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Abstract

Abstract

The aim of this dissertation is to model the parameters of a monocrystalline photovoltaic
(PV) panel in indoor conditions based on the effects of input parameters such as irradiance and
surface temperature, using the factorial design. This research evaluates the main responses
(maximum power, short circuit current, open circuit voltage) by creating accurate predictive
models of the responses, to determine. Furthermore, this approach facilitates the graphical
representation, using Minitab software, of response surfaces and contour curves for different

responses so that these visualizations provide valuable insights into response behavior.

Keywords: Design of experiments, factorial design, Mathematical predictive model, surface

response.
Résumé

L'objectif de cette thése est de modéliser les parametres d'un panneau photovoltaique
monocristallin (PV) dans des conditions intérieures sur la base des effets de parametres d'entrée
tels que l'irradiance et la température de surface, en utilisant le plan factoriel. Cette recherche
évalue les principales réponses (puissance maximale, courant de court-circuit, tension en circuit
ouvert) en créant des modeéles prédictifs précis des réponses, a déterminer. De plus, cette
approche facilite la représentation graphique, a l'aide du logiciel Minitab, des surfaces de
réponse et des courbes de contour pour différentes réponses, de sorte que ces visualisations

fournissent des informations précieuses sur le comportement des réponses.

Mots clé : Plan d'expériences, plan factoriel, Modele mathématique prédictif, réponse de

surface.
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General Introduction

General Introduction
Today's world is experiencing economic growth and spectacular technological

development, which requires an ever-increasing energy requirement. Following the increase in
energy demand, the countries of the world now need a large use of energy resources, which is
why the modern trend seeks to know how to achieve this objective through diversification of
resources. Fissile and fossil resources (nuclear, oil and natural gas) provide a large part of global
energy production. Consumption from these resources leads to the emission of greenhouse
gases and thus increases pollution. Therefore, the solution to maintain the pace of economic
and technological growth while preserving the environment is to resort to other sources, in
particular renewable energy resources, which do not negatively affect the environment. By
renewable energy, we mean energy derived from the sun, wind, geothermal heat, water or

biomass.

The use of renewable energies, especially photovoltaic solar energy, has become a major
concern for all the policies of countries around the world, because it is a clean energy (no gas
tax), inexhaustible (sun available for free use) and which does not cause any pollution to the
environment. There are even international conventions between several countries around the
world for delocalized production to supply countries far from the origin of the photovoltaic
solar power plant. One way to harness this solar energy is the use of large-scale photovoltaic
panels that convert solar radiation into electricity. Electrical energy produced from the sun by
the photoelectric effect. The main factor in solar power generation is the efficiency of the solar
cell, which is mainly manufactured on a large scale based on crystalline silicon technology. The
efficiency of the solar cell is still not cost-effective enough, but the solar power generation
capacity of the cell is excellent. Many factors affect the efficiency of a photovoltaic system
during installation, maintenance and after, such as extreme conditions (irradiation, temperature,

wind, dust, tilt angle).

Experimental designs are one of the most important tools in modern scientific research, as
they play a major role in various fields of applied science. The DoE method has become a very
effective tool for the design and even feasibility study of several technological systems. it is
based on a few experimental trials and an operator expert with knowledge of the system to be
studied and makes it possible to make well-defined scientific conclusions on the behavior of an
output variables with the influence of the proper and especially interactive effects of the input

variables.
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For any system studied considered as a black box, the DoE method consists of modeling,
characterization, optimization and even statistical calculation to minimize the errors induced in
the considered response variable. It, the DoE technique, also includes different designs, the
method of their implementation and the analysis of their data in order to obtain practical
decisions in the simplest, most economical, and easiest to analyze and interpret and with a

sufficient degree of precision.

This master thesis work aims to model several outputs of a monocrystalline photovoltaic
panel using a full factorial design and to discover its performance and the state that affects it
the most. To accomplish this, experimental trials are to be carried out on a monocrystalline PV

module, and measurements satisfying the objectives will be collected.
This Master dissertation, describing our work, will be organized into three chapters:

In the first chapter, mainly interested in giving an overview of experimental design, its
definition, a brief history of it, its most important terms, and types. The second chapter was
devoted to an applied example of experimental design, named Goupy’s Car, in how the
technique of DoE is attempted to be understood, and manual calculations are performed,
confronting them to simulations under Minitab software. The practical aspect, which will be
displayed in the third chapter, is implementing the modeling of a single-crystalline photovoltaic
panel using the MINITAB program and identifying the various interactions between these
factors that affect the response. Starting from fifteen experimental trials carried out on the
chosen PV module, measurements for the considered outputs: maximum power available on

the PV panel, the short-circuit panel, and its open circuit voltage recorded.

Finally, the dissertation completed with a general conclusion
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Chapter 1 : Design of Experiments. Generalities

1.1. Introduction
Design of Experiments (DoE) technique is widely used in several scientific fields such as
chemical process, pharmaceutic process, agriculture studies and so on... it really concerns

scientists who run experiments and without deeply having knowledge on the system.

In order to study the influence of several input parameters on the output parameter, the
classical experimental approach is to study the influence of each experimental variable
separately. This one-variable-at-a-time strategy is easy to handle and widely employed.
However, is it the most efficient way to approach an experimental problem? Since in the case
that there are a large number of variables and each experiment lasts a long time. As the
experimenter could not run large numbers of trials, he is obliged to choose another best research

strategy.

For us, we have thinking about using DoE in electrical engineering studies. So it, DOE, can
be used in modeling and optimizing process based on few experiments performed on the

targeted output response of the studied system.

This first chapter outlines the areas in which experimental designs can be applied, defines
objectives and raises the general problem of how to study a phenomenon.

However, this chapter provides a bibliographic summary of the necessary knowledge about
DoE method. First, it is clearly necessary to recall concepts such as the definition of
experimental plans, the principle, as well as the basic vocabulary (factor, response,

experimental domain, etc.) related to the targeted theory.

1.2. Historical perspective

In the 1920s and 1930s, Ronald A. Fisher conducted research in agriculture in the UK with
the goal of increasing crop yields. He pioneered the design of experiments (DoE) by
advocating for simultaneous testing of multiple variables. Fisher's work marked the official
beginning of DoE. In 1935, he authored a book on DoE. [1]

The credit for developing the Response Surface Method (RSM) goes to George Box, also
from the UK. He focused on experimental design procedures for process optimization.
Additionally, in the 1950s, W. Edwards Deming, along with his contributions to statistical
methods, was also concerned with the design of experiments. Another notable figure, Genichi

Taguchi, a Japanese statistician, particularly focused on methods for improving quality. [2]
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1.3. Definition

Design of Experiments (DoE) is a structured approach employed to plan, execute, and
analyze experiments systematically. It serves as a cornerstone in applied statistics, facilitating
the scientific investigation of systems, processes, or products by systematically manipulating

input variables to observe their impact on measured response variables. [2]

1.4.  Principle

As depicted in (figure 1.1), this method views a physical system or process as a black box,
(meaning there is no need to understand neither the internal structure of the studied object nor
the mathematical model). Inputs and outputs of the considered system are termed factors and
responses, respectively, and are modeled using statistical tools. Experimental design techniques
allow us effectively address our needs. Essentially, the principle involves simultaneously
varying the levels of one or more factors (which may be discrete or continuous variables) in
each trial on the performed experimental process. This approach serves two main purposes:
significantly reducing the number of required experiments while expanding the range of factors
studied, and identifying interactions between factors while determining the optimal setting for
these factors relative to a given response. The key aspect in utilizing experimental designs is to
minimize the number of experiments conducted without compromising result precision.
Currently, there exists a diverse range of designs, each tailored to solve specific problems based
on their properties. [3, 4]

uncontrollable variables

ggd
\\ black box

|:> predictive model DoE :>

inputs outputs

TUt

controllable variables

Figurel. 1: Representative diagram of the DoOE method. [5]

1.5.  The process of knowledge acquisition

The DoE method imposes to the investigator to ask a number of questions according to
(Figure 1.2).
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SYSTEM TO STUDY

QUESTIONS Q1, Q2 ..Gn

INFORMATION INVENTORY

I—D-CHOlCE OF AN EXPERIMENTAL STRATEGY

GRADUAL l
ACQUISITION
OF RESULTS

—————]INTERPRETATION OF THE RESULTsj

KNOWLEDGE OF THE SYSTEM STUDIED

EXPERIMENTATION

Figurel. 2: Steps for areas of experimentation definition. [1]

These questions, which should be the right one, define the problem and determine the work
to be carried out to solve it. This is the more difficult task in the questioning process since
questions are not already known in advance. The experimenter should first prepare an inventory
of the available information, by compiling a bibliography, consulting experts, theoretical
calculations, or any other method, which provides him with answers to the questions, asked
without actually carrying out any experiments. It will then be necessary to carry out experiments

to obtain all the answers required.

