the nuisance factors and ensure that the 

experiment gives as accurate results. 

 Decreasing of tank while the driving. 

 Temperature, wind, rain so the tests should be all in the same day.  

 Checking of the tire pressure. 

     After choosing the design, it is important to conduct the experiments, there are two factors 

to study, and each of them will take two levels: high and low. The best design to choose is a 2² 

full factorial design.  

     Experimental trials can be presented in table form. When using technical measurements 

(Km/h, Kg), the table is called an experimental table spreadsheet. In contrast, when using 

measurements coded (-1, 1), the table is called an experimental design or experimental matrix. 

[9] 

2.3. Running the experiments 

     The distance covered by the car was 112.6 km taking into account the time needed to add 

fuel, measure fuel consumption and load the car by extra weight. A full factorial design of 2² 

means that there will be 4 experiments to be carried out. After running all the experiments, they 

are drawn up in a table (Table 2.2). 

Table 2. 2: Experimental matrix with results [9]. 

 

 

 

 

 

 

Trial Speed Additional 

Weight 

Gas Consumption 

(CG) 

 Factor 1 Factor 2 l/Km 

1 (A) -1 -1 12.7543 

2 (B) +1 -1 10.6268 

3 (C) -1 +1 11.4789 

4 (D) +1 +1 8.9280 

-1 Level 

+1 Level 

72.4 Km/h 

113 Km/h 

0   

250 Kg 
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2.4. Study domain 

The study domain as shown in (figure 2.1), is defined by low and high level of each factor. 

 

Figure 2. 1: Study domain of the experiment. 

2.5. Interpreting the Coefficients 

     Predictive Mathematical Model of the Response (from chapter1): 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝑎𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖,𝑗=1
𝑖<𝑗

𝑘

𝑖=1

 

     For 2² full factorial design, the response model equation be like: 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎12𝑥1𝑥2                                                (2.1) 

Where:   

𝑦: Is the Gas consumption. 

𝑥1: Represents the level of the speed factor (factor 1). 

𝑥1:  Represents the level of the additional weight factor (factor 2). 

𝑎0, 𝑎1, 𝑎2, 𝑎12: The coefficients of the Factor’s effects. 
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2.5.1. The intercept a0: 

     It is represent the center of the study domain and the response value in this point is y0 with 

the couple (0, 0) as coordinates. 

𝑦0 = 𝑎0 + 𝑎1 × 0 + 𝑎2 × 0 + 𝑎12 × 0 × 0                                                        (2.2)        

𝑦0 = 𝑎0 

To solve the mathematical model there is two ways. 

2.5.2. Matrix way 

     The matrix form of equation 2.1 is: 

𝑦 = 𝑋. 𝑎                                                                                          (2.3) 

     With y representing the individual response recorded for the four trials in the study domain, 

and x being the design matrix, which must be a square matrix, the coefficients of the model can 

be estimated from Equation (2.1). 

𝑎 = 𝑋−1. 𝑦                                                                                      (2.4) 

    The coefficients is the half of the factor’s effect (see chapter 1). 

     The four experiments, as indicated in the domain study, give the following linear system 

with four equations: 

{

𝑦1 = 𝑎0 − 𝑎1 − 𝑎2 + 𝑎12

𝑦2 = 𝑎0 + 𝑎1 − 𝑎2 − 𝑎12

𝑦3 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎12

𝑦4 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎12

                                                                                           (2.5) 

     This system in its matrix form is: 

[

1 −1 −1     1
1    1   −1 −1
1
1

 
−1
    1

   
1  −1
1     1 

] × [

𝑎0

𝑎1
𝑎2

𝑎12

] = [

12.7543
10.6268
11.4789
8.9280

]                              (2.6) 

     Solving the linear system in Equation 2.6 allows obtaining the calculated coefficients 

(resolution of this system of equations is easy to perform): 

[

𝑎0

𝑎1
𝑎2

𝑎12

] = [

10.9470
−1.1696
−0.7435
−0.1058

]                                                                      (2.7) 
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2.5.3. Compare transactions way 

a) For factor 1 

     The mean of the Response at the high level of the speed factor (factor 1): 

We take the values of response at the high level (1) of the factor. [7] 

𝑦̅+ =
(𝑦2 + 𝑦4)

2⁄ =
(8.9280 + 10.6268)

2⁄ = 9.7774 l/km     (2.8)   

     The mean of the Response at the low level of the speed factor (factor 1): 

 We take the values of response at the low level (-1) of the factor. [7] 

𝑦̅− =
(𝑦1 + 𝑦3)

2⁄ =
(12.7543 + 11.4789)

2⁄ = 12.1166 l/km  (2.9) 

     The mean of the coefficient of speed effect is the half of the difference means: [7] 

𝑎1 =  
1

2
[𝑦̅+ − 𝑦̅−] = −1.1696 l/km                                             (2.10) 

     The graphical evaluation of speed effect with the consumption of gas presented in (figure 

2.2).  

 

Figure 2. 2: Evaluation of the speed effect. 