The best strategy should cover the steps in which the experimenter thinks about what
experiments to perform, and our problem is how to select which experiments should be done

and which should not be done. Such an ideal strategy should: [1]

e Deliver the desired results as quickly as possible.
e Avoid carrying out unnecessary experiments.
e Ensure that the results are as accurate as possible.
e Allow experiments to progress without failure.
e Provide modeling and optimization of the phenomena studied.
There is such an ideal strategy, and it is effective because it simultaneously takes into

account three essential aspects of knowledge acquisition:

e Gradual acquisition of results.
e Selection of the best experimental strategy

¢ Interpretation of results.
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1.6. Progressive acquisition of results

The results at the beginning of the study are unknown by the experimenter. He must work
gradually in order to be able to reorient the study in the right side of the first results of the trials.
A preliminary trial can be carried out to decide on any change in research orientation and thus
better identify the most important experimental points of the study and rule out non-fruitful

avenues for the study wasting time.

Therefore, it is recommended to work gradually. A first series of experimental trials can
provide provisional conclusions. These first provisional conclusions initiate the carrying out of
a new series of experimental tests. The results from these two series should then be used to get
a better image of the results. Then, a third series of tests can be carried out if necessary. With
this approach, the experimenter accumulates only the results he needs and the study stops when

the initial questions have been answered. [1]

1.7. Selection of the best experimental strategy

The study strategy to be adopted should facilitate the organization of a progressive
acquisition of results. It should also minimize the number of tests without degrading the quality
of the experiment. In fact, the experimenter must ensure that the results are as precise as

possible. Experimental designs, response surface methodology, fit our needs perfectly: [1]

e Gradual acquisition of knowledge.
e Only the required number of experiments

e The most accurate results.

1.8. Results interpretation
The initial choice of experiments should facilitate the interpretation of the results. The results
must be easily interpreted and understood by everyone specialists or not. The above-

recommended methods can help us achieve both goals.

The availability of microcomputers and specialized software has made everything that used
to be a long process of painful calculations to obtain results quite easy. Currently we realize
that not only are the calculations carried out quickly and accurately, but also having the results

graphically constitutes a spectacular way of conducting studies. [1]
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1.9. Study of a phenomenon

The study of a phenomenon can be summarized as follows: the scientist may want to know
a response variable depending on numerous input variables. These latter variables influence the
response either with their own effects or with combined effects.

The response can be evaluated as, y, which is a function of several independent variables,
Xi, called factors. The mathematical function, which makes it, possible to link the response y to

the factors, X, is:

Y = f(%1,X2, X3, cee) Xiy vy Xy oo ) (1.2
The study of a phenomenon requires carrying out experiments that measure the response
for different sets of factor values. However, how this mathematical function is established by

the “classical” method. [1]

1.10. Establishment of the response function by the classical method

The classic method of experimentation adopts to maintain all the factors at constant levels
except one unfixed variable, which is used to carry out the trials. The response y is then
measured as a function of several values of this non-fixed variable xi1. At the end of the
experiment on this first variable, we draw a curve of y = f (x1) as mentioned in (figure 1.3).

yll

Figurel. 3: y = f (xy), function of several values of this non-fixed variable x; [1]

If the experimenter wishes to study the influence of all the variables on the same response
y, all the trials of the experiment must be repeated for each unfixed variable and in the same

way, that is to say fix all the other variables at constant levels.

Using this method, if we want to study only seven factors, with only five trials per factor,

we would have to carry out 57 = 78 125 experiments or trials.
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This is enormous experimental work and is unlikely to be feasible. The experimenter must
overcome this obstacle in two possible ways: either reduce the number of experimental trials

per variable or reduce the number of variables. [1]

1.10.1. Reduce the number of experimental points
If the experimenter chooses to examine only three points per variable instead of five, he will

have to perform 37 = 2 178 trials.

Two measurement points per variable would require2”? = 128. It is always an enormous
work and it often requires too much budget or available time. As there must be at least two

experimental points per variable, the experimenter has no choice but to: [1]

1.10.2.Reduce the number of variables

However, even if a system with four variables, testing each of them at three values requires
3% = 81 trials. This way of operating is both tedious and un satisfactory. If certain variables
are ignored, people may doubt the results and the investigator will be forced to apologize for
presenting incomplete conclusions. The downside of this approach is particularly obvious when
it comes to security or large sums of money. This is precisely why we will now look at the

experimental design method. [1]

1.10.3.Experimental design methodology

The main difference between the classic method of variation of one variable at a time and
the experimental design is that the DoE allows the variation of the values of all the factors in
each experiment and this is performed in a programmed and rational manner. The DoE
approach of simultaneously varying several variable settings, far from posing difficulties, offers

several advantages: [1]

= Fewer experimental trials.

= A large number of factors studied.

= Detection of interaction between factors
= Detection of optimal values.

= Better accuracy of results.

= Optimization of results.

= Construction of a model from the results.
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The major interest in the application of the DoE is the search for influencing factors from
the moment that the number of the studied factors (continuous and discrete variables) is no
longer limited, the experimenter initially reduces the number of experimental points per factor.

The search for influencing factors consists of:

= Choosing only two values (high and low) for each factor, these values are called
levels.

= Studying as many factors as possible, even those that may seem at first sight to
have little influence.

Many of the factors considered will likely have no influence on the selected response. The
results can be reused to choose new experimental points to define one or more specific aspects
of the study. In this way, all the influencing factors on the response will have been detected and
studied, while minimizing the number of experimental trials. The study can therefore be carried

out without waste of either time or money. [1]

1.11. Terminology related to the DoE method
1.11.1.Response

The quantities measured in each trial, which are of interest to the experimenter, called
responses. These are the studied quantities or the produced quantities. Selecting appropriate
responses is a challenging task and lies outside the realm of experimental design theory. It is
only after thorough analysis of the phenomena, considerations of objectives, limitations, and

study issues that the correct response(s) can be determined. [6-7]

1.11.2.Factors

A factor is any variable, necessarily controllable, likely to influence the observed response.
The fundamental difference between the classic notion of variable and that of factor therefore
lies in the fact that any factor must be able to modify without difficulty. This hypothesis is

mandatory for experimental designs. [8]

Design of Experiments (DOE) serves as a tool for establishing mathematical relationships

solely between responses and factors.

1.11.3.Factor types
a) Continuous Factors (quantitative): therefore represents values taken by continuous
factors (Wavelength, concentration, temperature), any value in the interval can be

chosen [ njoy Nyp).
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b) Discrete Factors (qualitative): These factors can take on values like names, letters, or
numerical labels, but these numbers do not represent quantities; they are simply
identifiers.[8]

c) Boolean Factors: These factors can only have two levels, like high/low, open/closed,
or black/white, -1 and 1 and so on. [9]

1.11.4.Factor domain

The factor can represented by a graduated and oriented axis. The value given to a factor to
carry out a test called “level”. When we study the influence of a factor, in general, we limit its
variations between two limits. The lower limit is the low level. The upper limit is the high level.
The set of all values that the factor can take between the low level and the high level called the
domain of variation of the factor or more simply the domain of the factor. We usually note the

low level by —1 and the high level by +1. [10]

Factor domain | foctor

low level -1 +1 high level

Figurel. 4: Domain of a factor. [11]

1.11.5.Experimental Space

When there is a second factor, it also represented by a graduated and oriented axis. We
define, like the first factor, its high level, its low level and its range of variation. This second
axis arranged orthogonally to the first. We thus obtain a Cartesian reference frame, which

defines a two-dimensional Euclidean space. This space called the experimental space. [10]

factor 2
A

experimental space

5 factorl
”

Figurel. 5: Experimental space.
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1.11.6.Study Domain

The study domain defined as the collective union of the domains from various factors.

Factor 2

L

experimental
point

+1 - — —

Experimental

Factor domain Study / space

\ Domain

l l » Factor 1
-1 +1

Figurel. 6: Representation of a two-factor experimental design. [5]

1.11.7. Nuisance variables: randomization and blocking

Nuisance variables are factors that affect experiment outcomes but are not directly
controllable or of primary interest. If the influence of a nuisance variable is known, it is treated
as a regular design factor, known as blocking. However, if the influence is unclear or

unpredictable, experiment conditions assigned randomly to different values of the nuisance

variable, @ method called randomization. [12]

1.11.8. Response Surface

We assign an axis to the response. This axis is perpendicular to the experimental space. The
geometric representation of an experimental plan and its associated response requires a space
with one more dimension than the experimental space. For example, representing the results of
a two-factor plan requires a three-dimensional space: one dimension for the response, and two

for the factors.

Each point in the study domain corresponds to a response. The set of all points in the study

domain corresponds to a set of responses that define a surface called the response surface. [7]

12
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Response _—1

-

f =

'I‘;;ctor 2
/ c D
1/4---- @ - @---
A B  Factorl
1 +1

Figurel. 7: The collection of responses that correspond to all the points in the study domain forms the
response surface. [10]

1.12. Advantages of experimental designs

The main advantages of this method are:

e Reduction in the number of attempts.
e Possibility of studying a large number of factors.
e Detection of interactions between factors.
e Modeling of the responses studied.
e Optimum precision of results.
The design of experiments method allows rapid and unequivocal interpretation by providing

a precise experimental model of the system studied. [13]

1.13. Steps in DOE

e Define the purpose of the experiment.
e Identify the response.
e Consider potential models and select design factors.
e Choose an appropriate experimental design.
e Validate the chosen design.
e Data analysis (ANOVA, Regression, Graphical analysis).
e Result and conclusion.
The effectiveness of the design hinges on the experiment's objectives. These must clearly

defined initially.
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Next, it is important to identify and classify variables as independent, dependent, nuisance,
or intermediate. Independent variables are further categorized into those to be varied (design
factors) and those to be kept constant. Tentative models of system response considered to
determine which variables should be included as design factors in step 3. The suitability of

designs in step 4 relies on the assumed response model. [12]

1.14. Centered and Scaled Variables
Most often, reduced centered variables are used rather than variables measured in original
units. The interest of this transformation lies in the fact that the geometric and matrix

representations are more general and that the modeling is simpler.

Let A be the natural or real variable, where the low level of A corresponds to the standardized

variable -1 and the high level A+ corresponds to +1.

A+
Original variables

SELES

reduced centered variables
+1 -1

Figurel. 8: Original and reduced variables.
The central or middle value of the domain is:

AT+A™
AO = > (12)

The notion of step:

Step = 224 (13)

The transition from the original variables A to the coded variables denoted X given by: [14-15]

x =4 (1.4)

Step

1.15. The difference between the classic method and the DOE

The method of experimental designs can briefly compared to the traditional methodology
known as "factor by factor variation”. To study the influence of two factors on a response, two

experimental strategies can adopted for the design of the tests.
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factor2 factor2

A M2 A Y4 Y3

M4

1

Y1 v2 |
’ factor 1 '

1‘ 2 1 2 tztorl

Figurel. 9: On the right, the DOE method, on the left the classic method.

According to the traditional method, we block factor 1 at the center of the variation domain
and we vary factor 2 at the two ends of its domain: we obtain the measurements M1 and M2.
With factor 1 we carry out the same operation to obtain points M3 and M4. In this method, the
effect of 2 will measured from measurements M1, M2, and that of A from measurements M3
and M4. So for each factor only half of the measurements used to account for an effect. The

experimental design method will consist of carrying out 4 tests at the ends of the experimental

(Y2+Y4)

domain. The effect of 1 appears as the difference between the mean and the

mean@. The same reasoning applies for the effect of 2. In this second strategy, all

measurements used to calculate an effect. We therefore understand that the precision obtained
will be higher with the design of experiments method. Another advantage of the design method
lies in a much lower number of experiments to carried out than in the traditional method when

the number of factors increases. [16]

1.16. Mathematical Model of the Response
Most often, the study of a phenomenon can formalized in the following way. The answer
which depends on a large number of variables "factors", x;, x,, ..... x;. Mathematical modeling

consists of finding a function f such thaty = f(xq, x5, ..... xx).

The classic study method consists of measuring y for several values of x while leaving the
(k — 1) other variables fixed, and then iterating this method for the other variables. As we have

already said above, this method quickly leads to a prohibitive number of experiments.
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The design of experiments method proposes a factorial experiment that is to say that all the
factors vary simultaneously. The results processed using multiple linear regression and analysis
of variance. [17-18]

In the design of experiments method, the key approach involves developing and employing
models of the objective function (response). Consequently, it is logical thoroughly analyze this
essential aspect. Where there is experimental data linking the response y to the factors xi. [6,
9, 19]

— k k k 2
Y= Qo+ Xis QX + Xij=1 QXX + Xisg axi + e (1.5)
i<j
Where:
y: It is the response or measurement of interest to the experimenter.
x;: Represents a level of factor i.

x;. Represents a level of factor j.

ay, a;, a;j, a;;: The coefficients of the polynomial.

1.17. Design of Experiments software

DoE software plays a crucial role in the experimental design process, offering features for
planning, executing, and analyzing experiments. It simplifies the complex task of organizing
experimental data. With the help of DoE software, researchers can quickly uncover valuable
insights, aiding them in improving products and methodologies. Here are five popular DoE
software used by professionals in both industry and academia: Quantum Boost, JMP, Design
Expert, Minitab and Modde. [20]

1.18. Experimental Design Types

The two main possible uses of the Design of Experiments Method are:

1.18.1.Screening Technique
Among the factors identified by the experimenter, this tool allows determining those that
have a statistically significant influence on variations in the response. This implicitly simplifies

the problem. The aim is to understand why the response varies (in terms of which factors).

a) Factorial Designs: This experimental method involves creating runs that are combinations

of factor levels.
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-Full factorial designs: It cover all possible combinations of factors at designated levels. Given

by the equation:
n = mk (1.6)
Where:
n : represents the total number of samples,
k : is the number of factors,
m : is the number of levels for each factor.

Two-level full factorial designs are highly effective screening tools as they enable the
estimation of main effects and interactions of input factors on output responses. it commonly
used as a screening stage, However, their main drawback lies in the significant number of

experiments needed compared to fractional factorial and Placket-Burman designs.

® @ ° °

Figurel. 10: in the right Two-level full factorial design for two factors, in the left Two-level full

factorial design for three factors. [11]

- Fractional factorial designs: extensively employed for screening purposes due to their ability
to assess a large number of input factors while requiring fewer experiments. They are specific

subsets of full designs, denoted by the equation:

n = mk? (1.7)
Where:
p : represents the number of times the design reduced.

b) Placket-Burman designs: are unique variants of two-level fractional factorial designs
(specifically, resolution I11). They facilitate the examination of up to N-1 input factors using N

experiments (where N must be a multiple of 4).

17




Chapter 1 : Design of Experiments. Generalities

¢) Response Surface Methodology (RSM): Variations in the response calculated based on
the previously identified influential factors. This study is quantitative, aiming to determine
how the response varies. Logically it applied following the screening study, by using only the
factors previously identified as influential.
1.18.2. Optimization Designs
The Box-Behnken, D-optimal and central composite designs (CCDs) are examples of
designs with three or more levels frequently used in response surface methodology (RSM) for

function optimization.

There are other experimental designs include Taghuchi, Doehlert, G-optimal, and mixture
designs. [6, 21-24]

Table 1. 1: Summary of screening and optimization designs characteristics, number of experiments,

levels, and factors. [19]

Applications Experimental design Experiments Levels Factors
Screening Placket—Burman N 2 <N-1
Fractional factorial 2K-P 2 K>4
Two-level full factorial 2K 2 2<k<5
Optimization Box-Behnken 2k(k-1)+C 3 3<k<5
Central composite 2k +2k+C 5 2k<5
3-level factorial 3k 3 2<k<3
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L e

Full factorial Fractional factorial I I Central composite I

=0 [

Box Behnken I D-optimal design Taguchi design

Figurel. 11: Some Types of DOE (3levels, 3 factors). [25]

1.19. Statistical Analysis
1.19.1.ANalyse Of VAriance (ANOVA)

Since the researchers wants to get as much information as possible from the experimental
data, using the appropriate statistical techniques is important. ANOVA, or Analysis of
Variance, is a statistical method used to analyze the differences among group means in a
sample. It is particularly useful when comparing means of three or more groups to determine if
there are statistically significant differences between them. ANOVA works by partitioning the
total variance observed in a data set into different sources, such as variation between groups
and variation within groups, and then assessing whether the variation between groups is
significantly greater than the variation within groups. [26]

It goes with Hypothesis assumption:

Ho:pt = pu2 =...=0
Ha: at least one u2 # 0

Where:

u : The mean of sample.
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The null hypothesis typically states that there is no effect or no difference, while the

alternative hypothesis suggests otherwise.

Table 1. 2. ANOVA table.