 

b) For factor 2 

     The same method employed to calculate factor 2 and the interaction coefficients. 
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     The mean of the Response at the high level of the additional weight factor (factor 2):  

𝑦̅+ =
(𝑦3 + 𝑦4)

2⁄ =
(11.4789 + 8.9280)

2⁄ = 10.2034  l/Km   (2.11) 

     The mean of the Response at the low level of the additional weight factor (factor 2) 

calculated as follow: 

𝑦̅− =
(𝑦1 + 𝑦2)

2⁄ =
(12.7543 + 10.6268)

2⁄ = 11.6905 l/km (2.12) 

     The mean of the coefficient of additional weight effect is the half of the difference of 

means:  

𝑎2 =  
1

2
[𝑦̅+ − 𝑦̅−] =  −0.7435 l/km                                             (2.13) 

The graphical evaluation of additional weight with consumption of gas is depicted in figure 

2.3.  

 

Figure 2. 3: Evaluation of the additional weight effect. 

c) For interaction (speed/additional weight), 𝒂𝟏𝟐 

𝑦̅+ =
(𝑦4 − 𝑦3)

2⁄ =
(8.9280 − 11.4789)

2⁄ = −1.2754 l/km  (2.14) 

          This is the effect of factor 1(speed) when the factor 2 (additional weight) at its high 

level. 

          The mean of the Response at the low level of the additional weight factor (factor 2): 
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𝑦̅− =
(𝑦2 − 𝑦1)

2⁄ =
(10.6268 − 12.7543)

2⁄ = −1.0637 l/km  (2.15) 

          This is the effect of factor 1(speed) when the factor 2 (additional weight) at its low 

level. 

         The mean of the coefficient of interaction (factor 1in factor 2):  

𝑎12 =  
1

2
[𝑦̅+ − 𝑦̅−] =  −0.1058  l/km                                           (2.16) 

          The graphical illustration of the interaction of factor 1 when factor 2 changed is:  

 

Figure 2. 4: Illustration of the interaction effect (a12). 

     As we can see, the slopes are different so there is an interaction between the two factors. If 

the slopes are in parallel we say, there is no interaction between the factors.  

d) For interaction (additional weight/ speed), 𝒂𝟐𝟏 

𝑦̅+ =
(𝑦4 − 𝑦2)

2⁄ =
(8.9280 − 10.6268)

2⁄ = −0.8494 l/km   (2.17) 

     This is the effect of factor 2(additional weight) when the factor 1 (speed) at its high level. 

 

y̅− =
(y3 − y1)

2⁄ =
(11.4789 − 12.7543)

2⁄ = −0.6377 l/km  (2.18) 

     This is the effect of factor 2(additional weight) when the factor 1 (speed) at its low level. 
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     The mean of the coefficient of interaction (factor 2 in factor 1):  

𝑎21 =  
1

2
[𝑦̅+ − 𝑦̅−] =  −0.1058 l/km                                             (2.19) 

|𝑎21| =  |𝑎12|   Always the same/ 

     The graphical illustration of the interaction of factor 2 when factor 1 changed is:  

 

Figure 2. 5: Illustration of the interaction effect (a21). 

2.6. Interpreting the Results 

     After all this calculations and by setting the calculated coefficients in Eq. 2.1, we can 

calculate all the responses within the study domain with this model: 

𝐶𝐺 = 10.9470 − 1.1696 𝑥1 − 0.7435𝑥2 − 0.1058 𝑥1𝑥2             (2.20) 

     Now it is the moment to answer the question, "What is the consumption of gas when we 

drive at 88.5 Km/h with a weight of 125 Kg?" 

     To respond to such question we must, first determine the coded units: 

𝑥 =
𝐴−𝐴0

𝑆𝑡𝑒𝑝
                                                                                          (2.21) 

     For factor 1: 

𝑥1 =
𝐴1−𝐴0,1

𝑆𝑡𝑒𝑝1
                                                                                     (2.22) 
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     For factor 2: 

𝑥2 =
𝐴2−𝐴0,2

𝑆𝑡𝑒𝑝2
                                                                                     (2.23) 

     The central or middle value of the domain of factor 1 is: 

𝐴0,1 =
(𝐴+ + 𝐴−)

2
⁄                                                                       (2.24) 

𝐴0,1 =
(113 + 72.4)

2⁄  = 92.7 Km/h                                          (2.25) 

     Also the step: 

𝑆𝑡𝑒𝑝1 =
(𝐴+ − 𝐴−)

2
⁄                                                                   (2.26) 

𝑆𝑡𝑒𝑝1 =
(113 − 72.4)

2⁄   = 20.3 Km/h                                        (2.27) 

     Then the coded unit of 88.5 Km/h is: 

𝑥1 =
(𝐴1 − 𝐴0,1)

𝑆𝑡𝑒𝑝1
⁄ =

(88.5 − 92.7)
20.3⁄ = −0.2              (2.28) 

     So: 

- 88.5 Km/h = -0.2 in coded units  

- 125 kg = 0 in coded units  

     By compensation of the coefficients in Eq. (2.20), we can write: 

𝐶𝐺 = 10.9470 − 1.1696 ×  (−0.2) − 0.7435 × (0) − 0.1058 ×  (−0.2) × (0)  

𝐶𝐺 = 11.1809 𝐾𝑚/𝐿                                                                                       (2.29) 

     Therefore, in this way, it is possible to answer questions like these and many others involving 

speed and load. 

2.7. Calculation using Minitab software 

     After implementing the experiment in the Minitab program, we obtained the following 

results 

2.7.1 The study domain 

     We can see the value of the response for various points in the study domain as indicated in 

figure 2.6. 
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Figure 2. 6: Study domain of the experiment. 

2.7.2. The coefficients 

 

Figure 2. 7: The intercept, the coefficients and the effects. 

     Where: S represents the speed factor and W is the Weight factor. 

As we have already seen in the DoE theory, the coefficient of factors is the half of the effects, 

and that is what exactly represented by Minitab in (figure 2.7). 

2.7.3. Factors effects 

     Figure 2.8 represents the main effect (called also the proper effect) of the two considered 

factors as given by Minitab software. 
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Figure 2. 8: (A) the evaluation of speed effect with the consumption. (B) Evaluation of additional 

weight effect with consumption. 

2.7.4. The interaction between Factors 

     Figure 2.9 and 2.10 present the interactive effects (called also the mutual effect) of the two 

considered factors as given by Minitab software. 

 

Figure 2. 9: The effect of factor 1 when factor 2 changed. 
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Figure 2. 10: The effect of factor 2 when factor 1 changed. 

2.7.5. Prediction for consumption 

     The predicted mathematical model of the consumption given by Minitab as indicated by the 

following screenshot depicted in figure 2.11. 

 

Figure 2. 11: Regression equation. 

     Finally, the answer the question: "What is the consumption of gas when we drive at 88.5 

Km/h with a weight of 125 Kg?"  Presented in the following figure 2.12. 

 

Figure 2. 12: Prediction of consumption. 
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2.7.6. Contour plot of consumption for speed and additional weight 

     Contour curves are two-dimensional views where contour lines created by connecting 

locations with the same response value [32]. The graph indicates the necessary changes in speed 

owing to the added weight if I wish to reach 11.5 km/l for example. This contour curves indicate 

the behavior of the response due to the variation of both factors. In figure 2.13, G-C is the 

response, which represents the Gas Consumption, W is the Weight factor and S is the speed 

factor. Colors of the curves in the contours. 

 

Figure 2. 13: Contour Plot of the experiment. 

2.7.7. Surface response plot 

     The results of the study can be recorded in what the DoE method calls response surfaces. 

The results of our studied example are presented in figure 2.14.  
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Figure 2. 14: Surface response Plot of the experiment. 

2.8. Conclusion 

     Through a comprehensive review of the case study, we observed how the DoE technique 

was successfully used to address a range of challenges especially when it comes to study a 

complex processes with a host of factors. 

     Thanks to the discussions made on the experiment carried out in our example, we can rely 

on everything that was carried out in this study to apply it to examples of more complex size. 

we were also able to know how to have the mathematical predictive model of response behavior 

when the input variables vary within the limits set by the domain of study based on few 

experiment trials. we also knew how to calculate and present graphically the effects of the 

different factors as well as the presentation of the response in the form of contour curves or in 

the form of response surface curves using the Minitab software. By applying DOE principles 

and techniques, we aim to design robust experiments that produce actionable insights. 
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3.1. Introduction 

     Understanding the performance of photovoltaic (PV) panels are crucial steps towards 

enhancing their efficiency and usability. Design of Experiment (DOE) methodology, coupled 

with Minitab, provides a systematic approach to analyze and model the complex relationships 

between factors affecting PV panel performances and its key parameters. 

     This chapter delves into the application of Design of Experiment techniques using Minitab 

software to model the performance of PV panels. The primary focus lies on three critical 

responses: maximum power output, short circuit current and open circuit voltage. These 

responses are fundamental indicators of a PV panel's efficiency and functionality. 

3.2. The experiments 

     In this study, the objective is to modeling the electrical response of a monocrystalline 

photovoltaic module in using Design of experiments approach. The main purpose is to evaluate 

the maximum power and the short-circuit current and open circuit voltage " The responses" 

dependence within the indoor conditions of variations of solar irradiation and surface 

temperature " The Factors ", The Design of Experiments method is employed to estimate both  

the individual and combined effects of the two independent variables, Experiments were 

conducted in the laboratory, and the experimental errors associated with temperature and 

electrical measurements, including irradiation measurements, are estimated to be standard at 

10% of the values. 

     The experiencers choose the mono-crystalline module, PS040PR with a maximum power of 

Pm = 40 W realized at voltage of Vmp = 17 V and a current Imp = 2.34 A. Its open circuit voltage 

is VOC= 21 V and its short circuit current is ISC = 2.56 A. These values are extracted of the 

datasheet of the panels. 

     Experiments are performed within exposing the chosen PV panel to the irradiation emitted 

by the Halogen DELTALAB light source and due to the variation of the irradiation level (by 

acting on the bulbs) we record the irradiation, temperature, the open circuit voltage, the short 

circuit current and the maxim disponible power on the PV panel. 