Source of Degrees of Freedom  Sum of Mean F-ratio
variation (df) Squares  Squares
(SS) (MS)
A-Treatment ni-1 SSA MSA MSA/MSE
B-Treatment nj-1 SSB MSB MSB/MSE
Interaction (ni-1)(nj-1) SSAB MSAB  MSAB/MSE
Error nij-[df, — dfy, — dfi,¢] SSE MSE
Total nij-1 SST

1.19.2.ANOVA Table Terms

SST: The total sum of squares represents the total variability observed in the dependent
variable Y. It calculated as the actual total squares of the dependent Y variable minus a

correction factor (CF).

sST= 3y - —yy? _cr (1.8)
SSE: The error sum of squares, which is a total sum of unexplained variation.

SSE = Y(Residuals)’ (1.9)
SSTr: The treatment sum of squares, the sum of each treatment.

N2

L (1.10)

df : The number of degrees of freedom. In a treatment df; , (ni) is the number of levels

it takes in a design of experiment.
df =n—1 (1.11)

MS: The Mean square it is equal to:

_5s
mMs == (1.12)

F-value: Computed F-value calculated by dividing the mean square MS by the error

MSE. The F-value compared to a critical value (derived from the F-distribution to
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determine statistical significance). If the F-value is greater than the critical value, it
suggests that there are significant differences between the group means.

- P-value: The last term is were introduced to ANOVA analysis by Genichi Taguchi, a
pioneer of DoE Taguchi method, and are intended as an alternative to the F-test. P %
(considered as evidence of the hypothesis), it is the contribution percentage of each
source of variation and is derived as a percentage of total SST. It is easier and more
quantitative for engineers to appreciate a quantitative % contribution of a source of
variation as opposed to a binary F-test that determines only whether the factor is
significant or not. Taguchi recommends that if the modified source of variation is p %
> 5%, then it should be considered not significant and pooled into the error by this we
fail to reject the null hypothesis and vice versa.

- Testof R?

The coefficient of determination (R?) is an indicator, which makes it possible to judge
the quality of a linear, simple or multiple regression. With a value between 0 and 1, it

measures the adequacy between the model and the observed data. Sure, the R2 has its

imperfections, but its usefulness matched only by its simplicity. [27-30]

1.20. Graphical analysis

One of the main advantages of experimental designs is the presentation of results in
graphical form. Various graphs are available for interpreting the equation of the empirical
model (Pareto chart using in the screening step, Normal plot, Histogram of the residuals,

Response optimizer plot, Surface plot, Contour plot). [31]

1.21. Conclusion

The design of experiment (DoE) is therefore a very powerful tool to phenomenon study
and a set of complementary techniques helping its user in determining the experiments to be
carried out as well as in understanding and exploiting the obtained results. This tool is
essentially based on statistical and algebraic bases. This particularity induces the almost
permanent possibility of knowing the errors conceded on the experimental data and on those,
which are deduced from them. In the next chapter, we will present the application of the DoE

method in the modeling of photovoltaic panels.
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Chapter 2: Design of Experiments case studies

2.1. Introduction

Initially and with the aim of mastering the application of the DoE method and highlighting
it, this chapter presents a comprehensive review of case study focusing on the application of
Design of Experiments (DOE) in various fields. The case study discussed in this chapter offers
valuable insights into the practical implementation of DOE methodology to address real-world

challenges.

First, the calculations relating to the DoE technique were performed manually while
rigorously respecting the steps of the method. Afterwards, and in the second step, the
calculations were carried out by the Minitab software in order to learn how to implement data,

to get results and their discussion. The famous example studied case is that of Goupy's car.

2.2. The Goupy’s car case Study

In this study, Jacques Goupy, Lee Creighton, wanted to answer questions like, "What is
the consumption of gas when we drive at 88,5 Km/h with a weight of 125 Kg?", so they defined
the objective of the study which is "to know the gas consumption of a car when you drive with

or without extra weight, while driving fast or slow". [9]

The experimental trials of the study were performed using one of the author’s cars. At this
point "The Response”, it has been determined and it's the consumption of gas in liter per
kilometer (I/km), after that they researching the factors that may influence the response, there
are two main factors "Speed" and "Additional weight", for the factors levels they choose 72.4
as low speed, 113 as high speed and 0 Kg( the car and the driver) for low additional weight,
250 kg high additional weight.

The information summarized in the following table (Table 2.1).

Table 2. 1: Factors and study domain.

Factors Low Level High Level
1- Speed 72.4 113
2- Additional weight 0 250

There is no way to predict results out of this study domain.
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Examining the Constraints is about control the nuisance factors and ensure that the

experiment gives as accurate results.

e Decreasing of tank while the driving.

e Temperature, wind, rain so the tests should be all in the same day.

e Checking of the tire pressure.

After choosing the design, it is important to conduct the experiments, there are two factors
to study, and each of them will take two levels: high and low. The best design to choose is a 22

full factorial design.

Experimental trials can be presented in table form. When using technical measurements
(Km/h, Kg), the table is called an experimental table spreadsheet. In contrast, when using

measurements coded (-1, 1), the table is called an experimental design or experimental matrix.

[9]

2.3. Running the experiments

The distance covered by the car was 112.6 km taking into account the time needed to add
fuel, measure fuel consumption and load the car by extra weight. A full factorial design of 22
means that there will be 4 experiments to be carried out. After running all the experiments, they

are drawn up in a table (Table 2.2).

Table 2. 2: Experimental matrix with results [9].

Trial Speed Additional Gas Consumption
Weight (Co)
Factor 1 Factor 2 I/Km
1(A) -1 -1 12.7543
2 (B) +1 -1 10.6268
3(C) -1 +1 11.4789
4 (D) +1 +1 8.9280
-1 Level 72.4 Km/h 0
+1 Level 113 Km/h 250 Kg
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2.4. Study domain

The study domain as shown in (figure 2.1), is defined by low and high level of each factor.

1+ Y 1
.
=
()]
E
< Or O .
[
R
=
2

17 & ) :

-1 0 1
Speed km/h

Figure 2. 1: Study domain of the experiment.

2.5. Interpreting the Coefficients

Predictive Mathematical Model of the Response (from chapterl):

K k k
y=ay+ z a;x; + Z a;jxix; + z a;x?
i=1 i=1

ij=1
i<j

For 22 full factorial design, the response model equation be like:
Y =ay+ a;x; + azx, + agpx1x; (2.2)
Where:
y: Is the Gas consumption.
x,: Represents the level of the speed factor (factor 1).
x,. Represents the level of the additional weight factor (factor 2).

ay, a1, a,, a1,: The coefficients of the Factor’s effects.
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2.5.1. The intercept aop:
It is represent the center of the study domain and the response value in this point is yo with

the couple (0, 0) as coordinates.
y0=a0+a1><0+a2><0+a12><0><0 (22)
Yo = Qo

To solve the mathematical model there is two ways.

2.5.2. Matrix way

The matrix form of equation 2.1 is:
y=X.a (2.3)

With y representing the individual response recorded for the four trials in the study domain,
and x being the design matrix, which must be a square matrix, the coefficients of the model can

be estimated from Equation (2.1).
a=X1ly (2.4)
The coefficients is the half of the factor’s effect (see chapter 1).

The four experiments, as indicated in the domain study, give the following linear system

with four equations:

Yi=0y—a —a;t+ag
Y2 =0Qpt+ay —az; —ag

2.5
Y3 =0Qg—a; +az; —a (2:5)
y4=a0+a1+a2+a12
This system in its matrix form is:
1 -1 -1 1 Qo 12.7543
1 1 -1 -1 ar | _110.6268
1 -1 1 —1‘ % laz‘ = [11.4789 (2.6)
1 1 1 1 12 8.9280

Solving the linear system in Equation 2.6 allows obtaining the calculated coefficients

(resolution of this system of equations is easy to perform):

Qo 10.9470

ap | _ [—1.1696
a | [-0.7435 (2.7)
a2 —0.1058
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2.5.3. Compare transactions way
a) For factor 1

The mean of the Response at the high level of the speed factor (factor 1):

We take the values of response at the high level (1) of the factor. [7]
7, = (y, + y4)/2 _ (89280 + 10.6268)/2 —9.77741/km  (2.8)

The mean of the Response at the low level of the speed factor (factor 1):

We take the values of response at the low level (-1) of the factor. [7]

=12.1166 1/km (2.9)

_ + 12.7543 + 11.4789
y :()’1 J’3)/2:( )/2

The mean of the coefficient of speed effect is the half of the difference means: [7]

N | =

a, = 1y, —y.] = —1.1696 1/km (2.10)

The graphical evaluation of speed effect with the consumption of gas presented in (figure
2.2).