     The solar irradiation levels and surface temperature measured concurrently during indoor 

experiments. By using (Hg lamps of Deltalab source) as irradiation source. We have realized 

fifteen (15) trials. 
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     The parameters were experimentally determined: 

- Solar irradiation measured by using a fluxmeter positioned at the center of the PV panel. Its 

sensitivity was recorded as 𝑆 = 10.33 µ𝑉/ 𝑊/𝑚². 

- Surface temperature at the center of the PV panel measured by using an infrared thermometer, 

with recordings accurate within 1%. [5] 

     The experimental trials measurement given in (table 3.1): 

Table 3. 1: Table of Experiment on the monocrystalline panel. [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Modeling and characterization of the PV panel response 

     Based on these experiments, and using of the 2² full factorial experimental design theory, i 

will choose a sample of experiments consisting of four experiments ( trials numbers: 05, 08, 

13, 15 as indicated in table 3.1) to analyze them with a full factorial design 2² and see the 

Monocristallin 

Factors Responses 

N° 𝑰 𝒓 

(mV) 

𝑻 (°C) 𝑽 𝒄𝒐 

(V) 

𝑰 𝒄𝒄 

(A) 

𝑷 𝒎 

(W) 

01 5,9 28,9 20,1 0,706 9,93 

02 5,9 32,6 19,9 0,712 9,92 

03 5,9 34,7 19,7 0,716 9,87 

04 5,9 37,4 19,6 0,719 9,86 

05 8,5 30,5 20,5 0,894 12,83 

06 8,5 34,6 20,1 0,918 12,92 

07 8,5 37 19,9 0,915 12,75 

08 8,5 42,3 19,6 0,899 12,33 

09 13,6 34,2 20,5 1,263 18,12 

10 13,6 37,1 20,3 1,269 18,03 

11 13,6 41,1 19,8 1,282 17,77 

12 13,6 43,9 19,4 1,281 17,40 

13 18,4 36,3 20,5 1,633 23,43 

14 18,4 38,1 20,3 1,638 23,28 

15 18,4 45,1 19,8 1,653 22,91 
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importance of the influence of change of factors on desired responses, the reason for choosing 

them is trying to find the best samples to study to get the best results.  

     First, as we can see in the table 3.2, the irradiation is in (mV unit expressed on the fluxmeter), 

so we are going to convert it to (𝑊/𝑚²) based on the sensitivity of the commercial fluxmeter. 

The converting formula is then: 

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝑊/𝑚²) =  𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑚𝑉) / (𝑆 (µ𝑉/(𝑊/𝑚²)) ×  1000) . [33] 

Where: 

S: is the sensitivity of the fluxmeter 𝑆 = 10.33 µ𝑉/ 𝑊/𝑚². 

The experimental trials measurements summarized in the table. (Table 3.1) 

Table 3. 2: Experimental trials measurements and observed response. 

     Now, from the dressed table 3.2, we can affect the levels +1, 0 and -1 to the considered 

factors that what we called reduced centered values as depicted in table 3.3. 

Table 3. 3: Original and Reduced Centered Values. 

 

 

      

      The reduced centered coordinates for irradiation (W/m²), represented by xA, and 

temperature (°C), represented by xB, will be calculated. 

a- Factor A 

     The step: 

𝑆𝑡𝑒𝑝𝐴 =  
(𝐴+ − 𝐴−)

2
⁄ =

(1781 − 1317)
2⁄ = 476 𝑊/𝑚²         (3.1) 

Trial Irradiation 

(mV) 

Irradiation 

(W/m²) 

Surface 

Temperature 

(°C) 

Maximum 

power 

(W) 

Short-

circuit 

current (A) 

Open 

circuit 

voltage (V) 

  Factor A Factor B Response 1 Response 2 Response 3 

1 8.5 829 30.5 12.83 0.894 20.5 

2 8.5 829  12.33 0.899 19.6 

3 18.4 1781 36.3 23.43 1.633 20.5 

4 18.4 1781 45.1 22.91 1.653 19.8 

 Factor A Factor B 

-1 Level 

0 

+1 Level 

829 W/m² 

1305 W/m² 

1781 W /m² 

30.5 °C 

37.8 °C 

45.1 °C 
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     The central value of the domain: 

𝐴0,𝐴 =
(𝐴+ + 𝐴−)

2
⁄ =

(1781 + 1317)
2⁄ = 1305 𝑊/𝑚²           (3.2) 

     The coded units: 

𝑥𝐴 =
𝐴−𝐴0,𝐴

𝑆𝑡𝑒𝑝
                                                                                     (3.3) 

b- Factor B  

     The step: 

𝑆𝑡𝑒𝑝𝐵 =  
(𝐴+ − 𝐴−)

2
⁄ =

(38.1 − 34.2)
2⁄ = 7.8 °𝐶                   (3.4) 

     The central value of the domain: 

𝐴0,𝐵 =
(𝐴+ + 𝐴−)

2
⁄ =

(38.1 + 34.2)
2⁄ = 37.8 °C                      (3.5) 

     The coded units: 

𝑥𝐵 =
𝐴−𝐴0,2

𝑆𝑡𝑒𝑝
                                                                                     (3.6) 

     Then all the reduced central coordinates (RCV) of the other values of the factors involved 

were calculated, in order to standardize the units of the variables. 

3.4. Modeling the PV panel for Maximum power (W) 

     Minitab v21 statistical software design analysis is used for design of experiments, regression 

and graphical analyses of data obtained, surface response and contour curves analysis of the 

obtained models to evaluate the predictive model accuracy [19]. 

     we applied the DoE method  on the maximum available power response as function of 

irradiation and temperature and the same steps can be generalized to obtain the predictive 

models of the other responses of a PV panel as the short-circuit current and the open circuit 

voltage. 
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3.4.1. Mathematical analysis 

a) Linear regression model 

     We consider only the linear variables influences and the interactive effects. Therefore, and 

according to the DoE theory, the predictive mathematical model related to such linear 

regression is: 

𝑦 = 𝑎0 + 𝑎𝐴𝑥𝐴 + 𝑎𝐵𝑥𝐵 + 𝑎𝐴𝐵𝑥𝐴𝑥𝐵                                                 (3.7) 

Where: 

- 𝑦: It can be one of the three considered responses “Pm, ISC, VOC” from measurements. 

- 𝑥𝐴: Represents the level of the Solar Irradiation factor (factor A). 

- 𝑥𝐵 : Represents the level of the Surface Temperature factor (factor B). 

- 𝑎0 : The intercept. 

- 𝑎𝐴, 𝑎𝐵, 𝑎𝐴𝐵: The coefficients associated with the effects of the factors 𝑥A, 𝑥B and the 

interaction effect. 

     The simple regression model is a predictive model of a full factorial design composed of 

two factors each one has two levels. The effects of the two factors and their interaction define 

this model. The experiments carried out with this model and the reduced center coordinates are 

shown in the following table (table 3.4). [34] 

Table 3. 4: Experimental data of the simple regression model. 

 

RCV: means reduced centered variables.    

     By replacing in equation (3.7) the response 𝑦, which is the maximum power 𝑃𝑚, and the 

factors 𝑥A and 𝑥B by their centered values indicated in table 3.4 for each trial, we obtain the 

following linear system: 

Trial Ir (W/m²) T (°C) Ir (RCV) T(RCV) Pm (W) ISC (A) VOC (V) 

1 829 30.5 -1 -1 12.83 0.894 20.5 

2 829  -1 0.6250 12.33 0.899 19.6 

3 1781 36.3 1 -0.2054 23.43 1.633 20.5 

4 1781 45.1 1 1 22.91 1.653 19.8 
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{

𝑦1 = 𝑎0 − 𝑎𝐴 − 𝑎𝐵 + 𝑎𝐴𝐵

𝑦2 = 𝑎0 − 𝑎𝐴 + 0.6250 𝑎𝐵 − 0.6250𝑎𝐴𝐵

𝑦3 = 𝑎0 + 𝑎𝐴 − 0.2054𝑎𝐵 − 0.2054𝑎𝐴𝐵

𝑦4 = 𝑎0 + 𝑎𝐴 + 𝑎𝐵 + 𝑎𝐴𝐵

                                                                     (3.8) 

     We can write the system represented in (3.8) in a matrix form as follow: 

[

1 −1 −1                 1
1    −1   0.6250  −0.6250
1
1

    
1

  1  
−0.2054 −0.2054

1              1 

] × [

𝑎0

𝑎𝐴
𝑎𝐵

𝑎𝐴𝐵

] = [

12.83
12.33
23.43
22.21

]                          (3.9) 

     The resolution of this system of equations gives the following coefficients values: 

[

𝑎0

𝑎𝐴
𝑎𝐵

𝑎𝐴𝐵

] = [

17.93
5.41

−0.3695
−0.06185

]                                                                     (3.10) 

     The results of the means of the responses and interaction, summarized in this following 

table: 

Table 3. 5: The means of the responses/interaction. 

The mean of the 

response at 

different factors 

and levels (W) 

𝒚̅𝑨+ 𝒚̅𝑩− 𝒚̅𝑩+ 𝒚̅𝑩− 

23.34 12.52 17.56 18.30 

 

The mean of the 

interaction at 

different factors 

and levels(W) 

𝒚̅𝑨𝑩+ 𝒚̅𝑨𝑩− 𝒚̅𝑩𝑨+ 𝒚̅𝑩𝑨− 

5.9 5.3 -0.26 0.25 

 

Where:  

- 𝑦̅𝐴+ : The mean of the response at high level of factor A. 

- 𝑦̅𝐴− : The mean of the response at low level of factor A. 

- 𝑦̅𝐵+ : The mean of the response at high level of factor B. 

- 𝑦̅𝐵− : The mean of the response at low level of factor B. 

- 𝑦̅𝐴𝐵+ : The mean of interaction of factor A when factor B is in high level. 

- 𝑦̅𝐴𝐵− : The mean of interaction of factor A when factor B is in low level. 

- 𝑦̅𝐵𝐴+ : The mean of interaction of factor B when factor A is in high level. 