Evalutaion of speed effect
12.5 T T T

/12,1166 I/km

10.9470 l/km

Gas consumption I/km
=
I
1

10.5 [— -
a1=-1.1696 L/km
10 [~ —
\9.7774 I/km

-1 0 1
Speed km/h

Figure 2. 2: Evaluation of the speed effect.

b) For factor 2
The same method employed to calculate factor 2 and the interaction coefficients.
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The mean of the Response at the high level of the additional weight factor (factor 2):

7, = (y3 + y4)/2 _ (114789 + 8.9280)/2 = 10.2034 1/Km (2.11)

The mean of the Response at the low level of the additional weight factor (factor 2)
calculated as follow:

The mean of the coefficient of additional weight effect is the half of the difference of

means:
a; = 5[, —¥-] = —0.74351/km (2.13)

The graphical evaluation of additional weight with consumption of gas is depicted in figure
2.3.

Evaluation of additional weight effect
T T

/11 19605 I/km

ij, N

g
1.5 — N —
~
N
.
S 10.9479 km
.
-\5 N
5 0 .
3 ™
£ AN
3 .
e N
s S a2= -0.7435 I/km
@ 105~ S —
o N
™
— N
]
10.2034 I/km
95

-1 0 1
additional weghit Kg

Figure 2. 3: Evaluation of the additional weight effect.

¢) For interaction (speed/additional weight), a;»

5, = 04 =¥s)) _ (BI280—114789)) _ 4 37541 /km (2.14)

This is the effect of factor 1(speed) when the factor 2 (additional weight) at its high

level.

The mean of the Response at the low level of the additional weight factor (factor 2):
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7 (v, — yl)/z _ (10.6268 — 12.7543)/2 = —1.0637 I/km (2.15)

This is the effect of factor 1(speed) when the factor 2 (additional weight) at its low
level.

The mean of the coefficient of interaction (factor 1in factor 2):
a1, = 5[7. — 7.1 = —0.1058 1/km (2.16)

The graphical illustration of the interaction of factor 1 when factor 2 changed is:

13
12.7543

H

12 |
11.6905 S

11.4789 ~_ I effect of factor 1 at

low level of factor 2
=-1.0637 I/km |

'

10.2034

~
10 — —
y ~
- effect of factor 1 at
high level of factor 2
h = -1.2754 lkm

8.9280|—

Gas consumption I/km

©

-1 0 1
Speed Km/h

Figure 2. 4: lllustration of the interaction effect (ai2).

As we can see, the slopes are different so there is an interaction between the two factors. If

the slopes are in parallel we say, there is no interaction between the factors.

d) For interaction (additional weight/ speed), a4

y, = s~ yz)/z — (89280 - 10'6268)/2 = —0.84941/km (2.17)

This is the effect of factor 2(additional weight) when the factor 1 (speed) at its high level.

y.=Ws =y - (114789 —127543) ) _ 06377 1/km (2.18)

This is the effect of factor 2(additional weight) when the factor 1 (speed) at its low level.
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The mean of the coefficient of interaction (factor 2 in factor 1):
a1 = 5[y, —y-1= —0.10581/km (2.19)
la,,| = |a;z| Always the same/

The graphical illustration of the interaction of factor 2 when factor 1 changed is:

)

12.7543 A
-
12.1166 £
[ 4 effect of factor 2 at low level
of factor 1 = -0.6377 I/km

11.4789 A
€
=
= = -
c
g
S | 10.6268
E
3
c
<]
o

9.7774

A
—W/ effect of factor 2 at high level
of factor 1 = -0.8494 I/km
8.9280 |— ‘ 7
8

-1 0 1
Additional weight Kg

Figure 2. 5: lllustration of the interaction effect (az1).

2.6. Interpreting the Results

After all this calculations and by setting the calculated coefficients in Eg. 2.1, we can

calculate all the responses within the study domain with this model:
C; = 10.9470 — 1.1696 x; — 0.7435x, — 0.1058 x, x, (2.20)

Now it is the moment to answer the question, "What is the consumption of gas when we
drive at 88.5 Km/h with a weight of 125 Kg?"

To respond to such question we must, first determine the coded units:

_A-A
= Step (2.21)
For factor 1:
__A1-4Ao1
X, = Steps (2.22)
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For factor 2:

X, = A;t‘Tf;;z (2.23)
The central or middle value of the domain of factor 1 is:

by =AY, (2.24)

Aoy = MBFT2D) — 927 Kmin (2.25)
Also the step:

step, = A7 =47, (2.26)

step, = 13729/~ 203 Kmin 2.27)
Then the coded unit of 88.5 Km/h is:

. = (Ay — Ag1) /Step1 _ (88.5-92.7) —— (2.28)

So:

- 88.5 Km/h =-0.2 in coded units
- 125kg =0 in coded units

By compensation of the coefficients in Eq. (2.20), we can write:
C; = 10.9470 — 1.1696 x (—0.2) — 0.7435 x (0) — 0.1058 x (—0.2) x (0)
Ce = 11.1809 Km/L (2.29)

Therefore, in this way, it is possible to answer questions like these and many others involving

speed and load.

2.7. Calculation using Minitab software
After implementing the experiment in the Minitab program, we obtained the following

results

2.7.1 The study domain
We can see the value of the response for various points in the study domain as indicated in

figure 2.6.
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114789 8.8280
T .
250 ! |
W
12.7543 10,6268
O 0
724 113

Figure 2. 6: Study domain of the experiment.

2.7.2. The coefficients

Term Effect Coef
Constant 10.95
S -2.339 -1.170
W -1.4871  -0.7456
S*W -0.2117 -0.1058

Figure 2. 7: The intercept, the coefficients and the effects.
Where: S represents the speed factor and W is the Weight factor.

As we have already seen in the DoE theory, the coefficient of factors is the half of the effects,

and that is what exactly represented by Minitab in (figure 2.7).

2.7.3. Factors effects
Figure 2.8 represents the main effect (called also the proper effect) of the two considered
factors as given by Minitab software.
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Main Effects Plot for consumption
s w

= Mean=12.1166

12.0

al= slope
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effect

Mean= 11.6905
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consumption
Q

10.5

Mean=10.2034

10.0

Mean= 9.7774

72.4 (A) 113.0 [s] (B) 250

Figure 2. 8: (A) the evaluation of speed effect with the consumption. (B) Evaluation of additional
weight effect with consumption.

2.7.4. The interaction between Factors
Figure 2.9 and 2.10 present the interactive effects (called also the mutual effect) of the two
considered factors as given by Minitab software.

Interaction Plot for consumption

. S *W
W
—e— 00
= _ _ -
§ 12 B - 2500
e
=3
= 11'
w1
=
=]
“ 10+
9_
T T
72.4 S 113.0

Figure 2. 9: The effect of factor 1 when factor 2 changed.
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Interaction Plot for consumption
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Figure 2. 10: The effect of factor 2 when factor 1 changed.

2.7.5. Prediction for consumption

The predicted mathematical model of the consumption given by Minitab as indicated by the
following screenshot depicted in figure 2.11.

Regression Equation in Uncoded Units

Consumption = 10.95-1.170s-0.7435 w - 0.1058 s*w

Figure 2. 11: Regression equation.

Finally, the answer the question: "What is the consumption of gas when we drive at 88.5
Km/h with a weight of 125 Kg?" Presented in the following figure 2.12.

Settings Prediction
Jariable Setting Fit SE Fit 95% Cl 95% Pl
w 15 11,1890 A W I )

Figure 2. 12: Prediction of consumption.
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2.7.6. Contour plot of consumption for speed and additional weight
Contour curves are two-dimensional views where contour lines created by connecting

locations with the same response value [32]. The graph indicates the necessary changes in speed
owing to the added weight if I wish to reach 11.5 km/| for example. This contour curves indicate
the behavior of the response due to the variation of both factors. In figure 2.13, G-C is the
response, which represents the Gas Consumption, W is the Weight factor and S is the speed

factor. Colors of the curves in the contours.

Contour Plot of G-C vs W, S

< 9

9 - 10
W 1w - n
| 11— 12
|| = 12

75 80 85 90 95 100 105 110

Figure 2. 13: Contour Plot of the experiment.

2.7.7. Surface response plot
The results of the study can be recorded in what the DoE method calls response surfaces.

The results of our studied example are presented in figure 2.14.
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Figure 2. 14: Surface response Plot of the experiment.

2.8. Conclusion
Through a comprehensive review of the case study, we observed how the DoE technique
was successfully used to address a range of challenges especially when it comes to study a

complex processes with a host of factors.