- 𝑦̅𝐵𝐴− : The mean of interaction of factor B when factor A is in low level. 
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     By replacing coefficients of the equation (3.7) by their calculated values obtained in equation 

(3.10), the predictive first order linear mathematical model gives the maximum available power 

response 𝑃𝑚  on the considered PV panel: 

𝑃𝑚 =17.93 +5.41 𝑥𝐴0.3695 𝑥𝐵0.06185 𝑥𝐴𝑥𝐵                            (3.11) 

     As it can be seen in equation (3.11) which represents the predictive first order mathematical 

model, the influence of the irradiation factor growth in the same direction and it is more 

significant than the temperature factor (power increases with increased light intensity) since its 

coefficient is positive and is the greatest. This result is very close to the reality. A negative 

coefficient for temperature (expected and coincides with PV panel behaviors) suggests power 

decreases with rising temperature. The response at the center of the study domain is the intercept 

a0 = 17.93W at the calculating operating point (Ir = 1305 W/m² and T = 37.8 °C). 

     By looking in the model, when irradiation is varied from RCV 0 (1305 W/m²) to RCV +1 

(1781 W/m²), adding the a1 coefficient to the central value increases the maximum power. 

When the irradiation passes from the RCV 0 (1305 W/m²) to the RCV −1 (829 W/m²).  

     The maximum power response decreases from the central value by the coefficient a1. The 

opposite is true for direct surface temperature effect and the interaction, when it goes from RCV 

0 (37.8°C) to RCV +1 (45.1°C) the maximum power decreases from the central value, and when 

it passes from RCV 0 (37.8°C) to RCV -1 (30.5 °C) the maximum power increases. 

3.4.2. Graphical analysis 

     Graphical analysis helps determine the significance and direction of variations in the 

response based on simultaneous variation in factors. It also makes it possible to confirm the 

results of the mathematical analysis. This graphical analysis can be presented in the form of 

slopes of regression lines showing the effects of factors and their interactions, or in the form of 

a response surface, or even corresponding contour curves [5]. Calculations were performed 

thanks to Minitab software. 

     In the cube plot, here in figure 3.1 we can see the study domain that i studied is not 

orthogonal. That is due to impossibility of mastering the operating points of the PV panel in 

experiment conditions. 
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Figure 3.1: Study Domain. 

a) Pareto chart 

     A Pareto chart, also known as the 80/20 rule chart, is a graphical tool that combines a bar 

graph and a line graph to depict the relationship between factors and their cumulative impact. 

It named after Vilfredo Pareto, an Italian economist who observed that, in many contexts, 

roughly 80% of consequences come from 20% of the causes. [36] 

    Figure 3.2 presents Pareto chart, as shows the factors and interaction effects, factor A, factor 

B and factor AB. as we can see the most influential Factor is factor A which represents solar 

irradiation level.   

 

Figure 3. 2: Pareto chart of the effects. 
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b) Factorial Plots for PM 

     The overall effect of a factor is the difference between the average of responses at the high 

level of the factor and the average of responses at the low level. However, the average effect or 

effect of one factor is half of the overall effect. [5] 

 

Figure 3. 3: Main effect plots for Pm. 

     Figure 3.3, on the left side, shows the irradiation varies from level -1 to level +1 the 

maximum power goes from 12.52 W to 23.34W, with a value of 10.8W, which represents the 

global effect of factor 1. 

     Also, figure 3.3, on its right side, there is the plot of PV cell surface temperature, which is 

influences inversely on the direction of the power response (negative slope). when it varies 

from level -1 to level +1, Pm decrease from 18.30W 17.56W that is global effect with value of 

0.74 W. 

     These conclusions obtained by the simulations faithfully reflect the reality of the behavior 

of photovoltaic solar panels. 

c)  Interaction plots 

     Indeed, with the theory of experimental designs we can analyze the interaction (mutual) 

effect between solar irradiation and PV cell surface temperature on the variation of the 

maximum power response. The interaction effect plot is a set of plots of average effects, each 

corresponding to a different value of the second variable. If the lines are not parallel or the 

contour curves are not equidistant over the entire range of the independent variable, then there 

is an interaction between the two independent variables. [35] 
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     Figure 3.4 presents the interaction effect between factor A and B equal to -0.06158 W. The 

interactive effect of PV cell surface temperature on solar irradiation, the slope of blue plot 

represents 𝑦̅𝐴𝐵− the mean effect of irradiation when temperature is in the low level (30.5°C) it 

equal to 5.9W, the slope of red plot represents 𝑦̅𝐴𝐵+ the mean effect of irradiation when 

temperature is in high level (45.1°C) and it equal 5.3 W. 

 

Figure 3. 4: The effect of factor 1 when factor 2 changed. 

     This figure presents the irradiation/temperature interaction, which means the combined 

effect of these two variables on the designed response. When the irradiation is 829 𝑊/𝑚², the 

effect of temperature is 0.25 W (blue plot). When the irradiation is 1781 𝑊/𝑚² (red plot), the 

effect of temperature on power is -0.62 W, this means that the effect of irradiation is a little 

higher when the temperature decreases. 

 

Figure 3. 5: The effect of factor 2when factor 1 changed. 
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d) Contour and surface plots 

     Figure 3.6 shows the surface response and the contour curves of the maximum power due to 

the variation of irradiation levels and surface temperature of PV cell of the considered PV 

module. From the surface response graph, we see that the variation of the maximum power acts 

in the same direction of variation of the effect of solar irradiation and in the opposite direction 

of the variation of the effect of the PV cell surface temperature of the PV module. Moreover, 

the same note in contour outlines. This highlights of higher dependency on solar irradiation 

levels compared to PV cell surface temperature where we see a lower dependency. 

 

Figure 3.6: Surface response and contour plots of the experiment. 

3.5. Modeling the PV panel for Short-circuit current 

     The same procedures followed during the study of the behavior of the maximum available 

power response relating to the variation of the two factors sunshine and temperature will be 

reproduced for the study of short-circuit current and open-circuit voltage responses. 

3.5.1. Mathematical analysis 

     The same theory and factors we apply it to execute the result, and see the effects on the 

short circuit current (response). 

a) Linear regression model 

Calculation of the intercept and coefficient is the same way.  

y0 =  a0 = 1.267 A                                                                          (2.26) 
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The results of the means of the responses and interaction, summarized in this following table: 

Table 3. 6: The means of the responses/interaction. 

The Effect of 

both factors 

(A) 

𝒂𝑨 𝒂𝑩 𝒂𝑨𝑩 𝒂𝑩𝑨 

0.3697 0.0098 0.0068 0.0068 

 

The mean of the 

response at 

different factors 

and levels (A) 

𝒚̅𝑨+ 𝒚̅𝑨− 𝒚̅𝑩+ 𝒚̅𝑩− 

1.636 0.8971 1.277 1.257 

 

The mean of the 

interaction at 

different factors 

and levels (A) 

𝒚̅𝑨𝑩+ 𝒚̅𝑨𝑩− 𝒚̅𝑩𝑨+ 𝒚̅𝑩𝑨− 

0.377 0.3695 0.01 0.0025 

 

     The predictive first order mathematical model give the maximum available power response: 

𝑰𝑺𝑪 =1.267 +0.3697 𝑥𝐴0.0098 𝑥𝐵 0.0068 𝑥𝐴𝑥𝐵                       (2.27) 

     Like the maximum power response, short circuit current influent by the irradiation more 

than the temperature, So much, so that we can neglect the effect of temperature and interaction. 

3.5.2. Graphical analysis 

a)   Pareto Chart 

     The chart here can prove it, as it shows the huge difference between the effects. 

 

Figure 3. 7:Pareto chart of the effects. 
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b) Factorial Plots for ISC 

     The following plots shows on the left, the irradiation varies from level 0 to level +1 the 

short-circuit goes from 1.267 Amps to 1.636 Amps, with a rising value of 0.369 Amps, which 

represents the mean effect of factor 1. On the right side of figure 3.8, there is the plot of PV cell 

surface temperature, when it varies from level 0 to level +1, but the deference between 

maximum power and short-circuit current that the ISC increase from 1.267Amps to  1.277 Amps 

that is mean effect with value of 0.01 Amps. 

 

Figure 3. 8: Main effect plots for ISC. 

c) Interaction plots 

     The following figures 3.9 and 3.10 present, the interaction effect between the factors on the 

response. The difference between the two slopes of the factor responses indicates the presence 

of an interaction between these two factors but with a very low value dependency. So both 

temperature and irradiations variations with combined effect affect very low the short-circuit 

current of the studied PV module. 
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Figure 3. 9: The effect of factor 1 when factor 2 changed. 

 

Figure 3.10: The effect of factor 2 when factor 1 changed. 

d) Contour and surface plots 

     The Figure 3.11 present short-circuit current response surface and the corresponding contour 

plot. This graphic representation thus confirms the behavior of the short-current response as a 

function of solar irradiation and surface temperature. 

     The short circuit current is strongly not dependent on temperature variations and increases 

proportionally with irradiation level variations. 
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Figure 3.11: Surface response and contour plots of the experiment. 

3.6. Modeling the PV panel for Open-circuit voltage response: 

      From the characteristic curves of the module, it is clear that the open circuit voltage of the 

photovoltaic module, the point of intersection of the curve with the horizontal axis. 

     Varies little with solar radiation changes. It is inversely proportional to temperature, i.e., a 

rise in temperature produces a decrease in voltage. 

3.6.1. Mathematical analysis 

a) Linear regression model 

Calculation of the intercept and coefficient is the same way.  

𝑦0 =  𝑎0 = 20.16 𝑉                                                                        (2.28) 

      The results of the means of the responses and interaction, summarized in this following 

table: 

Table 3. 7: The coefficients / The means of the responses/interaction. 