Thanks to the discussions made on the experiment carried out in our example, we can rely
on everything that was carried out in this study to apply it to examples of more complex size.
we were also able to know how to have the mathematical predictive model of response behavior
when the input variables vary within the limits set by the domain of study based on few
experiment trials. we also knew how to calculate and present graphically the effects of the
different factors as well as the presentation of the response in the form of contour curves or in
the form of response surface curves using the Minitab software. By applying DOE principles

and techniques, we aim to design robust experiments that produce actionable insights.
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3.1. Introduction
Understanding the performance of photovoltaic (PV) panels are crucial steps towards

enhancing their efficiency and usability. Design of Experiment (DOE) methodology, coupled
with Minitab, provides a systematic approach to analyze and model the complex relationships

between factors affecting PV panel performances and its key parameters.

This chapter delves into the application of Design of Experiment techniques using Minitab
software to model the performance of PV panels. The primary focus lies on three critical
responses: maximum power output, short circuit current and open circuit voltage. These

responses are fundamental indicators of a PV panel's efficiency and functionality.

3.2. The experiments

In this study, the objective is to modeling the electrical response of a monocrystalline
photovoltaic module in using Design of experiments approach. The main purpose is to evaluate
the maximum power and the short-circuit current and open circuit voltage " The responses”
dependence within the indoor conditions of variations of solar irradiation and surface
temperature " The Factors ", The Design of Experiments method is employed to estimate both
the individual and combined effects of the two independent variables, Experiments were
conducted in the laboratory, and the experimental errors associated with temperature and
electrical measurements, including irradiation measurements, are estimated to be standard at

10% of the values.

The experiencers choose the mono-crystalline module, PS040PR with a maximum power of
Pm =40 W realized at voltage of Vmp =17 V and a current Imp = 2.34 A. Its open circuit voltage
IS Voc= 21 V and its short circuit current is Isc = 2.56 A. These values are extracted of the

datasheet of the panels.

Experiments are performed within exposing the chosen PV panel to the irradiation emitted
by the Halogen DELTALAB light source and due to the variation of the irradiation level (by
acting on the bulbs) we record the irradiation, temperature, the open circuit voltage, the short
circuit current and the maxim disponible power on the PV panel.

The solar irradiation levels and surface temperature measured concurrently during indoor
experiments. By using (Hg lamps of Deltalab source) as irradiation source. We have realized
fifteen (15) trials.
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The parameters were experimentally determined:

- Solar irradiation measured by using a fluxmeter positioned at the center of the PV panel. Its

sensitivity was recorded as S = 10.33 pV// Wimz2.

- Surface temperature at the center of the PV panel measured by using an infrared thermometer,

with recordings accurate within 1%. [5]

The experimental trials measurement given in (table 3.1):

Table 3. 1: Table of Experiment on the monocrystalline panel. [5]

Monocristallin

Factors Responses

N° Ir T (°C) V co Icc Pm

(mV) V) (A) (W)
01 5,9 28,9 20,1 0,706 9,93
02 5,9 32,6 19,9 0,712 9,92
03 59 34,7 19,7 0,716 9,87
04 5,9 37,4 19,6 0,719 9,86
05 8,5 30,5 20,5 0,894 12,83
06 8,5 34,6 20,1 0,918 12,92
07 8,5 37 19,9 0,915 12,75
08 8,5 42,3 19,6 0,899 12,33
09 13,6 34,2 20,5 1,263 18,12
10 13,6 37,1 20,3 1,269 18,03
11 13,6 41,1 19,8 1,282 17,77
12 13,6 43,9 19,4 1,281 17,40
13 18,4 36,3 20,5 1,633 2343
14 18,4 38,1 20,3 1,638 23,28
15 18,4 45,1 19,8 1,653 2291

3.3. Modeling and characterization of the PV panel response

Based on these experiments, and using of the 22 full factorial experimental design theory, i
will choose a sample of experiments consisting of four experiments ( trials numbers: 05, 08,

13, 15 as indicated in table 3.1) to analyze them with a full factorial design 22 and see the
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importance of the influence of change of factors on desired responses, the reason for choosing
them is trying to find the best samples to study to get the best results.

First, as we can see in the table 3.2, the irradiation is in (mV unit expressed on the fluxmeter),
S0 We are going to convert it to (W/m?) based on the sensitivity of the commercial fluxmeter.
The converting formula is then:

Irradiance (W /m?) = Voltage (mV) / (S (uwV /(W /m?)) x 1000).[33]

Where:
S: is the sensitivity of the fluxmeter S = 10.33 uV// W/ima.

The experimental trials measurements summarized in the table. (Table 3.1)

Table 3. 2: Experimental trials measurements and observed response.

Trial Irradiation Irradiation Surface Maximum Short- Open
(mV) (W/m2) Temperature power circuit circuit
(°C) (W) current (A) voltage (V)
Factor A Factor B Response 1  Response 2 Response 3
1 8.5 829 30.5 12.83 0.894 20.5
2 8.5 829 42.4 12.33 0.899 19.6
3 18.4 1781 36.3 23.43 1.633 20.5
4 18.4 1781 45.1 22.91 1.653 19.8

Now, from the dressed table 3.2, we can affect the levels +1, 0 and -1 to the considered

factors that what we called reduced centered values as depicted in table 3.3.

Table 3. 3: Original and Reduced Centered Values.

Factor A Factor B

-1 Level 829 W/m?2 30.5°C
0 1305 W/mz? 37.8°C

+1 Level 1781 W /m? 45.1 °C

The reduced centered coordinates for irradiation (W/m?), represented by Xxa, and

temperature (°C), represented by xg, will be calculated.

a- Factor A
The step:

Step, = A7 _A_)/z = (1781 = 1317)/2 =476 W/m?*  (3.1)
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The central value of the domain:

+ p—
Ay, = AT HA4 )/2 _ (1781 + 1317)/2 — 1305 W /m? (32)

The coded units:

X4 = % (3.3)
b- Factor B
The step:

Stepy = (A* — A—)/2 _(381- 34.2)/2 _7gec (3.4)
The central value of the domain:

Aop = (A* + A—)/2 _(38.1+ 34.2)/2 _378°C (3.5)
The coded units:

xp = 20 (3.6)

Then all the reduced central coordinates (RCV) of the other values of the factors involved

were calculated, in order to standardize the units of the variables.

3.4. Modeling the PV panel for Maximum power (W)
Minitab v21 statistical software design analysis is used for design of experiments, regression
and graphical analyses of data obtained, surface response and contour curves analysis of the

obtained models to evaluate the predictive model accuracy [19].

we applied the DoE method on the maximum available power response as function of
irradiation and temperature and the same steps can be generalized to obtain the predictive
models of the other responses of a PV panel as the short-circuit current and the open circuit

voltage.
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3.4.1. Mathematical analysis

a) Linear regression model
We consider only the linear variables influences and the interactive effects. Therefore, and
according to the DoE theory, the predictive mathematical model related to such linear

regression is:
Y = Qg+ auX4 + agXp + AupXsXp (3.7)
Where:

- y: It can be one of the three considered responses “Pm, Isc, Voc” from measurements.

- x4: Represents the level of the Solar Irradiation factor (factor A).

- xp: Represents the level of the Surface Temperature factor (factor B).

- ay : The intercept.
- ay,ag,a,g: The coefficients associated with the effects of the factors ., . and the
interaction effect.

The simple regression model is a predictive model of a full factorial design composed of
two factors each one has two levels. The effects of the two factors and their interaction define
this model. The experiments carried out with this model and the reduced center coordinates are
shown in the following table (table 3.4). [34]

Table 3. 4: Experimental data of the simple regression model.

Trial  Ir(W/m? T(C) Ir(RCV) T(RCV) Pm(W) Isc(A) Voc(V)

1 829 30.5 -1 -1 12.83 0.894 20.5
2 829 42.3 -1 0.6250 12.33 0.899 19.6
3 1781 36.3 1 -0.2054 23.43 1.633 20.5
4 1781 45.1 1 1 2291 1.653 19.8

RCV: means reduced centered variables.

By replacing in equation (3.7) the response y, which is the maximum power Pm, and the
factors xa and xg by their centered values indicated in table 3.4 for each trial, we obtain the

following linear system:
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Y1 =09 — a4 —ap t ayp
yz = aO - aA + 06250 aB - 0.6250aAB

Vs = Qg + ay — 0.2054a5 — 0.2054a, (3:8)
y4:a0+aA+aB+aAB
We can write the system represented in (3.8) in a matrix form as follow:
1 -1 -1 1 Qo 12.83
1 -1 0.6250 —0.6250 % s | _ [12.33 (3.9)
1 1 -0.2054 -0.2054 ap 23.43 '
1 1 1 1 aap 22.21

The resolution of this system of equations gives the following coefficients values:

Qg 17.93
as | _ 5.41
laB ‘ o l —0.3695 (3.10)
aap —0.06185

The results of the means of the responses and interaction, summarized in this following
table:

Table 3. 5: The means of the responses/interaction.

The mean of the Vas ¥Ys-_ Y+ YB-
response at
different factors 23.34 12.52 17.56 18.30

and levels (W)

T_he mean of the Y aB+ YVap- YBa+ YBa-
interaction at
different factors 59 5.3 -0.26 0.25

and levels(W)

Where:

- ¥+ - The mean of the response at high level of factor A.
- ¥4— : The mean of the response at low level of factor A.
- ¥g+ - The mean of the response at high level of factor B.
- ygp_ : The mean of the response at low level of factor B.
- V454 . The mean of interaction of factor A when factor B is in high level.
- y45— . The mean of interaction of factor A when factor B is in low level.
- ¥Jga+ - The mean of interaction of factor B when factor A is in high level.
- ¥ga— . The mean of interaction of factor B when factor A is in low level.
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By replacing coefficients of the equation (3.7) by their calculated values obtained in equation
(3.10), the predictive first order linear mathematical model gives the maximum available power

response Pm on the considered PV panel:
P, =17.93 +5.41 x,— 0.3695 xz— 0.06185 x, x5 (3.11)

As it can be seen in equation (3.11) which represents the predictive first order mathematical
model, the influence of the irradiation factor growth in the same direction and it is more
significant than the temperature factor (power increases with increased light intensity) since its
coefficient is positive and is the greatest. This result is very close to the reality. A negative
coefficient for temperature (expected and coincides with PV panel behaviors) suggests power
decreases with rising temperature. The response at the center of the study domain is the intercept
ao = 17.93W at the calculating operating point (Ir = 1305 W/m?and T = 37.8 °C).

By looking in the model, when irradiation is varied from RCV 0 (1305 W/m?) to RCV +1
(1781 W/m?), adding the a: coefficient to the central value increases the maximum power.
When the irradiation passes from the RCV 0 (1305 W/m?) to the RCV —1 (829 W/m?).

The maximum power response decreases from the central value by the coefficient a;. The
opposite is true for direct surface temperature effect and the interaction, when it goes from RCV
0(37.8°C) to RCV +1 (45.1°C) the maximum power decreases from the central value, and when
it passes from RCV 0 (37.8°C) to RCV -1 (30.5 °C) the maximum power increases.

3.4.2. Graphical analysis

Graphical analysis helps determine the significance and direction of variations in the
response based on simultaneous variation in factors. It also makes it possible to confirm the
results of the mathematical analysis. This graphical analysis can be presented in the form of
slopes of regression lines showing the effects of factors and their interactions, or in the form of
a response surface, or even corresponding contour curves [5]. Calculations were performed

thanks to Minitab software.

In the cube plot, here in figure 3.1 we can see the study domain that i studied is not
orthogonal. That is due to impossibility of mastering the operating points of the PV panel in

experiment conditions.
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Cube Plot for Pm

T L4
Pm=1233W| 4
T 3
epPm=23.43 W
L

Figure 3.1: Study Domain.

a) Pareto chart

A Pareto chart, also known as the 80/20 rule chart, is a graphical tool that combines a bar
graph and a line graph to depict the relationship between factors and their cumulative impact.
It named after Vilfredo Pareto, an Italian economist who observed that, in many contexts,

roughly 80% of consequences come from 20% of the causes. [36]

Figure 3.2 presents Pareto chart, as shows the factors and interaction effects, factor A, factor
B and factor AB. as we can see the most influential Factor is factor A which represents solar

irradiation level.

Pareto Chart of the Effects

(response is Pm, a0 = 0.05)
8.22

Term

Factor Name
A Ir
B T

AB

0 2 4 6 8 10 12
Effect
Lenth's PSE = 0.647088

Figure 3. 2: Pareto chart of the effects.

45




Chapter 3: Application of DoE technique to model photovoltaic panels

b) Factorial Plots for Pm
The overall effect of a factor is the difference between the average of responses at the high
level of the factor and the average of responses at the low level. However, the average effect or

effect of one factor is half of the overall effect. [5]

Muain Effects Plot for Pm
Ir T

Mean=18.30
al= slope
2= sl
of Ir effect / gf T ;f?gﬁc

24+
Mean=23.34 ————

22+

20

RR T \‘

16 /

Mean=17.56
14
“— Mean=12.52
12 L T T T T
-1 1 -1.0000 1.0000
All displayed terms are in the model.

Figure 3. 3: Main effect plots for Pm.

Figure 3.3, on the left side, shows the irradiation varies from level -1 to level +1 the
maximum power goes from 12.52 W to 23.34W, with a value of 10.8W, which represents the

global effect of factor 1.

Also, figure 3.3, on its right side, there is the plot of PV cell surface temperature, which is
influences inversely on the direction of the power response (negative slope). when it varies
from level -1 to level +1, Pm decrease from 18.30W 17.56W that is global effect with value of
0.74 W.

These conclusions obtained by the simulations faithfully reflect the reality of the behavior

of photovoltaic solar panels.

c) Interaction plots

Indeed, with the theory of experimental designs we can analyze the interaction (mutual)
effect between solar irradiation and PV cell surface temperature on the variation of the
maximum power response. The interaction effect plot is a set of plots of average effects, each
corresponding to a different value of the second variable. If the lines are not parallel or the
contour curves are not equidistant over the entire range of the independent variable, then there

Is an interaction between the two independent variables. [35]
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Figure 3.4 presents the interaction effect between factor A and B equal to -0.06158 W. The
interactive effect of PV cell surface temperature on solar irradiation, the slope of blue plot
represents y,5_ the mean effect of irradiation when temperature is in the low level (30.5°C) it
equal to 5.9W, the slope of red plot represents y,z, the mean effect of irradiation when

temperature is in high level (45.1°C) and it equal 5.3 W.

Interaction Plot for Pm

Ir*T

24- T
—— 1
_.._ 1

211

QE_ 18-

15-

12-

Figure 3. 4: The effect of factor 1 when factor 2 changed.

This figure presents the irradiation/temperature interaction, which means the combined
effect of these two variables on the designed response. When the irradiation is 829 W/m?, the
effect of temperature is 0.25 W (blue plot). When the irradiation is 1781 W/m2 (red plot), the
effect of temperature on power is -0.62 W, this means that the effect of irradiation is a little

higher when the temperature decreases.

Interaction Plot for Pm

—1.UIUUU 1.0?00

T*Ir Ir
e 24 e 10
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Figure 3. 5: The effect of factor 2when factor 1 changed.
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d) Contour and surface plots

Figure 3.6 shows the surface response and the contour curves of the maximum power due to
the variation of irradiation levels and surface temperature of PV cell of the considered PV
module. From the surface response graph, we see that the variation of the maximum power acts
in the same direction of variation of the effect of solar irradiation and in the opposite direction
of the variation of the effect of the PV cell surface temperature of the PV module. Moreover,
the same note in contour outlines. This highlights of higher dependency on solar irradiation

levels compared to PV cell surface temperature where we see a lower dependency.

Surface Plot of Pmvs T, Ir Contour Plot of Pmvs T Ir

Fm

14— 16
W oG- 18
W oe- 20
W 20- 2
H -2

0.5

-0.59

-0.5 0.0 05 1.0
Ir

Figure 3.6: Surface response and contour plots of the experiment.

3.5. Modeling the PV panel for Short-circuit current

The same procedures followed during the study of the behavior of the maximum available
power response relating to the variation of the two factors sunshine and temperature will be

reproduced for the study of short-circuit current and open-circuit voltage responses.

3.5.1. Mathematical analysis
The same theory and factors we apply it to execute the result, and see the effects on the

short circuit current (response).

a) Linear regression model
Calculation of the intercept and coefficient is the same way.
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The results of the means of the responses and interaction, summarized in this following table:

Table 3. 6: The means of the responses/interaction.

The Effect of a, ag Qasp 143:7
both(:‘:l)ctors 0.3697 0.0098 0.0068 0.0068

The mean of the Ya+ Ya_ YB+ Yp—

response at

different factors 1.636 0.8971 1.277 1.257
and levels (A)

T_he mean of the Y aB+ YVap— YBa+ YBa-
interaction at

different factors 0377 0.3695 0.01 0.0025

and levels (A)

The predictive first order mathematical model give the maximum available power response:
Igc =1.267 +0.3697 x4+ 0.0098 x5 + 0.0068 x,4x5 (2.27)

Like the maximum power response, short circuit current influent by the irradiation more

than the temperature, So much, so that we can neglect the effect of temperature and interaction.