The Effect of 

both factors 

(V) 

𝒂𝑨 𝒂𝑩 𝒂𝑨𝑩 𝒂𝑩𝑨 

0.2173 -0.5673 0.01344 -0.01344 

 

The mean of the 

response at 

different factors 

and levels (V) 

𝒚̅𝑨+ 𝒚̅𝑨− 𝒚̅𝑩+ 𝒚̅𝑩− 

29.23 19.95 19.60 20.73 
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The mean of the 

interaction at 

different factors 

and levels (V) 

𝒚̅𝑨𝑩+ 𝒚̅𝑨𝑩− 𝒚̅𝑩𝑨+ 𝒚̅𝑩𝑨− 

0.1 0 -0.35 -0.45 

 

     The predictive first order mathematical model give the maximum available power response: 

𝑽𝑶𝑪 =20.16 +0.2173 𝑥𝐴0.5673 𝑥𝐵 0.01344 𝑥𝐴𝑥𝐵                     (2.29) 

     We see from the linear regression model, that the open circuit voltage, unlike other 

responses it is more affected by temperature more than the irradiation. 

3.6.2. Graphical analysis 

a) Pareto Chart 

     The Pareto chart shows that there is no significant effect, but it shows us that the effect of 

temperature (effect B) is greater than the rest. 

 

Figure 3.12: Pareto chart of the effects. 

b) Factorial Plots for VOC 

     As it seems very clear in figure 3.13, the effect of the temperature factor acts on the opposite 

direction to that of irradiation leading to a negative slope showing that the open circuit voltage 

response increases slowly with irradiation but decreases sharply with temperature. 
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Figure 3.13: Main effect plots for Voc. 

 

c) Interacting effects plots 

     The open circuit voltage presented in the following 3.14 and 3.15 figures, presents a different 

behavior to those of the other two responses, we notice the existence of a little difference 

between the slopes of the effects of the factors, hence the absence of a strong interaction 

between them. So the interactive effect of both input variables (irradiation levels and 

temperature) on the open circuit voltage response can be neglected. 
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Figure 3. 14: the effect of factor 1 when factor 2 changed. 

 

Figure 3. 15: the effect of factor 2 when factor 1 changed. 

d) Contour and surface plots: 

     It is clear in the following 3.16 figure that temperature plays a major role in changing the 

open circuit voltage.  

It greatly affects the studied response because the open circuit voltage decreases when the 

temperature rises and is directly proportional to the direction of radiation change. 

 

Figure 3.16: Surface response and contour plots of the experiment. 
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3.7. Conclusion 

     In conclusion, the utilization of Design of Experiment (DOE) techniques in conjunction with 

Minitab software offers a powerful framework for modeling the performance of photovoltaic 

(PV) panels. 

      By applying methodologies facilitated by Minitab, such as factorial designs, we can 

effectively identify significant factors and their interactions effects on the response closer to the 

domain of the study. After results and discussion, we notice that the three responses vary in the 

same direction of variation of solar irradiation, but differently with the direction of variation of 

surface temperature. 
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General Conclusion 

     The DoE technique and its implementation in modeling technological processes were 

effectively utilized. The DoE approach was used for modeling and characterizing photovoltaic 

modules. By employing this method, the behavior of a monocrystalline PV panel was 

simulated, showcasing it as a practical modeling technique that necessitates only a few 

measurements for the input variables (factors) and outputs (response), while yielding 

satisfactory precision. Data from experiments conducted on a monocrystalline  photovoltaic 

panel were analyzed. 

     The first chapter covered generalities about the design of experiments were presented, 

including its principle, the most important designs, and its usage principle. the second chapter, 

featured an applied example of design of experiments to control the gasoline consumption of 

Goupy's car was presented, showing how the design of experiments is carried out and how 

results are extracted both algebraically and graphically manually, without using software, and 

comparing these results with those calculated using Minitab software. The third chapter 

involved using DoE for modeling the PS040PR type monocrystalline photovoltaic panel within 

the Minitab environment. 

     In this study, radiation levels and temperatures were considered as input factors and 

compared to the unit's electrical parameters such as maximum power, short circuit current, and 

open circuit voltage, which were the response variables of the system studied. The DoE concept 

allowed for accurate predictions of responses based on input factors. Using the 2² factorial 

design method, the direct and combined effects of the temperature and irradiation factors on the 

three selected responses were highlighted. Furthermore, by comparing the real responses of a 

PV module obtained experimentally, these behaviors obtained by simulation with factorial 

design methods were analyzed, explained, and validated. The algebraic calculation using simple 

linear regression justified the relationship between input and output variables and determined 

which variables had the most influence on the output variable. Additionally, graphical 

representations were used to trace the effects of the factors on the studied responses and the 

interaction effects between the factors. 
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     The study revealed that DoE enables acquiring meaningful information using response 

surfaces and contour curves within a well-defined study area, obviating the need to conduct 

experiments at every point within this domain. This signifies that initial limited experiments 

allow extrapolation of response behaviors across the study domain. 

     Finally, it was demonstrated that the experimental design approach makes possible to reduce 

the running time of experiments (reduced number of tests) and the number of executions for 

modeling a system. Additionally, a wide range of operational information can be obtained with 

only a few experimental trials. This contribution has shown that the design of experiments 

approach is a reliable and quality tool that can be easily applied to determine the behavior of 

photovoltaic system applications. 

     We recommended to use the mathematical predictive model of the photovoltaic panel during 

the stages of study, design, installation, and implementation of the systems to provide a future 

vision of its performance after installation. 
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