3.5.2. Graphical analysis

a) Pareto Chart
The chart here can prove it, as it shows the huge difference between the effects.

Pareto Chart of the Effects
(response is Isc, a = 0.05)
Term 0.3162

AB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8
Effect

Lenth's PSE = 0.0248880

Figure 3. 7:Pareto chart of the effects.
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b) Factorial Plots for Isc

The following plots shows on the left, the irradiation varies from level 0 to level +1 the
short-circuit goes from 1.267 Amps to 1.636 Amps, with a rising value of 0.369 Amps, which
represents the mean effect of factor 1. On the right side of figure 3.8, there is the plot of PV cell
surface temperature, when it varies from level 0 to level +1, but the deference between
maximum power and short-circuit current that the Isc increase from 1.267Amps to 1.277 Amps

that is mean effect with value of 0.01 Amps.

Muain Effects Plot for Isc

Ir u
1.7
Mean=1.636———m»
1.6
1.5 al= slope
] of Ir effect Mean=1.277 |
o 1.3 \
2 "
1.2
Mean=1.256
1.1
1.0
Mean=0.8971
0.0 /
0.8 ] . ' :
P 1 -1.0000 1.0000

All displayed terms are in the model
Figure 3. 8: Main effect plots for Isc.

c) Interaction plots
The following figures 3.9 and 3.10 present, the interaction effect between the factors on the

response. The difference between the two slopes of the factor responses indicates the presence
of an interaction between these two factors but with a very low value dependency. So both
temperature and irradiations variations with combined effect affect very low the short-circuit

current of the studied PV module.
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Figure 3. 9: The effect of factor 1 when factor 2 changed.
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Figure 3.10: The effect of factor 2 when factor 1 changed.

d) Contour and surface plots
The Figure 3.11 present short-circuit current response surface and the corresponding contour
plot. This graphic representation thus confirms the behavior of the short-current response as a

function of solar irradiation and surface temperature.

The short circuit current is strongly not dependent on temperature variations and increases

proportionally with irradiation level variations.
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Contour Plot of Isc vs T I

Surface Plot of Isc vs T, Ir

Isc
< 1.0
10 - 12
W2 - 14
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Figure 3.11: Surface response and contour plots of the experiment.

3.6. Modeling the PV panel for Open-circuit voltage response:
From the characteristic curves of the module, it is clear that the open circuit voltage of the

photovoltaic module, the point of intersection of the curve with the horizontal axis.

Varies little with solar radiation changes. It is inversely proportional to temperature, i.e., a
rise in temperature produces a decrease in voltage.

3.6.1. Mathematical analysis

a) Linear regression model

Calculation of the intercept and coefficient is the same way.
Yo = ag = 20.16V (2.28)

The results of the means of the responses and interaction, summarized in this following
table:

Table 3. 7: The coefficients / The means of the responses/interaction.

The Effect of a, ag Qasp Qapa
both({?)ctors 02173 05673 0.01344 -0.01344
The mean of the Yas Ya_ Y+ YB-
response at
different factors 29.23 19.95 19.60 20.73

and levels (V)
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The mean of the YaB+ YaB- YBa+ YBa-
interaction at
different factors 01 0 -0.35 -0.45

and levels (V)

The predictive first order mathematical model give the maximum available power response:
Voc =20.16 +0.2173 x,— 0.5673 x5 — 0.01344 x, x5 (2.29)

We see from the linear regression model, that the open circuit voltage, unlike other

responses it is more affected by temperature more than the irradiation.

3.6.2. Graphical analysis

a) Pareto Chart
The Pareto chart shows that there is no significant effect, but it shows us that the effect of

temperature (effect B) is greater than the rest.

Parero Chart of the Effects

(response is Vco, a = 0.05)
Term 8.283

Factor Name
A Ir
B T

AB

o] 1 2 3 4 5 13 7 8 9

Lenth's PSE = 0.657849
Figure 3.12: Pareto chart of the effects.

b) Factorial Plots for Voc
As it seems very clear in figure 3.13, the effect of the temperature factor acts on the opposite
direction to that of irradiation leading to a negative slope showing that the open circuit voltage

response increases slowly with irradiation but decreases sharply with temperature.
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Muain Effects Plot for Vco

Ir T
20.757 < Mean=20.73
20.50
az=slope
of T
effect
20.25
o
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-
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9
19.50 . . . .
-1 1 -1.0000 1.0000

Figure 3.13: Main effect plots for Voc.

c) Interacting effects plots

The open circuit voltage presented in the following 3.14 and 3.15 figures, presents a different
behavior to those of the other two responses, we notice the existence of a little difference
between the slopes of the effects of the factors, hence the absence of a strong interaction
between them. So the interactive effect of both input variables (irradiation levels and

temperature) on the open circuit voltage response can be neglected.

Ir*T
21.0-
o 1
_._ - -I
20.5-
)
hf-ri-
-
20.0-
=
19.5- e T
|
_|1 Ir 1I
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Figure 3. 14: the effect of factor 1 when factor 2 changed.

-1.0000 1.0000
TIr .
21.0 - 10
—®- 10
- 205
="
o
-
- 20.0
- 19.5

Figure 3. 15: the effect of factor 2 when factor 1 changed.

d) Contour and surface plots:
It is clear in the following 3.16 figure that temperature plays a major role in changing the

open circuit voltage.

It greatly affects the studied response because the open circuit voltage decreases when the

temperature rises and is directly proportional to the direction of radiation change.

Surface Plot of Veo vs T I Contour Plot of Veovs T, Ir

Veco

B 1950 - 19.75
W 19.75 - 20.00

20,00 - 2025
M 2025 - 2050
W 2050 - 2075
| ] > 2075

10 0.5 0.0 05 1.0
Ir

Figure 3.16: Surface response and contour plots of the experiment.
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3.7. Conclusion

In conclusion, the utilization of Design of Experiment (DOE) techniques in conjunction with
Minitab software offers a powerful framework for modeling the performance of photovoltaic
(PV) panels.

By applying methodologies facilitated by Minitab, such as factorial designs, we can
effectively identify significant factors and their interactions effects on the response closer to the
domain of the study. After results and discussion, we notice that the three responses vary in the
same direction of variation of solar irradiation, but differently with the direction of variation of

surface temperature.
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General Conclusion
The DoE technique and its implementation in modeling technological processes were
effectively utilized. The DoE approach was used for modeling and characterizing photovoltaic
modules. By employing this method, the behavior of a monocrystalline PV panel was
simulated, showcasing it as a practical modeling technique that necessitates only a few
measurements for the input variables (factors) and outputs (response), while yielding
satisfactory precision. Data from experiments conducted on a monocrystalline photovoltaic

panel were analyzed.

The first chapter covered generalities about the design of experiments were presented,
including its principle, the most important designs, and its usage principle. the second chapter,
featured an applied example of design of experiments to control the gasoline consumption of
Goupy's car was presented, showing how the design of experiments is carried out and how
results are extracted both algebraically and graphically manually, without using software, and
comparing these results with those calculated using Minitab software. The third chapter
involved using DoE for modeling the PSO40PR type monocrystalline photovoltaic panel within

the Minitab environment.

In this study, radiation levels and temperatures were considered as input factors and
compared to the unit's electrical parameters such as maximum power, short circuit current, and
open circuit voltage, which were the response variables of the system studied. The DoE concept
allowed for accurate predictions of responses based on input factors. Using the 22 factorial
design method, the direct and combined effects of the temperature and irradiation factors on the
three selected responses were highlighted. Furthermore, by comparing the real responses of a
PV module obtained experimentally, these behaviors obtained by simulation with factorial
design methods were analyzed, explained, and validated. The algebraic calculation using simple
linear regression justified the relationship between input and output variables and determined
which variables had the most influence on the output variable. Additionally, graphical
representations were used to trace the effects of the factors on the studied responses and the

interaction effects between the factors.




General Conclusion

The study revealed that DoE enables acquiring meaningful information using response
surfaces and contour curves within a well-defined study area, obviating the need to conduct
experiments at every point within this domain. This signifies that initial limited experiments

allow extrapolation of response behaviors across the study domain.

Finally, it was demonstrated that the experimental design approach makes possible to reduce
the running time of experiments (reduced number of tests) and the number of executions for
modeling a system. Additionally, a wide range of operational information can be obtained with
only a few experimental trials. This contribution has shown that the design of experiments
approach is a reliable and quality tool that can be easily applied to determine the behavior of

photovoltaic system applications.

We recommended to use the mathematical predictive model of the photovoltaic panel during
the stages of study, design, installation, and implementation of the systems to provide a future

vision of its performance after installation.
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